File: crypt_buffer.c

package info (click to toggle)
zulucrypt 6.2.0-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, sid
  • size: 6,908 kB
  • sloc: ansic: 25,142; cpp: 23,281; makefile: 24; xml: 10; sh: 2
file content (458 lines) | stat: -rw-r--r-- 11,888 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458

/*
 * copyright: 2014-2015
 * name : Francis Banyikwa
 * email: mhogomchungu@gmail.com
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in
 *    the documentation and/or other materials provided with the
 *    distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE
 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */
#include <stdio.h>
#include <string.h>
#include <fcntl.h>
#include <unistd.h>

#include "crypt_buffer.h"

#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
#include <gcrypt.h>
#pragma GCC diagnostic warning "-Wdeprecated-declarations"

#define KEY_LENGTH 32
#define SALT_SIZE  16
#define IV_SIZE    16
#define LOAD_INFO_SIZE  32
#define HMAC_SIZE 24
#define MAGIC_STRING "TRUE"
#define MAGIC_STRING_LENGTH 4

#define PBKDF2_ITERATIONS 5000

/*
 * This library takes a block of data and returns an encrypted version of the data.
 * This library also has the ability to reverse the above action.
 *
 * A user gives a password of specified size and the library coverts it to a 32 byte key using
 * pbkdf2 with iteration count of 5000 and a hash function of sha2.
 *
 * Data is encrypted using 256 bit AES in CBC mode.
 *
 * The format of the encrypted data:
 * 16 bytes from offset 0 stores pbkdf2 salt.
 * 16 bytes from offset 16 stores AES initialization vector.
 * 4  bytes from offset 32 stores the size of the load given by the user.
 * 4  bytes from offset 36 stores a string "TRUE" that is used to verify encryption key during decryption.
 * 24 bytes from offset 40 are used to store hmac hash value of the clear text.
 * The load the user gave to be stored encrypted starts from offset 64.The load will be padded up to a multiple of 32.
 *
 * Encrypted data starts at offset 32.
 *
 * The size of ciphertext will be ( 64 + 32n ) bytes where n is a number starting from 0.
 */

struct crypt_buffer_ctx_1
{
	char * buffer ;
	char * key ;
	size_t buffer_size ;
	size_t key_size ;
	int    fd ;
	gcry_cipher_hd_t h ;
	gcry_md_hd_t     m ;
} ;

static int _debug( crypt_buffer_ctx ctx,const char * e )
{
#if 0
	if( 0 && ctx ){;}
	puts( e ) ;
#else
	if( 0 && ctx && e ){;}
#endif
	return 0 ;
}

static int _failed( gcry_error_t r )
{
	return r != GPG_ERR_NO_ERROR ;
}

static int _passed( gcry_error_t r )
{
	return r == GPG_ERR_NO_ERROR ;
}

static int _failed_init( int fd,char * key,crypt_buffer_ctx c,gcry_cipher_hd_t h,gcry_md_hd_t m )
{
	close( fd ) ;

	free( key ) ;
	free( c ) ;

	if( h != 0 ){
		gcry_cipher_close( h ) ;
	}
	if( m != 0 ){
		gcry_md_close( m ) ;
	}

	return 0 ;
}

int crypt_buffer_init( crypt_buffer_ctx * ctx,const void * k,size_t key_size )
{
	gcry_error_t r ;

	gcry_cipher_hd_t h = 0 ;
	gcry_md_hd_t m = 0 ;

	crypt_buffer_ctx c ;

	void * key = NULL ;

	int fd = open( "/dev/urandom",O_RDONLY ) ;

	if( fd == -1 ){
		return 0 ;
	}

	if( gcry_control( GCRYCTL_INITIALIZATION_FINISHED_P ) == 0 ){
		gcry_check_version( NULL ) ;
		gcry_control( GCRYCTL_INITIALIZATION_FINISHED,0 ) ;
	}

	c = malloc( sizeof( struct crypt_buffer_ctx_1 ) ) ;
	if( c == NULL ){
		return _failed_init( fd,key,c,h,m ) ;
	}

	key = malloc( key_size ) ;
	if( key == NULL ){
		return _failed_init( fd,key,c,h,m ) ;
	}

	r = gcry_cipher_open( &h,GCRY_CIPHER_AES256,GCRY_CIPHER_MODE_CBC,0 ) ;

	if( _failed( r ) ){
		return _failed_init( fd,key,c,h,m ) ;
	}

	r = gcry_md_open( &m,GCRY_MD_SHA256,GCRY_MD_FLAG_HMAC ) ;

	if( _failed( r ) ){
		return _failed_init( fd,key,c,h,m ) ;
	}

	r = gcry_md_setkey( m,k,key_size ) ;

	if( _failed( r ) ){
		return _failed_init( fd,key,c,h,m ) ;
	}else{
		memcpy( key,k,key_size ) ;

		c->buffer      = NULL ;
		c->buffer_size = 0 ;
		c->h           = h ;
		c->m           = m ;
		c->key         = key ;
		c->key_size    = key_size ;
		c->fd          = fd ;
		*ctx           = c ;
		return 1 ;
	}
}

void crypt_buffer_uninit( crypt_buffer_ctx * ctx )
{
	crypt_buffer_ctx t ;

	if( ctx != NULL && *ctx != NULL ){
		t = *ctx ;
		*ctx = NULL ;
		gcry_cipher_close( t->h ) ;
		gcry_md_close( t->m ) ;
		close( t->fd ) ;
		free( t->key ) ;
		free( t->buffer ) ;
		free( t ) ;
	}
}

static int _get_random_data( crypt_buffer_ctx ctx,char * buffer,size_t buffer_size )
{
	ssize_t e = buffer_size ;
	ssize_t z = read( ctx->fd,buffer,buffer_size ) ;
	return z != e ;
}

static gcry_error_t _create_key( const char * salt,size_t salt_size,const char * input_key,
				 size_t input_key_length,char * output_key,size_t output_key_size )
{
	return gcry_kdf_derive( input_key,input_key_length,GCRY_KDF_PBKDF2,GCRY_MD_SHA256,
				salt,salt_size,PBKDF2_ITERATIONS,output_key_size,output_key ) ;
}

static int _set_gcrypt_handle( crypt_buffer_ctx ctx,const char * salt,size_t salt_size,const char * iv,size_t iv_size )
{
	char key[ KEY_LENGTH ] ;

	gcry_error_t r ;

	gcry_cipher_hd_t handle = ctx->h ;

	r = gcry_cipher_reset( handle ) ;

	if( _passed( r ) ){
		r = _create_key( salt,salt_size,ctx->key,ctx->key_size,key,KEY_LENGTH ) ;
		if( _passed( r ) ){
			r = gcry_cipher_setkey( handle,key,KEY_LENGTH ) ;
			if( _passed( r ) ){
				r = gcry_cipher_setiv( handle,iv,iv_size ) ;
				if( _passed( r ) ){
					return 1 ;
				}else{
					return _debug( ctx,"failed to set iv" ) ;
				}
			}else{
				return _debug( ctx,"failed to set key" ) ;
			}
		}else{
			return _debug( ctx,"failed to create key" ) ;
		}
	}else{
		return _debug( ctx,"failed to reset handle" ) ;
	}
}

static char * _expand_buffer( crypt_buffer_ctx h,size_t z )
{
	char * e = NULL ;

	if( h == NULL ){
		return 0 ;
	}

	if( h->buffer_size < z ){

		e = realloc( h->buffer,z ) ;

		if( e != NULL ){
			h->buffer = e ;
			h->buffer_size = z ;
			return e ;
		}else{
			return NULL ;
		}
	}else{
		return h->buffer ;
	}
}

static unsigned char * _create_hmac( crypt_buffer_ctx ctx,const void * buffer,u_int32_t buffer_size )
{
	gcry_md_reset( ctx->m ) ;

	gcry_md_write( ctx->m,buffer,buffer_size ) ;

	return gcry_md_read( ctx->m,0 ) ;
}

int crypt_buffer_encrypt( crypt_buffer_ctx ctx,const void * buffer,u_int32_t buffer_size,crypt_buffer_result * r )
{
	char buff[ SALT_SIZE + IV_SIZE ] ;

	gcry_error_t z ;

	size_t len ;
	size_t k = buffer_size ;

	char * e ;
	unsigned char * f ;
	const char * salt = buff ;
	const char * iv   = buff + SALT_SIZE ;

	if( _get_random_data( ctx,buff,SALT_SIZE + IV_SIZE ) ){
		return _debug( ctx,"failed to get random data" ) ;
	}

	/*
	 * make sure the block buffer we are going to encrypt is a multiple of 32
	 */
	while( k % 32 != 0 ){
		k += 1 ;
	}

	e = _expand_buffer( ctx,k + SALT_SIZE + IV_SIZE + LOAD_INFO_SIZE ) ;

	if( e == NULL ){
		return _debug( ctx,"faile to expand memory buffer" ) ;
	}

	f = _create_hmac( ctx,buffer,buffer_size ) ;

	if( f == NULL ){
		return _debug( ctx,"failed to create hmac hash" ) ;
	}

	if( _set_gcrypt_handle( ctx,salt,SALT_SIZE,iv,IV_SIZE ) ){

		len = SALT_SIZE + IV_SIZE ;
		/*
		 * 16 bytes from offset 0 contains pbkdf2 salt.
		 * 16 bytes from offset 16 contains AES initialization vector.
		 * The sum of the above makes the first 32 byte block.
		 * This block is stored in clear text.
		 */
		memcpy( e,buff,len ) ;
		/*
		 * 4 bytes from offset 32 stores the size of the clear text we are going to encrypt
		 */
		memcpy( e + len,&buffer_size,sizeof( u_int32_t ) ) ;
		/*
		 * 4 bytes at offset 36 stores "TRUE" bytes to be used to verify decryption key
		 */
		memcpy( e + len + sizeof( u_int32_t ),MAGIC_STRING,MAGIC_STRING_LENGTH ) ;
		/*
		 * 24 bytes from offset 40 contains hmac digest of the cleartext
		 *
		 * These 24 bytes plus the 4 above and the 4 above it makes the second 32 byte block.
		 * Ciphertext starts with this block.
		 */
		memcpy( e + len + sizeof( u_int32_t ) + sizeof( u_int32_t ) ,f,HMAC_SIZE ) ;
		/*
		 * User data to encrypt starts at the 64th bytes.
		 * The 64th bytes marks the end of the header and the beginning of the load.
		 */
		memcpy( e + len + LOAD_INFO_SIZE,buffer,buffer_size ) ;

		/*
		 * Encryption starts at offset 32
		 */
		z = gcry_cipher_encrypt( ctx->h,e + len,LOAD_INFO_SIZE + k,NULL,0 ) ;

		if( _passed( z ) ){
			r->buffer = ctx->buffer ;
			/*
			 * SALT_SIZE + IV_SIZE + LOAD_INFO_SIZE will equal 64.
			 * k will equal the size of the data we were asked to encrypt rounded up to a multiple of 32
			 */
			r->length = k + SALT_SIZE + IV_SIZE + LOAD_INFO_SIZE ;
			return 1 ;
		}else{
			return _debug( ctx,"failed to encrypt data" ) ;
		}
	}else{
		return _debug( ctx,"failed to create encryption handle" ) ;
	}
}

/*
 * The password is assumed to be correct if the 4 bytes from offset 36 equal "TRUE"
 */
static int _password_is_correct( const char * buffer )
{
	return memcmp( buffer + sizeof( u_int32_t ),MAGIC_STRING,MAGIC_STRING_LENGTH ) == 0 ;
}

static u_int32_t _get_data_length( const char * buffer )
{
	u_int32_t l ;
	memcpy( &l,buffer,sizeof( u_int32_t ) ) ;
	return l ;
}

static int _hmac_passed( crypt_buffer_ctx ctx,const char * e,u_int32_t buffer_size )
{
	/*
	 * calculate the hmac hash of the decrypted data.
	 */
	unsigned char * f = _create_hmac( ctx,e + LOAD_INFO_SIZE,buffer_size ) ;
	/*
	 * compare the hmac of the decrypted data against the stored hmac at offset 8 of the decrypted data.
	 * This offset 8 is actually offset 40 since the decryption skipped the first 32 bytes of the salt and IV.
	 */
	return memcmp( f,e + sizeof( u_int32_t ) + sizeof( u_int32_t ),HMAC_SIZE ) == 0 ;
}

int crypt_buffer_decrypt( crypt_buffer_ctx ctx,const void * buffer,u_int32_t buffer_size,crypt_buffer_result * r )
{
	gcry_error_t z ;

	char * e ;

	const char * buff = buffer ;
	const char * salt = buff ;
	const char * iv   = buff + SALT_SIZE ;

	size_t len = buffer_size - ( SALT_SIZE + IV_SIZE ) ;
	ssize_t l  = buffer_size - ( SALT_SIZE + IV_SIZE + LOAD_INFO_SIZE ) ;

	if( l < 0 ){
		return _debug( ctx,"inconsistent data size detected" ) ;
	}

	e = _expand_buffer( ctx,buffer_size ) ;

	if( e == NULL ){
		return _debug( ctx,"failed to expand internal buffer" ) ;
	}

	if( _set_gcrypt_handle( ctx,salt,SALT_SIZE,iv,IV_SIZE ) ){

		/*
		 * Skip to offset 32 and start decryption from there.Thats because the first 32 bytes
		 * holds salt and IV and are stored unencrypted.
		 */
		z = gcry_cipher_decrypt( ctx->h,e,len,buff + SALT_SIZE + IV_SIZE,len ) ;

		if( _passed( z ) ){

			if( _password_is_correct( e ) ){

				len = _get_data_length( e ) ;

				if( len <= buffer_size - ( SALT_SIZE + IV_SIZE + LOAD_INFO_SIZE ) ){

					if( _hmac_passed( ctx,e,len ) ){

						r->buffer = e + LOAD_INFO_SIZE ;
						r->length = len ;

						return 1 ;
					}else{
						return _debug( ctx,"hmac check failed" ) ;
					}
				}else{
					return _debug( ctx,"inconsistency detected on stored data size" ) ;
				}
			}else{
				return _debug( ctx,"password check failed" ) ;
			}
		}else{
			return _debug( ctx,"decryption routine failed 1" ) ;
		}
	}else{
		return _debug( ctx,"decryption routine failed 2" ) ;
	}
}