1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
|
/*
* Copyright 2021 Regents of the University of Michigan
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <errno.h>
#include <assert.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include "../lib/constraint.h"
#include "../lib/logger.h"
#include "../lib/xalloc.h"
//
// Efficient address-space constraints (AH 7/2013)
//
// This module uses a tree-based representation to efficiently
// manipulate and query constraints on the address space to be
// scanned. It provides a value for every IP address, and these
// values are applied by setting them for network prefixes. Order
// matters: setting a value replaces any existing value for that
// prefix or subsets of it. We use this to implement network
// allowlisting and blocklisting.
//
// Think of setting values in this structure like painting
// subnets with different colors. We can paint subnets black to
// exclude them and white to allow them. Only the top color shows.
// This makes for potentially very powerful constraint specifications.
//
// Internally, this is implemented using a binary tree, where each
// node corresponds to a network prefix. (E.g., the root is
// 0.0.0.0/0, and its children, if present, are 0.0.0.0/1 and
// 128.0.0.0/1.) Each leaf of the tree stores the value that applies
// to every address within the leaf's portion of the prefix space.
//
// As an optimization, after all values are set, we look up the
// value or subtree for every /16 prefix and cache them as an array.
// This lets subsequent lookups bypass the bottom half of the tree.
//
/*
* Constraint Copyright 2013 Regents of the University of Michigan
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may not
* use this file except in compliance with the License. You may obtain a copy
* of the License at http://www.apache.org/licenses/LICENSE-2.0
*/
typedef struct node {
struct node *l;
struct node *r;
value_t value;
uint64_t count;
} node_t;
// As an optimization, we precompute lookups for every prefix of this
// length:
#define RADIX_LENGTH 18
struct _constraint {
node_t *root; // root node of the tree
uint32_t *radix; // array of prefixes (/RADIX_LENGTH) that are painted
// paint_value
size_t radix_len; // number of prefixes in radix array
int painted; // have we precomputed counts for each node?
value_t paint_value; // value for which we precomputed counts
};
// Tree operations respect the invariant that every node that isn't a
// leaf has exactly two children.
#define IS_LEAF(node) ((node)->l == NULL)
// Allocate a new leaf with the given value
static node_t *_create_leaf(value_t value)
{
node_t *node = xmalloc(sizeof(node_t));
node->l = NULL;
node->r = NULL;
node->value = value;
return node;
}
// Free the subtree rooted at node.
static void _destroy_subtree(node_t *node)
{
if (node == NULL)
return;
_destroy_subtree(node->l);
_destroy_subtree(node->r);
free(node);
}
// Convert from an internal node to a leaf.
static void _convert_to_leaf(node_t *node)
{
assert(node);
assert(!IS_LEAF(node));
_destroy_subtree(node->l);
_destroy_subtree(node->r);
node->l = NULL;
node->r = NULL;
}
// Recursive function to set value for a given network prefix within
// the tree. (Note: prefix must be in host byte order.)
static void _set_recurse(node_t *node, uint32_t prefix, int len, value_t value)
{
assert(node);
assert(0 <= len && len <= 256);
if (len == 0) {
// We're at the end of the prefix; make this a leaf and set the
// value.
if (!IS_LEAF(node)) {
_convert_to_leaf(node);
}
node->value = value;
return;
}
if (IS_LEAF(node)) {
// We're not at the end of the prefix, but we hit a leaf.
if (node->value == value) {
// A larger prefix has the same value, so we're done.
return;
}
// The larger prefix has a different value, so we need to
// convert it into an internal node and continue processing on
// one of the leaves.
node->l = _create_leaf(node->value);
node->r = _create_leaf(node->value);
}
// We're not at the end of the prefix, and we're at an internal
// node. Recurse on the left or right subtree.
if (prefix & 0x80000000) {
_set_recurse(node->r, prefix << 1, len - 1, value);
} else {
_set_recurse(node->l, prefix << 1, len - 1, value);
}
// At this point, we're an internal node, and the value is set
// by one of our children or its descendent. If both children are
// leaves with the same value, we can discard them and become a left.
if (IS_LEAF(node->r) && IS_LEAF(node->l) &&
node->r->value == node->l->value) {
node->value = node->l->value;
_convert_to_leaf(node);
}
}
// Set the value for a given network prefix, overwriting any existing
// values on that prefix or subsets of it.
// (Note: prefix must be in host byte order.)
void constraint_set(constraint_t *con, uint32_t prefix, int len, value_t value)
{
assert(con);
_set_recurse(con->root, prefix, len, value);
con->painted = 0;
}
// Return the value pertaining to an address, according to the tree
// starting at given root. (Note: address must be in host byte order.)
static int _lookup_ip(node_t *root, uint32_t address)
{
assert(root);
node_t *node = root;
uint32_t mask = 0x80000000;
for (;;) {
if (IS_LEAF(node)) {
return node->value;
}
if (address & mask) {
node = node->r;
} else {
node = node->l;
}
mask >>= 1;
}
}
// Return the value pertaining to an address.
// (Note: address must be in host byte order.)
value_t constraint_lookup_ip(constraint_t *con, uint32_t address)
{
assert(con);
return _lookup_ip(con->root, address);
}
// Return the nth painted IP address.
static int _lookup_index(node_t *root, uint64_t n)
{
assert(root);
node_t *node = root;
uint32_t ip = 0;
uint32_t mask = 0x80000000;
for (;;) {
if (IS_LEAF(node)) {
return ip | n;
}
if (n < node->l->count) {
node = node->l;
} else {
n -= node->l->count;
node = node->r;
ip |= mask;
}
mask >>= 1;
}
}
// For a given value, return the IP address with zero-based index n.
// (i.e., if there are three addresses with value 0xFF, looking up index 1
// will return the second one).
// Note that the tree must have been previously painted with this value.
uint32_t constraint_lookup_index(constraint_t *con, uint64_t index,
value_t value)
{
assert(con);
if (!con->painted || con->paint_value != value) {
constraint_paint_value(con, value);
}
uint64_t radix_idx = index / (1 << (32 - RADIX_LENGTH));
if (radix_idx < con->radix_len) {
// Radix lookup
uint32_t radix_offset =
index % (1 << (32 - RADIX_LENGTH)); // TODO: bitwise maths
return con->radix[radix_idx] | radix_offset;
}
// Otherwise, do the "slow" lookup in tree.
// Note that tree counts do NOT include things in the radix,
// so we subtract these off here.
index -= con->radix_len * (1 << (32 - RADIX_LENGTH));
assert(index < con->root->count);
return _lookup_index(con->root, index);
}
// Implement count_ips by recursing on halves of the tree. Size represents
// the number of addresses in a prefix at the current level of the tree.
// If paint is specified, each node will have its count set to the number of
// leaves under it set to value.
// If exclude_radix is specified, the number of addresses will exclude prefixes
// that are a /RADIX_LENGTH or larger
static uint64_t _count_ips_recurse(node_t *node, value_t value, uint64_t size,
int paint, int exclude_radix)
{
assert(node);
uint64_t n;
if (IS_LEAF(node)) {
if (node->value == value) {
n = size;
// Exclude prefixes already included in the radix
if (exclude_radix &&
size >= (1 << (32 - RADIX_LENGTH))) {
n = 0;
}
} else {
n = 0;
}
} else {
n = _count_ips_recurse(node->l, value, size >> 1, paint,
exclude_radix) +
_count_ips_recurse(node->r, value, size >> 1, paint,
exclude_radix);
}
if (paint) {
node->count = n;
}
return n;
}
// Return a node that determines the values for the addresses with
// the given prefix. This is either the internal node that
// corresponds to the end of the prefix or a leaf node that
// encompasses the prefix. (Note: prefix must be in host byte order.)
static node_t *_lookup_node(node_t *root, uint32_t prefix, int len)
{
assert(root);
assert(0 <= len && len <= 32);
node_t *node = root;
uint32_t mask = 0x80000000;
int i;
for (i = 0; i < len; i++) {
if (IS_LEAF(node)) {
return node;
}
if (prefix & mask) {
node = node->r;
} else {
node = node->l;
}
mask >>= 1;
}
return node;
}
// For each node, precompute the count of leaves beneath it set to value.
// Note that the tree can be painted for only one value at a time.
void constraint_paint_value(constraint_t *con, value_t value)
{
assert(con);
log_debug("constraint", "Painting value %lu", value);
// Paint everything except what we will put in radix
_count_ips_recurse(con->root, value, (uint64_t)1 << 32, 1, 1);
// Fill in the radix array with a list of addresses
uint32_t i;
con->radix_len = 0;
for (i = 0; i < (1 << RADIX_LENGTH); i++) {
uint32_t prefix = i << (32 - RADIX_LENGTH);
node_t *node = _lookup_node(con->root, prefix, RADIX_LENGTH);
if (IS_LEAF(node) && node->value == value) {
// Add this prefix to the radix
con->radix[con->radix_len++] = prefix;
}
}
log_debug("constraint", "%lu IPs in radix array, %lu IPs in tree",
con->radix_len * (1 << (32 - RADIX_LENGTH)),
con->root->count);
con->painted = 1;
con->paint_value = value;
}
// Return the number of addresses that have a given value.
uint64_t constraint_count_ips(constraint_t *con, value_t value)
{
assert(con);
if (con->painted && con->paint_value == value) {
return con->root->count +
con->radix_len * (1 << (32 - RADIX_LENGTH));
} else {
return _count_ips_recurse(con->root, value, (uint64_t)1 << 32,
0, 0);
}
}
// Initialize the tree.
// All addresses will initially have the given value.
constraint_t *constraint_init(value_t value)
{
constraint_t *con = xmalloc(sizeof(constraint_t));
con->root = _create_leaf(value);
con->radix = xcalloc(sizeof(uint32_t), 1 << RADIX_LENGTH);
con->painted = 0;
return con;
}
// Deinitialize and free the tree.
void constraint_free(constraint_t *con)
{
assert(con);
log_debug("constraint", "Cleaning up");
_destroy_subtree(con->root);
free(con->radix);
free(con);
}
/*
int main(void)
{
log_init(stderr, LOG_DEBUG);
constraint_t *con = constraint_init(0);
constraint_set(con, ntohl(inet_addr("128.128.0.0")), 1, 22);
constraint_set(con, ntohl(inet_addr("128.128.0.0")), 1, 1);
constraint_set(con, ntohl(inet_addr("128.0.0.0")), 1, 1);
constraint_set(con, ntohl(inet_addr("10.0.0.0")), 24, 1);
constraint_set(con, ntohl(inet_addr("10.0.0.0")), 24, 0);
constraint_set(con, ntohl(inet_addr("10.11.12.0")), 24, 1);
constraint_set(con, ntohl(inet_addr("141.212.0.0")), 16, 0);
for (int x=1; x < 2; x++) {
if (x == 1) {
constraint_optimize(con);
}
printf("count(0)=%ld\n", constraint_count_ips(con, 0));
printf("count(1)=%ld\n", constraint_count_ips(con, 1));
printf("%d\n",
constraint_lookup_ip(con,ntohl(inet_addr("10.11.12.0"))));
assert(constraint_count_ips(con, 0) + constraint_count_ips(con,
1) == (uint64_t)1 << 32);
uint32_t i=0, count=0;
do {
if (constraint_lookup_ip(con, i))
count++;
} while (++i != 0);
printf("derived count(1)=%u\n", count);
}
constraint_free(con);
}
*/
|