1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
|
from math import log, factorial
import re
from .adjacency_graphs import ADJACENCY_GRAPHS
from decimal import Decimal
def calc_average_degree(graph):
average = 0
for key, neighbors in graph.items():
average += len([n for n in neighbors if n])
average /= float(len(graph.items()))
return average
BRUTEFORCE_CARDINALITY = 10
MIN_GUESSES_BEFORE_GROWING_SEQUENCE = 10000
MIN_SUBMATCH_GUESSES_SINGLE_CHAR = 10
MIN_SUBMATCH_GUESSES_MULTI_CHAR = 50
MIN_YEAR_SPACE = 20
REFERENCE_YEAR = 2017
def nCk(n, k):
"""http://blog.plover.com/math/choose.html"""
if k > n:
return 0
if k == 0:
return 1
r = 1
for d in range(1, k + 1):
r *= n
r /= d
n -= 1
return r
# ------------------------------------------------------------------------------
# search --- most guessable match sequence -------------------------------------
# ------------------------------------------------------------------------------
#
# takes a sequence of overlapping matches, returns the non-overlapping sequence with
# minimum guesses. the following is a O(l_max * (n + m)) dynamic programming algorithm
# for a length-n password with m candidate matches. l_max is the maximum optimal
# sequence length spanning each prefix of the password. In practice it rarely exceeds 5 and the
# search terminates rapidly.
#
# the optimal "minimum guesses" sequence is here defined to be the sequence that
# minimizes the following function:
#
# g = l! * Product(m.guesses for m in sequence) + D^(l - 1)
#
# where l is the length of the sequence.
#
# the factorial term is the number of ways to order l patterns.
#
# the D^(l-1) term is another length penalty, roughly capturing the idea that an
# attacker will try lower-length sequences first before trying length-l sequences.
#
# for example, consider a sequence that is date-repeat-dictionary.
# - an attacker would need to try other date-repeat-dictionary combinations,
# hence the product term.
# - an attacker would need to try repeat-date-dictionary, dictionary-repeat-date,
# ..., hence the factorial term.
# - an attacker would also likely try length-1 (dictionary) and length-2 (dictionary-date)
# sequences before length-3. assuming at minimum D guesses per pattern type,
# D^(l-1) approximates Sum(D^i for i in [1..l-1]
#
# ------------------------------------------------------------------------------
def most_guessable_match_sequence(password, matches, _exclude_additive=False):
n = len(password)
# partition matches into sublists according to ending index j
matches_by_j = [[] for _ in range(n)]
try:
for m in matches:
matches_by_j[m['j']].append(m)
except TypeError:
pass
# small detail: for deterministic output, sort each sublist by i.
for lst in matches_by_j:
lst.sort(key=lambda m1: m1['i'])
optimal = {
# optimal.m[k][l] holds final match in the best length-l match sequence
# covering the password prefix up to k, inclusive.
# if there is no length-l sequence that scores better (fewer guesses)
# than a shorter match sequence spanning the same prefix,
# optimal.m[k][l] is undefined.
'm': [{} for _ in range(n)],
# same structure as optimal.m -- holds the product term Prod(m.guesses
# for m in sequence). optimal.pi allows for fast (non-looping) updates
# to the minimization function.
'pi': [{} for _ in range(n)],
# same structure as optimal.m -- holds the overall metric.
'g': [{} for _ in range(n)],
}
# helper: considers whether a length-l sequence ending at match m is better
# (fewer guesses) than previously encountered sequences, updating state if
# so.
def update(m, l):
k = m['j']
pi = estimate_guesses(m, password)
if l > 1:
# we're considering a length-l sequence ending with match m:
# obtain the product term in the minimization function by
# multiplying m's guesses by the product of the length-(l-1)
# sequence ending just before m, at m.i - 1.
pi = pi * Decimal(optimal['pi'][m['i'] - 1][l - 1])
# calculate the minimization func
g = factorial(l) * pi
if not _exclude_additive:
g += MIN_GUESSES_BEFORE_GROWING_SEQUENCE ** (l - 1)
# update state if new best.
# first see if any competing sequences covering this prefix, with l or
# fewer matches, fare better than this sequence. if so, skip it and
# return.
for competing_l, competing_g in optimal['g'][k].items():
if competing_l > l:
continue
if competing_g <= g:
return
# this sequence might be part of the final optimal sequence.
optimal['g'][k][l] = g
optimal['m'][k][l] = m
optimal['pi'][k][l] = pi
# helper: evaluate bruteforce matches ending at k.
def bruteforce_update(k):
# see if a single bruteforce match spanning the k-prefix is optimal.
m = make_bruteforce_match(0, k)
update(m, 1)
for i in range(1, k + 1):
# generate k bruteforce matches, spanning from (i=1, j=k) up to
# (i=k, j=k). see if adding these new matches to any of the
# sequences in optimal[i-1] leads to new bests.
m = make_bruteforce_match(i, k)
for l, last_m in optimal['m'][i - 1].items():
l = int(l)
# corner: an optimal sequence will never have two adjacent
# bruteforce matches. it is strictly better to have a single
# bruteforce match spanning the same region: same contribution
# to the guess product with a lower length.
# --> safe to skip those cases.
if last_m.get('pattern', False) == 'bruteforce':
continue
# try adding m to this length-l sequence.
update(m, l + 1)
# helper: make bruteforce match objects spanning i to j, inclusive.
def make_bruteforce_match(i, j):
return {
'pattern': 'bruteforce',
'token': password[i:j + 1],
'i': i,
'j': j,
}
# helper: step backwards through optimal.m starting at the end,
# constructing the final optimal match sequence.
def unwind(n):
if n == 0:
# return empty list for zero-length password
return []
optimal_match_sequence = []
k = n - 1
# find the final best sequence length and score
l = None
g = float('inf')
for candidate_l, candidate_g in optimal['g'][k].items():
if candidate_g < g:
l = candidate_l
g = candidate_g
while k >= 0:
m = optimal['m'][k][l]
optimal_match_sequence.insert(0, m)
k = m['i'] - 1
l -= 1
return optimal_match_sequence
for k in range(n):
for m in matches_by_j[k]:
if m['i'] > 0:
for l in optimal['m'][m['i'] - 1]:
l = int(l)
update(m, l + 1)
else:
update(m, 1)
bruteforce_update(k)
optimal_match_sequence = unwind(n)
optimal_l = len(optimal_match_sequence)
# corner: empty password
if len(password) == 0:
guesses = 1
else:
guesses = optimal['g'][n - 1][optimal_l]
# final result object
return {
'password': password,
'guesses': guesses,
'guesses_log10': log(guesses, 10),
'sequence': optimal_match_sequence,
}
def estimate_guesses(match, password):
if match.get('guesses', False):
return Decimal(match['guesses'])
min_guesses = 1
if len(match['token']) < len(password):
if len(match['token']) == 1:
min_guesses = MIN_SUBMATCH_GUESSES_SINGLE_CHAR
else:
min_guesses = MIN_SUBMATCH_GUESSES_MULTI_CHAR
estimation_functions = {
'bruteforce': bruteforce_guesses,
'dictionary': dictionary_guesses,
'spatial': spatial_guesses,
'repeat': repeat_guesses,
'sequence': sequence_guesses,
'regex': regex_guesses,
'date': date_guesses,
}
guesses = estimation_functions[match['pattern']](match)
match['guesses'] = max(guesses, min_guesses)
match['guesses_log10'] = log(match['guesses'], 10)
return Decimal(match['guesses'])
def bruteforce_guesses(match):
guesses = BRUTEFORCE_CARDINALITY ** len(match['token'])
# small detail: make bruteforce matches at minimum one guess bigger than
# smallest allowed submatch guesses, such that non-bruteforce submatches
# over the same [i..j] take precedence.
if len(match['token']) == 1:
min_guesses = MIN_SUBMATCH_GUESSES_SINGLE_CHAR + 1
else:
min_guesses = MIN_SUBMATCH_GUESSES_MULTI_CHAR + 1
return max(guesses, min_guesses)
def dictionary_guesses(match):
# keep these as properties for display purposes
match['base_guesses'] = match['rank']
match['uppercase_variations'] = uppercase_variations(match)
match['l33t_variations'] = l33t_variations(match)
reversed_variations = match.get('reversed', False) and 2 or 1
return match['base_guesses'] * match['uppercase_variations'] * \
match['l33t_variations'] * reversed_variations
def repeat_guesses(match):
return match['base_guesses'] * Decimal(match['repeat_count'])
def sequence_guesses(match):
first_chr = match['token'][:1]
# lower guesses for obvious starting points
if first_chr in ['a', 'A', 'z', 'Z', '0', '1', '9']:
base_guesses = 4
else:
if re.compile(r'\d').match(first_chr):
base_guesses = 10 # digits
else:
# could give a higher base for uppercase,
# assigning 26 to both upper and lower sequences is more
# conservative.
base_guesses = 26
if not match['ascending']:
base_guesses *= 2
return base_guesses * len(match['token'])
def regex_guesses(match):
char_class_bases = {
'alpha_lower': 26,
'alpha_upper': 26,
'alpha': 52,
'alphanumeric': 62,
'digits': 10,
'symbols': 33,
}
if match['regex_name'] in char_class_bases:
return char_class_bases[match['regex_name']] ** len(match['token'])
elif match['regex_name'] == 'recent_year':
# conservative estimate of year space: num years from REFERENCE_YEAR.
# if year is close to REFERENCE_YEAR, estimate a year space of
# MIN_YEAR_SPACE.
year_space = abs(int(match['regex_match'].group(0)) - REFERENCE_YEAR)
year_space = max(year_space, MIN_YEAR_SPACE)
return year_space
def date_guesses(match):
year_space = max(abs(match['year'] - REFERENCE_YEAR), MIN_YEAR_SPACE)
guesses = year_space * 365
if match.get('separator', False):
guesses *= 4
return guesses
KEYBOARD_AVERAGE_DEGREE = calc_average_degree(ADJACENCY_GRAPHS['qwerty'])
# slightly different for keypad/mac keypad, but close enough
KEYPAD_AVERAGE_DEGREE = calc_average_degree(ADJACENCY_GRAPHS['keypad'])
KEYBOARD_STARTING_POSITIONS = len(ADJACENCY_GRAPHS['qwerty'].keys())
KEYPAD_STARTING_POSITIONS = len(ADJACENCY_GRAPHS['keypad'].keys())
def spatial_guesses(match):
if match['graph'] in ['qwerty', 'dvorak']:
s = KEYBOARD_STARTING_POSITIONS
d = KEYBOARD_AVERAGE_DEGREE
else:
s = KEYPAD_STARTING_POSITIONS
d = KEYPAD_AVERAGE_DEGREE
guesses = 0
L = len(match['token'])
t = match['turns']
# estimate the number of possible patterns w/ length L or less with t turns
# or less.
for i in range(2, L + 1):
possible_turns = min(t, i - 1) + 1
for j in range(1, possible_turns):
guesses += nCk(i - 1, j - 1) * s * pow(d, j)
# add extra guesses for shifted keys. (% instead of 5, A instead of a.)
# math is similar to extra guesses of l33t substitutions in dictionary
# matches.
if match['shifted_count']:
S = match['shifted_count']
U = len(match['token']) - match['shifted_count'] # unshifted count
if S == 0 or U == 0:
guesses *= 2
else:
shifted_variations = 0
for i in range(1, min(S, U) + 1):
shifted_variations += nCk(S + U, i)
guesses *= shifted_variations
return guesses
START_UPPER = re.compile(r'^[A-Z][^A-Z]+$')
END_UPPER = re.compile(r'^[^A-Z]+[A-Z]$')
ALL_UPPER = re.compile(r'^[^a-z]+$')
ALL_LOWER = re.compile(r'^[^A-Z]+$')
def uppercase_variations(match):
word = match['token']
if ALL_LOWER.match(word) or word.lower() == word:
return 1
for regex in [START_UPPER, END_UPPER, ALL_UPPER]:
if regex.match(word):
return 2
U = sum(1 for c in word if c.isupper())
L = sum(1 for c in word if c.islower())
variations = 0
for i in range(1, min(U, L) + 1):
variations += nCk(U + L, i)
return variations
def l33t_variations(match):
if not match.get('l33t', False):
return 1
variations = 1
for subbed, unsubbed in match['sub'].items():
# lower-case match.token before calculating: capitalization shouldn't
# affect l33t calc.
chrs = list(match['token'].lower())
S = sum(1 for chr in chrs if chr == subbed)
U = sum(1 for chr in chrs if chr == unsubbed)
if S == 0 or U == 0:
# for this sub, password is either fully subbed (444) or fully
# unsubbed (aaa) treat that as doubling the space (attacker needs
# to try fully subbed chars in addition to unsubbed.)
variations *= 2
else:
# this case is similar to capitalization:
# with aa44a, U = 3, S = 2, attacker needs to try unsubbed + one
# sub + two subs
p = min(U, S)
possibilities = 0
for i in range(1, p + 1):
possibilities += nCk(U + S, i)
variations *= possibilities
return variations
|