|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectorg.netlib.blas.BLAS
public abstract class BLAS
BLAS provider which will attempt to access a native implementation and falling back to use F2J if none is available.
http://sourceforge.net/projects/f2j
,
http://www.netlib.org/blas/
Constructor Summary | |
---|---|
BLAS()
|
Method Summary | |
---|---|
abstract double |
dasum(int n,
double[] dx,
int incx)
.. |
abstract void |
daxpy(int n,
double da,
double[] dx,
int incx,
double[] dy,
int incy)
.. |
abstract void |
dcopy(int n,
double[] dx,
int incx,
double[] dy,
int incy)
.. |
abstract double |
ddot(int n,
double[] dx,
int incx,
double[] dy,
int incy)
.. |
abstract void |
dgbmv(java.lang.String trans,
int m,
int n,
int kl,
int ku,
double alpha,
double[] a,
int lda,
double[] x,
int incx,
double beta,
double[] y,
int incy)
.. |
abstract void |
dgemm(java.lang.String transa,
java.lang.String transb,
int m,
int n,
int k,
double alpha,
double[] a,
int lda,
double[] b,
int ldb,
double beta,
double[] c,
int Ldc)
.. |
abstract void |
dgemv(java.lang.String trans,
int m,
int n,
double alpha,
double[] a,
int lda,
double[] x,
int incx,
double beta,
double[] y,
int incy)
.. |
abstract void |
dger(int m,
int n,
double alpha,
double[] x,
int incx,
double[] y,
int incy,
double[] a,
int lda)
.. |
abstract double |
dnrm2(int n,
double[] x,
int incx)
.. |
abstract void |
drot(int n,
double[] dx,
int incx,
double[] dy,
int incy,
double c,
double s)
.. |
abstract void |
drotg(org.netlib.util.doubleW da,
org.netlib.util.doubleW db,
org.netlib.util.doubleW c,
org.netlib.util.doubleW s)
.. |
abstract void |
drotm(int n,
double[] dx,
int incx,
double[] dy,
int incy,
double[] dparam)
.. |
abstract void |
drotmg(org.netlib.util.doubleW dd1,
org.netlib.util.doubleW dd2,
org.netlib.util.doubleW dx1,
double dy1,
double[] dparam)
.. |
abstract void |
dsbmv(java.lang.String uplo,
int n,
int k,
double alpha,
double[] a,
int lda,
double[] x,
int incx,
double beta,
double[] y,
int incy)
.. |
abstract void |
dscal(int n,
double da,
double[] dx,
int incx)
.. |
abstract void |
dspmv(java.lang.String uplo,
int n,
double alpha,
double[] ap,
double[] x,
int incx,
double beta,
double[] y,
int incy)
.. |
abstract void |
dspr(java.lang.String uplo,
int n,
double alpha,
double[] x,
int incx,
double[] ap)
.. |
abstract void |
dspr2(java.lang.String uplo,
int n,
double alpha,
double[] x,
int incx,
double[] y,
int incy,
double[] ap)
.. |
abstract void |
dswap(int n,
double[] dx,
int incx,
double[] dy,
int incy)
.. |
abstract void |
dsymm(java.lang.String side,
java.lang.String uplo,
int m,
int n,
double alpha,
double[] a,
int lda,
double[] b,
int ldb,
double beta,
double[] c,
int Ldc)
.. |
abstract void |
dsymv(java.lang.String uplo,
int n,
double alpha,
double[] a,
int lda,
double[] x,
int incx,
double beta,
double[] y,
int incy)
.. |
abstract void |
dsyr(java.lang.String uplo,
int n,
double alpha,
double[] x,
int incx,
double[] a,
int lda)
.. |
abstract void |
dsyr2(java.lang.String uplo,
int n,
double alpha,
double[] x,
int incx,
double[] y,
int incy,
double[] a,
int lda)
.. |
abstract void |
dsyr2k(java.lang.String uplo,
java.lang.String trans,
int n,
int k,
double alpha,
double[] a,
int lda,
double[] b,
int ldb,
double beta,
double[] c,
int Ldc)
.. |
abstract void |
dsyrk(java.lang.String uplo,
java.lang.String trans,
int n,
int k,
double alpha,
double[] a,
int lda,
double beta,
double[] c,
int Ldc)
.. |
abstract void |
dtbmv(java.lang.String uplo,
java.lang.String trans,
java.lang.String diag,
int n,
int k,
double[] a,
int lda,
double[] x,
int incx)
.. |
abstract void |
dtbsv(java.lang.String uplo,
java.lang.String trans,
java.lang.String diag,
int n,
int k,
double[] a,
int lda,
double[] x,
int incx)
.. |
abstract void |
dtpmv(java.lang.String uplo,
java.lang.String trans,
java.lang.String diag,
int n,
double[] ap,
double[] x,
int incx)
.. |
abstract void |
dtpsv(java.lang.String uplo,
java.lang.String trans,
java.lang.String diag,
int n,
double[] ap,
double[] x,
int incx)
.. |
abstract void |
dtrmm(java.lang.String side,
java.lang.String uplo,
java.lang.String transa,
java.lang.String diag,
int m,
int n,
double alpha,
double[] a,
int lda,
double[] b,
int ldb)
.. |
abstract void |
dtrmv(java.lang.String uplo,
java.lang.String trans,
java.lang.String diag,
int n,
double[] a,
int lda,
double[] x,
int incx)
.. |
abstract void |
dtrsm(java.lang.String side,
java.lang.String uplo,
java.lang.String transa,
java.lang.String diag,
int m,
int n,
double alpha,
double[] a,
int lda,
double[] b,
int ldb)
.. |
abstract void |
dtrsv(java.lang.String uplo,
java.lang.String trans,
java.lang.String diag,
int n,
double[] a,
int lda,
double[] x,
int incx)
.. |
static BLAS |
getInstance()
|
abstract int |
idamax(int n,
double[] dx,
int incx)
.. |
abstract int |
isamax(int n,
float[] sx,
int incx)
.. |
boolean |
lsame(java.lang.String ca,
java.lang.String cb)
.. |
abstract float |
sasum(int n,
float[] sx,
int incx)
.. |
abstract void |
saxpy(int n,
float sa,
float[] sx,
int incx,
float[] sy,
int incy)
.. |
abstract void |
scopy(int n,
float[] sx,
int incx,
float[] sy,
int incy)
.. |
abstract float |
sdot(int n,
float[] sx,
int incx,
float[] sy,
int incy)
.. |
abstract float |
sdsdot(int n,
float sb,
float[] sx,
int incx,
float[] sy,
int incy)
.. |
abstract void |
sgbmv(java.lang.String trans,
int m,
int n,
int kl,
int ku,
float alpha,
float[] a,
int lda,
float[] x,
int incx,
float beta,
float[] y,
int incy)
.. |
abstract void |
sgemm(java.lang.String transa,
java.lang.String transb,
int m,
int n,
int k,
float alpha,
float[] a,
int lda,
float[] b,
int ldb,
float beta,
float[] c,
int Ldc)
.. |
abstract void |
sgemv(java.lang.String trans,
int m,
int n,
float alpha,
float[] a,
int lda,
float[] x,
int incx,
float beta,
float[] y,
int incy)
.. |
abstract void |
sger(int m,
int n,
float alpha,
float[] x,
int incx,
float[] y,
int incy,
float[] a,
int lda)
.. |
abstract float |
snrm2(int n,
float[] x,
int incx)
.. |
abstract void |
srot(int n,
float[] sx,
int incx,
float[] sy,
int incy,
float c,
float s)
.. |
abstract void |
srotg(org.netlib.util.floatW sa,
org.netlib.util.floatW sb,
org.netlib.util.floatW c,
org.netlib.util.floatW s)
.. |
abstract void |
srotm(int n,
float[] sx,
int incx,
float[] sy,
int incy,
float[] sparam)
.. |
abstract void |
srotmg(org.netlib.util.floatW sd1,
org.netlib.util.floatW sd2,
org.netlib.util.floatW sx1,
float sy1,
float[] sparam)
.. |
abstract void |
ssbmv(java.lang.String uplo,
int n,
int k,
float alpha,
float[] a,
int lda,
float[] x,
int incx,
float beta,
float[] y,
int incy)
.. |
abstract void |
sscal(int n,
float sa,
float[] sx,
int incx)
.. |
abstract void |
sspmv(java.lang.String uplo,
int n,
float alpha,
float[] ap,
float[] x,
int incx,
float beta,
float[] y,
int incy)
.. |
abstract void |
sspr(java.lang.String uplo,
int n,
float alpha,
float[] x,
int incx,
float[] ap)
.. |
abstract void |
sspr2(java.lang.String uplo,
int n,
float alpha,
float[] x,
int incx,
float[] y,
int incy,
float[] ap)
.. |
abstract void |
sswap(int n,
float[] sx,
int incx,
float[] sy,
int incy)
.. |
abstract void |
ssymm(java.lang.String side,
java.lang.String uplo,
int m,
int n,
float alpha,
float[] a,
int lda,
float[] b,
int ldb,
float beta,
float[] c,
int Ldc)
.. |
abstract void |
ssymv(java.lang.String uplo,
int n,
float alpha,
float[] a,
int lda,
float[] x,
int incx,
float beta,
float[] y,
int incy)
.. |
abstract void |
ssyr(java.lang.String uplo,
int n,
float alpha,
float[] x,
int incx,
float[] a,
int lda)
.. |
abstract void |
ssyr2(java.lang.String uplo,
int n,
float alpha,
float[] x,
int incx,
float[] y,
int incy,
float[] a,
int lda)
.. |
abstract void |
ssyr2k(java.lang.String uplo,
java.lang.String trans,
int n,
int k,
float alpha,
float[] a,
int lda,
float[] b,
int ldb,
float beta,
float[] c,
int Ldc)
.. |
abstract void |
ssyrk(java.lang.String uplo,
java.lang.String trans,
int n,
int k,
float alpha,
float[] a,
int lda,
float beta,
float[] c,
int Ldc)
.. |
abstract void |
stbmv(java.lang.String uplo,
java.lang.String trans,
java.lang.String diag,
int n,
int k,
float[] a,
int lda,
float[] x,
int incx)
.. |
abstract void |
stbsv(java.lang.String uplo,
java.lang.String trans,
java.lang.String diag,
int n,
int k,
float[] a,
int lda,
float[] x,
int incx)
.. |
abstract void |
stpmv(java.lang.String uplo,
java.lang.String trans,
java.lang.String diag,
int n,
float[] ap,
float[] x,
int incx)
.. |
abstract void |
stpsv(java.lang.String uplo,
java.lang.String trans,
java.lang.String diag,
int n,
float[] ap,
float[] x,
int incx)
.. |
abstract void |
strmm(java.lang.String side,
java.lang.String uplo,
java.lang.String transa,
java.lang.String diag,
int m,
int n,
float alpha,
float[] a,
int lda,
float[] b,
int ldb)
.. |
abstract void |
strmv(java.lang.String uplo,
java.lang.String trans,
java.lang.String diag,
int n,
float[] a,
int lda,
float[] x,
int incx)
.. |
abstract void |
strsm(java.lang.String side,
java.lang.String uplo,
java.lang.String transa,
java.lang.String diag,
int m,
int n,
float alpha,
float[] a,
int lda,
float[] b,
int ldb)
.. |
abstract void |
strsv(java.lang.String uplo,
java.lang.String trans,
java.lang.String diag,
int n,
float[] a,
int lda,
float[] x,
int incx)
.. |
Methods inherited from class java.lang.Object |
---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Constructor Detail |
---|
public BLAS()
Method Detail |
---|
public static BLAS getInstance()
public abstract double dasum(int n, double[] dx, int incx)
.. Purpose ======= takes the sum of the absolute values. jack dongarra, linpack, 3/11/78. modified 3/93 to return if incx .le. 0. modified 12/3/93, array(1) declarations changed to array(*) .. Local Scalars ..
n
- dx
- incx
- public abstract void daxpy(int n, double da, double[] dx, int incx, double[] dy, int incy)
.. Purpose ======= constant times a vector plus a vector. uses unrolled loops for increments equal to one. jack dongarra, linpack, 3/11/78. modified 12/3/93, array(1) declarations changed to array(*) .. Local Scalars ..
n
- da
- dx
- incx
- dy
- incy
- public abstract void dcopy(int n, double[] dx, int incx, double[] dy, int incy)
.. Purpose ======= copies a vector, x, to a vector, y. uses unrolled loops for increments equal to one. jack dongarra, linpack, 3/11/78. modified 12/3/93, array(1) declarations changed to array(*) .. Local Scalars ..
n
- dx
- incx
- dy
- incy
- public abstract double ddot(int n, double[] dx, int incx, double[] dy, int incy)
.. Purpose ======= forms the dot product of two vectors. uses unrolled loops for increments equal to one. jack dongarra, linpack, 3/11/78. modified 12/3/93, array(1) declarations changed to array(*) .. Local Scalars ..
n
- dx
- incx
- dy
- incy
- public abstract void dgbmv(java.lang.String trans, int m, int n, int kl, int ku, double alpha, double[] a, int lda, double[] x, int incx, double beta, double[] y, int incy)
.. Purpose ======= DGBMV performs one of the matrix-vector operations y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, where alpha and beta are scalars, x and y are vectors and A is an m by n band matrix, with kl sub-diagonals and ku super-diagonals. Arguments ========== TRANS - CHARACTER*1. On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' y := alpha*A*x + beta*y. TRANS = 'T' or 't' y := alpha*A'*x + beta*y. TRANS = 'C' or 'c' y := alpha*A'*x + beta*y. Unchanged on exit. M - INTEGER. On entry, M specifies the number of rows of the matrix A. M must be at least zero. Unchanged on exit. N - INTEGER. On entry, N specifies the number of columns of the matrix A. N must be at least zero. Unchanged on exit. KL - INTEGER. On entry, KL specifies the number of sub-diagonals of the matrix A. KL must satisfy 0 .le. KL. Unchanged on exit. KU - INTEGER. On entry, KU specifies the number of super-diagonals of the matrix A. KU must satisfy 0 .le. KU. Unchanged on exit. ALPHA - DOUBLE PRECISION. On entry, ALPHA specifies the scalar alpha. Unchanged on exit. A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). Before entry, the leading ( kl + ku + 1 ) by n part of the array A must contain the matrix of coefficients, supplied column by column, with the leading diagonal of the matrix in row ( ku + 1 ) of the array, the first super-diagonal starting at position 2 in row ku, the first sub-diagonal starting at position 1 in row ( ku + 2 ), and so on. Elements in the array A that do not correspond to elements in the band matrix (such as the top left ku by ku triangle) are not referenced. The following program segment will transfer a band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N K = KU + 1 - J DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL ) A( K + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Unchanged on exit. LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least ( kl + ku + 1 ). Unchanged on exit. X - DOUBLE PRECISION array of DIMENSION at least ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' and at least ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. Before entry, the incremented array X must contain the vector x. Unchanged on exit. INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. BETA - DOUBLE PRECISION. On entry, BETA specifies the scalar beta. When BETA is supplied as zero then Y need not be set on input. Unchanged on exit. Y - DOUBLE PRECISION array of DIMENSION at least ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' and at least ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. Before entry, the incremented array Y must contain the vector y. On exit, Y is overwritten by the updated vector y. INCY - INTEGER. On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. .. Parameters ..
trans
- m
- n
- kl
- ku
- alpha
- a
- lda
- x
- incx
- beta
- y
- incy
- public abstract void dgemm(java.lang.String transa, java.lang.String transb, int m, int n, int k, double alpha, double[] a, int lda, double[] b, int ldb, double beta, double[] c, int Ldc)
.. Purpose ======= DGEMM performs one of the matrix-matrix operations C := alpha*op( A )*op( B ) + beta*C, where op( X ) is one of op( X ) = X or op( X ) = X', alpha and beta are scalars, and A, B and C are matrices, with op( A ) an m by k matrix, op( B ) a k by n matrix and C an m by n matrix. Arguments ========== TRANSA - CHARACTER*1. On entry, TRANSA specifies the form of op( A ) to be used in the matrix multiplication as follows: TRANSA = 'N' or 'n', op( A ) = A. TRANSA = 'T' or 't', op( A ) = A'. TRANSA = 'C' or 'c', op( A ) = A'. Unchanged on exit. TRANSB - CHARACTER*1. On entry, TRANSB specifies the form of op( B ) to be used in the matrix multiplication as follows: TRANSB = 'N' or 'n', op( B ) = B. TRANSB = 'T' or 't', op( B ) = B'. TRANSB = 'C' or 'c', op( B ) = B'. Unchanged on exit. M - INTEGER. On entry, M specifies the number of rows of the matrix op( A ) and of the matrix C. M must be at least zero. Unchanged on exit. N - INTEGER. On entry, N specifies the number of columns of the matrix op( B ) and the number of columns of the matrix C. N must be at least zero. Unchanged on exit. K - INTEGER. On entry, K specifies the number of columns of the matrix op( A ) and the number of rows of the matrix op( B ). K must be at least zero. Unchanged on exit. ALPHA - DOUBLE PRECISION. On entry, ALPHA specifies the scalar alpha. Unchanged on exit. A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is k when TRANSA = 'N' or 'n', and is m otherwise. Before entry with TRANSA = 'N' or 'n', the leading m by k part of the array A must contain the matrix A, otherwise the leading k by m part of the array A must contain the matrix A. Unchanged on exit. LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When TRANSA = 'N' or 'n' then LDA must be at least max( 1, m ), otherwise LDA must be at least max( 1, k ). Unchanged on exit. B - DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is n when TRANSB = 'N' or 'n', and is k otherwise. Before entry with TRANSB = 'N' or 'n', the leading k by n part of the array B must contain the matrix B, otherwise the leading n by k part of the array B must contain the matrix B. Unchanged on exit. LDB - INTEGER. On entry, LDB specifies the first dimension of B as declared in the calling (sub) program. When TRANSB = 'N' or 'n' then LDB must be at least max( 1, k ), otherwise LDB must be at least max( 1, n ). Unchanged on exit. BETA - DOUBLE PRECISION. On entry, BETA specifies the scalar beta. When BETA is supplied as zero then C need not be set on input. Unchanged on exit. C - DOUBLE PRECISION array of DIMENSION ( LDC, n ). Before entry, the leading m by n part of the array C must contain the matrix C, except when beta is zero, in which case C need not be set on entry. On exit, the array C is overwritten by the m by n matrix ( alpha*op( A )*op( B ) + beta*C ). LDC - INTEGER. On entry, LDC specifies the first dimension of C as declared in the calling (sub) program. LDC must be at least max( 1, m ). Unchanged on exit. Level 3 Blas routine. -- Written on 8-February-1989. Jack Dongarra, Argonne National Laboratory. Iain Duff, AERE Harwell. Jeremy Du Croz, Numerical Algorithms Group Ltd. Sven Hammarling, Numerical Algorithms Group Ltd. .. External Functions ..
transa
- transb
- m
- n
- k
- alpha
- a
- lda
- b
- ldb
- beta
- c
- Ldc
- public abstract void dgemv(java.lang.String trans, int m, int n, double alpha, double[] a, int lda, double[] x, int incx, double beta, double[] y, int incy)
.. Purpose ======= DGEMV performs one of the matrix-vector operations y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, where alpha and beta are scalars, x and y are vectors and A is an m by n matrix. Arguments ========== TRANS - CHARACTER*1. On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' y := alpha*A*x + beta*y. TRANS = 'T' or 't' y := alpha*A'*x + beta*y. TRANS = 'C' or 'c' y := alpha*A'*x + beta*y. Unchanged on exit. M - INTEGER. On entry, M specifies the number of rows of the matrix A. M must be at least zero. Unchanged on exit. N - INTEGER. On entry, N specifies the number of columns of the matrix A. N must be at least zero. Unchanged on exit. ALPHA - DOUBLE PRECISION. On entry, ALPHA specifies the scalar alpha. Unchanged on exit. A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). Before entry, the leading m by n part of the array A must contain the matrix of coefficients. Unchanged on exit. LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, m ). Unchanged on exit. X - DOUBLE PRECISION array of DIMENSION at least ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' and at least ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. Before entry, the incremented array X must contain the vector x. Unchanged on exit. INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. BETA - DOUBLE PRECISION. On entry, BETA specifies the scalar beta. When BETA is supplied as zero then Y need not be set on input. Unchanged on exit. Y - DOUBLE PRECISION array of DIMENSION at least ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' and at least ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. Before entry with BETA non-zero, the incremented array Y must contain the vector y. On exit, Y is overwritten by the updated vector y. INCY - INTEGER. On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. .. Parameters ..
trans
- m
- n
- alpha
- a
- lda
- x
- incx
- beta
- y
- incy
- public abstract void dger(int m, int n, double alpha, double[] x, int incx, double[] y, int incy, double[] a, int lda)
.. Purpose ======= DGER performs the rank 1 operation A := alpha*x*y' + A, where alpha is a scalar, x is an m element vector, y is an n element vector and A is an m by n matrix. Arguments ========== M - INTEGER. On entry, M specifies the number of rows of the matrix A. M must be at least zero. Unchanged on exit. N - INTEGER. On entry, N specifies the number of columns of the matrix A. N must be at least zero. Unchanged on exit. ALPHA - DOUBLE PRECISION. On entry, ALPHA specifies the scalar alpha. Unchanged on exit. X - DOUBLE PRECISION array of dimension at least ( 1 + ( m - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the m element vector x. Unchanged on exit. INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. Y - DOUBLE PRECISION array of dimension at least ( 1 + ( n - 1 )*abs( INCY ) ). Before entry, the incremented array Y must contain the n element vector y. Unchanged on exit. INCY - INTEGER. On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit. A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). Before entry, the leading m by n part of the array A must contain the matrix of coefficients. On exit, A is overwritten by the updated matrix. LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, m ). Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. .. Parameters ..
m
- n
- alpha
- x
- incx
- y
- incy
- a
- lda
- public abstract double dnrm2(int n, double[] x, int incx)
.. Purpose ======= DNRM2 returns the euclidean norm of a vector via the function name, so that DNRM2 := sqrt( x'*x ) -- This version written on 25-October-1982. Modified on 14-October-1993 to inline the call to DLASSQ. Sven Hammarling, Nag Ltd. .. Parameters ..
n
- x
- incx
- public abstract void drot(int n, double[] dx, int incx, double[] dy, int incy, double c, double s)
.. Purpose ======= applies a plane rotation. jack dongarra, linpack, 3/11/78. modified 12/3/93, array(1) declarations changed to array(*) .. Local Scalars ..
n
- dx
- incx
- dy
- incy
- c
- s
- public abstract void drotg(org.netlib.util.doubleW da, org.netlib.util.doubleW db, org.netlib.util.doubleW c, org.netlib.util.doubleW s)
.. Purpose ======= construct givens plane rotation. jack dongarra, linpack, 3/11/78. .. Local Scalars ..
da
- db
- c
- s
- public abstract void drotm(int n, double[] dx, int incx, double[] dy, int incy, double[] dparam)
.. Purpose ======= APPLY THE MODIFIED GIVENS TRANSFORMATION, H, TO THE 2 BY N MATRIX (DX**T) , WHERE **T INDICATES TRANSPOSE. THE ELEMENTS OF DX ARE IN (DY**T) DX(LX+I*INCX), I = 0 TO N-1, WHERE LX = 1 IF INCX .GE. 0, ELSE LX = (-INCX)*N, AND SIMILARLY FOR SY USING LY AND INCY. WITH DPARAM(1)=DFLAG, H HAS ONE OF THE FOLLOWING FORMS.. DFLAG=-1.D0 DFLAG=0.D0 DFLAG=1.D0 DFLAG=-2.D0 (DH11 DH12) (1.D0 DH12) (DH11 1.D0) (1.D0 0.D0) H=( ) ( ) ( ) ( ) (DH21 DH22), (DH21 1.D0), (-1.D0 DH22), (0.D0 1.D0). SEE DROTMG FOR A DESCRIPTION OF DATA STORAGE IN DPARAM. Arguments ========= N (input) INTEGER number of elements in input vector(s) DX (input/output) DOUBLE PRECISION array, dimension N double precision vector with 5 elements INCX (input) INTEGER storage spacing between elements of DX DY (input/output) DOUBLE PRECISION array, dimension N double precision vector with N elements INCY (input) INTEGER storage spacing between elements of DY DPARAM (input/output) DOUBLE PRECISION array, dimension 5 DPARAM(1)=DFLAG DPARAM(2)=DH11 DPARAM(3)=DH21 DPARAM(4)=DH12 DPARAM(5)=DH22 ===================================================================== .. Local Scalars ..
n
- dx
- incx
- dy
- incy
- dparam
- public abstract void drotmg(org.netlib.util.doubleW dd1, org.netlib.util.doubleW dd2, org.netlib.util.doubleW dx1, double dy1, double[] dparam)
.. Purpose ======= CONSTRUCT THE MODIFIED GIVENS TRANSFORMATION MATRIX H WHICH ZEROS THE SECOND COMPONENT OF THE 2-VECTOR (DSQRT(DD1)*DX1,DSQRT(DD2)* DY2)**T. WITH DPARAM(1)=DFLAG, H HAS ONE OF THE FOLLOWING FORMS.. DFLAG=-1.D0 DFLAG=0.D0 DFLAG=1.D0 DFLAG=-2.D0 (DH11 DH12) (1.D0 DH12) (DH11 1.D0) (1.D0 0.D0) H=( ) ( ) ( ) ( ) (DH21 DH22), (DH21 1.D0), (-1.D0 DH22), (0.D0 1.D0). LOCATIONS 2-4 OF DPARAM CONTAIN DH11, DH21, DH12, AND DH22 RESPECTIVELY. (VALUES OF 1.D0, -1.D0, OR 0.D0 IMPLIED BY THE VALUE OF DPARAM(1) ARE NOT STORED IN DPARAM.) THE VALUES OF GAMSQ AND RGAMSQ SET IN THE DATA STATEMENT MAY BE INEXACT. THIS IS OK AS THEY ARE ONLY USED FOR TESTING THE SIZE OF DD1 AND DD2. ALL ACTUAL SCALING OF DATA IS DONE USING GAM. Arguments ========= DD1 (input/output) DOUBLE PRECISION DD2 (input/output) DOUBLE PRECISION DX1 (input/output) DOUBLE PRECISION DY1 (input) DOUBLE PRECISION DPARAM (input/output) DOUBLE PRECISION array, dimension 5 DPARAM(1)=DFLAG DPARAM(2)=DH11 DPARAM(3)=DH21 DPARAM(4)=DH12 DPARAM(5)=DH22 ===================================================================== .. Local Scalars ..
dd1
- dd2
- dx1
- dy1
- dparam
- public abstract void dsbmv(java.lang.String uplo, int n, int k, double alpha, double[] a, int lda, double[] x, int incx, double beta, double[] y, int incy)
.. Purpose ======= DSBMV performs the matrix-vector operation y := alpha*A*x + beta*y, where alpha and beta are scalars, x and y are n element vectors and A is an n by n symmetric band matrix, with k super-diagonals. Arguments ========== UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the band matrix A is being supplied as follows: UPLO = 'U' or 'u' The upper triangular part of A is being supplied. UPLO = 'L' or 'l' The lower triangular part of A is being supplied. Unchanged on exit. N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. K - INTEGER. On entry, K specifies the number of super-diagonals of the matrix A. K must satisfy 0 .le. K. Unchanged on exit. ALPHA - DOUBLE PRECISION. On entry, ALPHA specifies the scalar alpha. Unchanged on exit. A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) by n part of the array A must contain the upper triangular band part of the symmetric matrix, supplied column by column, with the leading diagonal of the matrix in row ( k + 1 ) of the array, the first super-diagonal starting at position 2 in row k, and so on. The top left k by k triangle of the array A is not referenced. The following program segment will transfer the upper triangular part of a symmetric band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N M = K + 1 - J DO 10, I = MAX( 1, J - K ), J A( M + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) by n part of the array A must contain the lower triangular band part of the symmetric matrix, supplied column by column, with the leading diagonal of the matrix in row 1 of the array, the first sub-diagonal starting at position 1 in row 2, and so on. The bottom right k by k triangle of the array A is not referenced. The following program segment will transfer the lower triangular part of a symmetric band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N M = 1 - J DO 10, I = J, MIN( N, J + K ) A( M + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Unchanged on exit. LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least ( k + 1 ). Unchanged on exit. X - DOUBLE PRECISION array of DIMENSION at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the vector x. Unchanged on exit. INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. BETA - DOUBLE PRECISION. On entry, BETA specifies the scalar beta. Unchanged on exit. Y - DOUBLE PRECISION array of DIMENSION at least ( 1 + ( n - 1 )*abs( INCY ) ). Before entry, the incremented array Y must contain the vector y. On exit, Y is overwritten by the updated vector y. INCY - INTEGER. On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. .. Parameters ..
uplo
- n
- k
- alpha
- a
- lda
- x
- incx
- beta
- y
- incy
- public abstract void dscal(int n, double da, double[] dx, int incx)
.. Purpose ======= scales a vector by a constant. uses unrolled loops for increment equal to one. jack dongarra, linpack, 3/11/78. modified 3/93 to return if incx .le. 0. modified 12/3/93, array(1) declarations changed to array(*) .. Local Scalars ..
n
- da
- dx
- incx
- public abstract void dspmv(java.lang.String uplo, int n, double alpha, double[] ap, double[] x, int incx, double beta, double[] y, int incy)
.. Purpose ======= DSPMV performs the matrix-vector operation y := alpha*A*x + beta*y, where alpha and beta are scalars, x and y are n element vectors and A is an n by n symmetric matrix, supplied in packed form. Arguments ========== UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the matrix A is supplied in the packed array AP as follows: UPLO = 'U' or 'u' The upper triangular part of A is supplied in AP. UPLO = 'L' or 'l' The lower triangular part of A is supplied in AP. Unchanged on exit. N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. ALPHA - DOUBLE PRECISION. On entry, ALPHA specifies the scalar alpha. Unchanged on exit. AP - DOUBLE PRECISION array of DIMENSION at least ( ( n*( n + 1 ) )/2 ). Before entry with UPLO = 'U' or 'u', the array AP must contain the upper triangular part of the symmetric matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) respectively, and so on. Before entry with UPLO = 'L' or 'l', the array AP must contain the lower triangular part of the symmetric matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) respectively, and so on. Unchanged on exit. X - DOUBLE PRECISION array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. Unchanged on exit. INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. BETA - DOUBLE PRECISION. On entry, BETA specifies the scalar beta. When BETA is supplied as zero then Y need not be set on input. Unchanged on exit. Y - DOUBLE PRECISION array of dimension at least ( 1 + ( n - 1 )*abs( INCY ) ). Before entry, the incremented array Y must contain the n element vector y. On exit, Y is overwritten by the updated vector y. INCY - INTEGER. On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. .. Parameters ..
uplo
- n
- alpha
- ap
- x
- incx
- beta
- y
- incy
- public abstract void dspr(java.lang.String uplo, int n, double alpha, double[] x, int incx, double[] ap)
.. Purpose ======= DSPR performs the symmetric rank 1 operation A := alpha*x*x' + A, where alpha is a real scalar, x is an n element vector and A is an n by n symmetric matrix, supplied in packed form. Arguments ========== UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the matrix A is supplied in the packed array AP as follows: UPLO = 'U' or 'u' The upper triangular part of A is supplied in AP. UPLO = 'L' or 'l' The lower triangular part of A is supplied in AP. Unchanged on exit. N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. ALPHA - DOUBLE PRECISION. On entry, ALPHA specifies the scalar alpha. Unchanged on exit. X - DOUBLE PRECISION array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. Unchanged on exit. INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. AP - DOUBLE PRECISION array of DIMENSION at least ( ( n*( n + 1 ) )/2 ). Before entry with UPLO = 'U' or 'u', the array AP must contain the upper triangular part of the symmetric matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) respectively, and so on. On exit, the array AP is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the array AP must contain the lower triangular part of the symmetric matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) respectively, and so on. On exit, the array AP is overwritten by the lower triangular part of the updated matrix. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. .. Parameters ..
uplo
- n
- alpha
- x
- incx
- ap
- public abstract void dspr2(java.lang.String uplo, int n, double alpha, double[] x, int incx, double[] y, int incy, double[] ap)
.. Purpose ======= DSPR2 performs the symmetric rank 2 operation A := alpha*x*y' + alpha*y*x' + A, where alpha is a scalar, x and y are n element vectors and A is an n by n symmetric matrix, supplied in packed form. Arguments ========== UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the matrix A is supplied in the packed array AP as follows: UPLO = 'U' or 'u' The upper triangular part of A is supplied in AP. UPLO = 'L' or 'l' The lower triangular part of A is supplied in AP. Unchanged on exit. N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. ALPHA - DOUBLE PRECISION. On entry, ALPHA specifies the scalar alpha. Unchanged on exit. X - DOUBLE PRECISION array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. Unchanged on exit. INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. Y - DOUBLE PRECISION array of dimension at least ( 1 + ( n - 1 )*abs( INCY ) ). Before entry, the incremented array Y must contain the n element vector y. Unchanged on exit. INCY - INTEGER. On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit. AP - DOUBLE PRECISION array of DIMENSION at least ( ( n*( n + 1 ) )/2 ). Before entry with UPLO = 'U' or 'u', the array AP must contain the upper triangular part of the symmetric matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) respectively, and so on. On exit, the array AP is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the array AP must contain the lower triangular part of the symmetric matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) respectively, and so on. On exit, the array AP is overwritten by the lower triangular part of the updated matrix. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. .. Parameters ..
uplo
- n
- alpha
- x
- incx
- y
- incy
- ap
- public abstract void dswap(int n, double[] dx, int incx, double[] dy, int incy)
.. Purpose ======= interchanges two vectors. uses unrolled loops for increments equal one. jack dongarra, linpack, 3/11/78. modified 12/3/93, array(1) declarations changed to array(*) .. Local Scalars ..
n
- dx
- incx
- dy
- incy
- public abstract void dsymm(java.lang.String side, java.lang.String uplo, int m, int n, double alpha, double[] a, int lda, double[] b, int ldb, double beta, double[] c, int Ldc)
.. Purpose ======= DSYMM performs one of the matrix-matrix operations C := alpha*A*B + beta*C, or C := alpha*B*A + beta*C, where alpha and beta are scalars, A is a symmetric matrix and B and C are m by n matrices. Arguments ========== SIDE - CHARACTER*1. On entry, SIDE specifies whether the symmetric matrix A appears on the left or right in the operation as follows: SIDE = 'L' or 'l' C := alpha*A*B + beta*C, SIDE = 'R' or 'r' C := alpha*B*A + beta*C, Unchanged on exit. UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the symmetric matrix A is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of the symmetric matrix is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of the symmetric matrix is to be referenced. Unchanged on exit. M - INTEGER. On entry, M specifies the number of rows of the matrix C. M must be at least zero. Unchanged on exit. N - INTEGER. On entry, N specifies the number of columns of the matrix C. N must be at least zero. Unchanged on exit. ALPHA - DOUBLE PRECISION. On entry, ALPHA specifies the scalar alpha. Unchanged on exit. A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is m when SIDE = 'L' or 'l' and is n otherwise. Before entry with SIDE = 'L' or 'l', the m by m part of the array A must contain the symmetric matrix, such that when UPLO = 'U' or 'u', the leading m by m upper triangular part of the array A must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of A is not referenced, and when UPLO = 'L' or 'l', the leading m by m lower triangular part of the array A must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of A is not referenced. Before entry with SIDE = 'R' or 'r', the n by n part of the array A must contain the symmetric matrix, such that when UPLO = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of A is not referenced, and when UPLO = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of A is not referenced. Unchanged on exit. LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When SIDE = 'L' or 'l' then LDA must be at least max( 1, m ), otherwise LDA must be at least max( 1, n ). Unchanged on exit. B - DOUBLE PRECISION array of DIMENSION ( LDB, n ). Before entry, the leading m by n part of the array B must contain the matrix B. Unchanged on exit. LDB - INTEGER. On entry, LDB specifies the first dimension of B as declared in the calling (sub) program. LDB must be at least max( 1, m ). Unchanged on exit. BETA - DOUBLE PRECISION. On entry, BETA specifies the scalar beta. When BETA is supplied as zero then C need not be set on input. Unchanged on exit. C - DOUBLE PRECISION array of DIMENSION ( LDC, n ). Before entry, the leading m by n part of the array C must contain the matrix C, except when beta is zero, in which case C need not be set on entry. On exit, the array C is overwritten by the m by n updated matrix. LDC - INTEGER. On entry, LDC specifies the first dimension of C as declared in the calling (sub) program. LDC must be at least max( 1, m ). Unchanged on exit. Level 3 Blas routine. -- Written on 8-February-1989. Jack Dongarra, Argonne National Laboratory. Iain Duff, AERE Harwell. Jeremy Du Croz, Numerical Algorithms Group Ltd. Sven Hammarling, Numerical Algorithms Group Ltd. .. External Functions ..
side
- uplo
- m
- n
- alpha
- a
- lda
- b
- ldb
- beta
- c
- Ldc
- public abstract void dsymv(java.lang.String uplo, int n, double alpha, double[] a, int lda, double[] x, int incx, double beta, double[] y, int incy)
.. Purpose ======= DSYMV performs the matrix-vector operation y := alpha*A*x + beta*y, where alpha and beta are scalars, x and y are n element vectors and A is an n by n symmetric matrix. Arguments ========== UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the array A is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of A is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of A is to be referenced. Unchanged on exit. N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. ALPHA - DOUBLE PRECISION. On entry, ALPHA specifies the scalar alpha. Unchanged on exit. A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of A is not referenced. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of A is not referenced. Unchanged on exit. LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, n ). Unchanged on exit. X - DOUBLE PRECISION array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. Unchanged on exit. INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. BETA - DOUBLE PRECISION. On entry, BETA specifies the scalar beta. When BETA is supplied as zero then Y need not be set on input. Unchanged on exit. Y - DOUBLE PRECISION array of dimension at least ( 1 + ( n - 1 )*abs( INCY ) ). Before entry, the incremented array Y must contain the n element vector y. On exit, Y is overwritten by the updated vector y. INCY - INTEGER. On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. .. Parameters ..
uplo
- n
- alpha
- a
- lda
- x
- incx
- beta
- y
- incy
- public abstract void dsyr(java.lang.String uplo, int n, double alpha, double[] x, int incx, double[] a, int lda)
.. Purpose ======= DSYR performs the symmetric rank 1 operation A := alpha*x*x' + A, where alpha is a real scalar, x is an n element vector and A is an n by n symmetric matrix. Arguments ========== UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the array A is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of A is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of A is to be referenced. Unchanged on exit. N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. ALPHA - DOUBLE PRECISION. On entry, ALPHA specifies the scalar alpha. Unchanged on exit. X - DOUBLE PRECISION array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. Unchanged on exit. INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of A is not referenced. On exit, the upper triangular part of the array A is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of A is not referenced. On exit, the lower triangular part of the array A is overwritten by the lower triangular part of the updated matrix. LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, n ). Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. .. Parameters ..
uplo
- n
- alpha
- x
- incx
- a
- lda
- public abstract void dsyr2(java.lang.String uplo, int n, double alpha, double[] x, int incx, double[] y, int incy, double[] a, int lda)
.. Purpose ======= DSYR2 performs the symmetric rank 2 operation A := alpha*x*y' + alpha*y*x' + A, where alpha is a scalar, x and y are n element vectors and A is an n by n symmetric matrix. Arguments ========== UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the array A is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of A is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of A is to be referenced. Unchanged on exit. N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. ALPHA - DOUBLE PRECISION. On entry, ALPHA specifies the scalar alpha. Unchanged on exit. X - DOUBLE PRECISION array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. Unchanged on exit. INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. Y - DOUBLE PRECISION array of dimension at least ( 1 + ( n - 1 )*abs( INCY ) ). Before entry, the incremented array Y must contain the n element vector y. Unchanged on exit. INCY - INTEGER. On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit. A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of A is not referenced. On exit, the upper triangular part of the array A is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of A is not referenced. On exit, the lower triangular part of the array A is overwritten by the lower triangular part of the updated matrix. LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, n ). Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. .. Parameters ..
uplo
- n
- alpha
- x
- incx
- y
- incy
- a
- lda
- public abstract void dsyr2k(java.lang.String uplo, java.lang.String trans, int n, int k, double alpha, double[] a, int lda, double[] b, int ldb, double beta, double[] c, int Ldc)
.. Purpose ======= DSYR2K performs one of the symmetric rank 2k operations C := alpha*A*B' + alpha*B*A' + beta*C, or C := alpha*A'*B + alpha*B'*A + beta*C, where alpha and beta are scalars, C is an n by n symmetric matrix and A and B are n by k matrices in the first case and k by n matrices in the second case. Arguments ========== UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the array C is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of C is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of C is to be referenced. Unchanged on exit. TRANS - CHARACTER*1. On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' C := alpha*A*B' + alpha*B*A' + beta*C. TRANS = 'T' or 't' C := alpha*A'*B + alpha*B'*A + beta*C. TRANS = 'C' or 'c' C := alpha*A'*B + alpha*B'*A + beta*C. Unchanged on exit. N - INTEGER. On entry, N specifies the order of the matrix C. N must be at least zero. Unchanged on exit. K - INTEGER. On entry with TRANS = 'N' or 'n', K specifies the number of columns of the matrices A and B, and on entry with TRANS = 'T' or 't' or 'C' or 'c', K specifies the number of rows of the matrices A and B. K must be at least zero. Unchanged on exit. ALPHA - DOUBLE PRECISION. On entry, ALPHA specifies the scalar alpha. Unchanged on exit. A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is k when TRANS = 'N' or 'n', and is n otherwise. Before entry with TRANS = 'N' or 'n', the leading n by k part of the array A must contain the matrix A, otherwise the leading k by n part of the array A must contain the matrix A. Unchanged on exit. LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When TRANS = 'N' or 'n' then LDA must be at least max( 1, n ), otherwise LDA must be at least max( 1, k ). Unchanged on exit. B - DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is k when TRANS = 'N' or 'n', and is n otherwise. Before entry with TRANS = 'N' or 'n', the leading n by k part of the array B must contain the matrix B, otherwise the leading k by n part of the array B must contain the matrix B. Unchanged on exit. LDB - INTEGER. On entry, LDB specifies the first dimension of B as declared in the calling (sub) program. When TRANS = 'N' or 'n' then LDB must be at least max( 1, n ), otherwise LDB must be at least max( 1, k ). Unchanged on exit. BETA - DOUBLE PRECISION. On entry, BETA specifies the scalar beta. Unchanged on exit. C - DOUBLE PRECISION array of DIMENSION ( LDC, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array C must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of C is not referenced. On exit, the upper triangular part of the array C is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array C must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of C is not referenced. On exit, the lower triangular part of the array C is overwritten by the lower triangular part of the updated matrix. LDC - INTEGER. On entry, LDC specifies the first dimension of C as declared in the calling (sub) program. LDC must be at least max( 1, n ). Unchanged on exit. Level 3 Blas routine. -- Written on 8-February-1989. Jack Dongarra, Argonne National Laboratory. Iain Duff, AERE Harwell. Jeremy Du Croz, Numerical Algorithms Group Ltd. Sven Hammarling, Numerical Algorithms Group Ltd. .. External Functions ..
uplo
- trans
- n
- k
- alpha
- a
- lda
- b
- ldb
- beta
- c
- Ldc
- public abstract void dsyrk(java.lang.String uplo, java.lang.String trans, int n, int k, double alpha, double[] a, int lda, double beta, double[] c, int Ldc)
.. Purpose ======= DSYRK performs one of the symmetric rank k operations C := alpha*A*A' + beta*C, or C := alpha*A'*A + beta*C, where alpha and beta are scalars, C is an n by n symmetric matrix and A is an n by k matrix in the first case and a k by n matrix in the second case. Arguments ========== UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the array C is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of C is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of C is to be referenced. Unchanged on exit. TRANS - CHARACTER*1. On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' C := alpha*A*A' + beta*C. TRANS = 'T' or 't' C := alpha*A'*A + beta*C. TRANS = 'C' or 'c' C := alpha*A'*A + beta*C. Unchanged on exit. N - INTEGER. On entry, N specifies the order of the matrix C. N must be at least zero. Unchanged on exit. K - INTEGER. On entry with TRANS = 'N' or 'n', K specifies the number of columns of the matrix A, and on entry with TRANS = 'T' or 't' or 'C' or 'c', K specifies the number of rows of the matrix A. K must be at least zero. Unchanged on exit. ALPHA - DOUBLE PRECISION. On entry, ALPHA specifies the scalar alpha. Unchanged on exit. A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is k when TRANS = 'N' or 'n', and is n otherwise. Before entry with TRANS = 'N' or 'n', the leading n by k part of the array A must contain the matrix A, otherwise the leading k by n part of the array A must contain the matrix A. Unchanged on exit. LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When TRANS = 'N' or 'n' then LDA must be at least max( 1, n ), otherwise LDA must be at least max( 1, k ). Unchanged on exit. BETA - DOUBLE PRECISION. On entry, BETA specifies the scalar beta. Unchanged on exit. C - DOUBLE PRECISION array of DIMENSION ( LDC, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array C must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of C is not referenced. On exit, the upper triangular part of the array C is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array C must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of C is not referenced. On exit, the lower triangular part of the array C is overwritten by the lower triangular part of the updated matrix. LDC - INTEGER. On entry, LDC specifies the first dimension of C as declared in the calling (sub) program. LDC must be at least max( 1, n ). Unchanged on exit. Level 3 Blas routine. -- Written on 8-February-1989. Jack Dongarra, Argonne National Laboratory. Iain Duff, AERE Harwell. Jeremy Du Croz, Numerical Algorithms Group Ltd. Sven Hammarling, Numerical Algorithms Group Ltd. .. External Functions ..
uplo
- trans
- n
- k
- alpha
- a
- lda
- beta
- c
- Ldc
- public abstract void dtbmv(java.lang.String uplo, java.lang.String trans, java.lang.String diag, int n, int k, double[] a, int lda, double[] x, int incx)
.. Purpose ======= DTBMV performs one of the matrix-vector operations x := A*x, or x := A'*x, where x is an n element vector and A is an n by n unit, or non-unit, upper or lower triangular band matrix, with ( k + 1 ) diagonals. Arguments ========== UPLO - CHARACTER*1. On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix. Unchanged on exit. TRANS - CHARACTER*1. On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' x := A*x. TRANS = 'T' or 't' x := A'*x. TRANS = 'C' or 'c' x := A'*x. Unchanged on exit. DIAG - CHARACTER*1. On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular. Unchanged on exit. N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. K - INTEGER. On entry with UPLO = 'U' or 'u', K specifies the number of super-diagonals of the matrix A. On entry with UPLO = 'L' or 'l', K specifies the number of sub-diagonals of the matrix A. K must satisfy 0 .le. K. Unchanged on exit. A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) by n part of the array A must contain the upper triangular band part of the matrix of coefficients, supplied column by column, with the leading diagonal of the matrix in row ( k + 1 ) of the array, the first super-diagonal starting at position 2 in row k, and so on. The top left k by k triangle of the array A is not referenced. The following program segment will transfer an upper triangular band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N M = K + 1 - J DO 10, I = MAX( 1, J - K ), J A( M + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) by n part of the array A must contain the lower triangular band part of the matrix of coefficients, supplied column by column, with the leading diagonal of the matrix in row 1 of the array, the first sub-diagonal starting at position 1 in row 2, and so on. The bottom right k by k triangle of the array A is not referenced. The following program segment will transfer a lower triangular band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N M = 1 - J DO 10, I = J, MIN( N, J + K ) A( M + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Note that when DIAG = 'U' or 'u' the elements of the array A corresponding to the diagonal elements of the matrix are not referenced, but are assumed to be unity. Unchanged on exit. LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least ( k + 1 ). Unchanged on exit. X - DOUBLE PRECISION array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. On exit, X is overwritten with the tranformed vector x. INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. .. Parameters ..
uplo
- trans
- diag
- n
- k
- a
- lda
- x
- incx
- public abstract void dtbsv(java.lang.String uplo, java.lang.String trans, java.lang.String diag, int n, int k, double[] a, int lda, double[] x, int incx)
.. Purpose ======= DTBSV solves one of the systems of equations A*x = b, or A'*x = b, where b and x are n element vectors and A is an n by n unit, or non-unit, upper or lower triangular band matrix, with ( k + 1 ) diagonals. No test for singularity or near-singularity is included in this routine. Such tests must be performed before calling this routine. Arguments ========== UPLO - CHARACTER*1. On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix. Unchanged on exit. TRANS - CHARACTER*1. On entry, TRANS specifies the equations to be solved as follows: TRANS = 'N' or 'n' A*x = b. TRANS = 'T' or 't' A'*x = b. TRANS = 'C' or 'c' A'*x = b. Unchanged on exit. DIAG - CHARACTER*1. On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular. Unchanged on exit. N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. K - INTEGER. On entry with UPLO = 'U' or 'u', K specifies the number of super-diagonals of the matrix A. On entry with UPLO = 'L' or 'l', K specifies the number of sub-diagonals of the matrix A. K must satisfy 0 .le. K. Unchanged on exit. A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) by n part of the array A must contain the upper triangular band part of the matrix of coefficients, supplied column by column, with the leading diagonal of the matrix in row ( k + 1 ) of the array, the first super-diagonal starting at position 2 in row k, and so on. The top left k by k triangle of the array A is not referenced. The following program segment will transfer an upper triangular band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N M = K + 1 - J DO 10, I = MAX( 1, J - K ), J A( M + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) by n part of the array A must contain the lower triangular band part of the matrix of coefficients, supplied column by column, with the leading diagonal of the matrix in row 1 of the array, the first sub-diagonal starting at position 1 in row 2, and so on. The bottom right k by k triangle of the array A is not referenced. The following program segment will transfer a lower triangular band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N M = 1 - J DO 10, I = J, MIN( N, J + K ) A( M + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Note that when DIAG = 'U' or 'u' the elements of the array A corresponding to the diagonal elements of the matrix are not referenced, but are assumed to be unity. Unchanged on exit. LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least ( k + 1 ). Unchanged on exit. X - DOUBLE PRECISION array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element right-hand side vector b. On exit, X is overwritten with the solution vector x. INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. .. Parameters ..
uplo
- trans
- diag
- n
- k
- a
- lda
- x
- incx
- public abstract void dtpmv(java.lang.String uplo, java.lang.String trans, java.lang.String diag, int n, double[] ap, double[] x, int incx)
.. Purpose ======= DTPMV performs one of the matrix-vector operations x := A*x, or x := A'*x, where x is an n element vector and A is an n by n unit, or non-unit, upper or lower triangular matrix, supplied in packed form. Arguments ========== UPLO - CHARACTER*1. On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix. Unchanged on exit. TRANS - CHARACTER*1. On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' x := A*x. TRANS = 'T' or 't' x := A'*x. TRANS = 'C' or 'c' x := A'*x. Unchanged on exit. DIAG - CHARACTER*1. On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular. Unchanged on exit. N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. AP - DOUBLE PRECISION array of DIMENSION at least ( ( n*( n + 1 ) )/2 ). Before entry with UPLO = 'U' or 'u', the array AP must contain the upper triangular matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) respectively, and so on. Before entry with UPLO = 'L' or 'l', the array AP must contain the lower triangular matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) respectively, and so on. Note that when DIAG = 'U' or 'u', the diagonal elements of A are not referenced, but are assumed to be unity. Unchanged on exit. X - DOUBLE PRECISION array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. On exit, X is overwritten with the tranformed vector x. INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. .. Parameters ..
uplo
- trans
- diag
- n
- ap
- x
- incx
- public abstract void dtpsv(java.lang.String uplo, java.lang.String trans, java.lang.String diag, int n, double[] ap, double[] x, int incx)
.. Purpose ======= DTPSV solves one of the systems of equations A*x = b, or A'*x = b, where b and x are n element vectors and A is an n by n unit, or non-unit, upper or lower triangular matrix, supplied in packed form. No test for singularity or near-singularity is included in this routine. Such tests must be performed before calling this routine. Arguments ========== UPLO - CHARACTER*1. On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix. Unchanged on exit. TRANS - CHARACTER*1. On entry, TRANS specifies the equations to be solved as follows: TRANS = 'N' or 'n' A*x = b. TRANS = 'T' or 't' A'*x = b. TRANS = 'C' or 'c' A'*x = b. Unchanged on exit. DIAG - CHARACTER*1. On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular. Unchanged on exit. N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. AP - DOUBLE PRECISION array of DIMENSION at least ( ( n*( n + 1 ) )/2 ). Before entry with UPLO = 'U' or 'u', the array AP must contain the upper triangular matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) respectively, and so on. Before entry with UPLO = 'L' or 'l', the array AP must contain the lower triangular matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) respectively, and so on. Note that when DIAG = 'U' or 'u', the diagonal elements of A are not referenced, but are assumed to be unity. Unchanged on exit. X - DOUBLE PRECISION array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element right-hand side vector b. On exit, X is overwritten with the solution vector x. INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. .. Parameters ..
uplo
- trans
- diag
- n
- ap
- x
- incx
- public abstract void dtrmm(java.lang.String side, java.lang.String uplo, java.lang.String transa, java.lang.String diag, int m, int n, double alpha, double[] a, int lda, double[] b, int ldb)
.. Purpose ======= DTRMM performs one of the matrix-matrix operations B := alpha*op( A )*B, or B := alpha*B*op( A ), where alpha is a scalar, B is an m by n matrix, A is a unit, or non-unit, upper or lower triangular matrix and op( A ) is one of op( A ) = A or op( A ) = A'. Arguments ========== SIDE - CHARACTER*1. On entry, SIDE specifies whether op( A ) multiplies B from the left or right as follows: SIDE = 'L' or 'l' B := alpha*op( A )*B. SIDE = 'R' or 'r' B := alpha*B*op( A ). Unchanged on exit. UPLO - CHARACTER*1. On entry, UPLO specifies whether the matrix A is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix. Unchanged on exit. TRANSA - CHARACTER*1. On entry, TRANSA specifies the form of op( A ) to be used in the matrix multiplication as follows: TRANSA = 'N' or 'n' op( A ) = A. TRANSA = 'T' or 't' op( A ) = A'. TRANSA = 'C' or 'c' op( A ) = A'. Unchanged on exit. DIAG - CHARACTER*1. On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular. Unchanged on exit. M - INTEGER. On entry, M specifies the number of rows of B. M must be at least zero. Unchanged on exit. N - INTEGER. On entry, N specifies the number of columns of B. N must be at least zero. Unchanged on exit. ALPHA - DOUBLE PRECISION. On entry, ALPHA specifies the scalar alpha. When alpha is zero then A is not referenced and B need not be set before entry. Unchanged on exit. A - DOUBLE PRECISION array of DIMENSION ( LDA, k ), where k is m when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. Before entry with UPLO = 'U' or 'u', the leading k by k upper triangular part of the array A must contain the upper triangular matrix and the strictly lower triangular part of A is not referenced. Before entry with UPLO = 'L' or 'l', the leading k by k lower triangular part of the array A must contain the lower triangular matrix and the strictly upper triangular part of A is not referenced. Note that when DIAG = 'U' or 'u', the diagonal elements of A are not referenced either, but are assumed to be unity. Unchanged on exit. LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When SIDE = 'L' or 'l' then LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' then LDA must be at least max( 1, n ). Unchanged on exit. B - DOUBLE PRECISION array of DIMENSION ( LDB, n ). Before entry, the leading m by n part of the array B must contain the matrix B, and on exit is overwritten by the transformed matrix. LDB - INTEGER. On entry, LDB specifies the first dimension of B as declared in the calling (sub) program. LDB must be at least max( 1, m ). Unchanged on exit. Level 3 Blas routine. -- Written on 8-February-1989. Jack Dongarra, Argonne National Laboratory. Iain Duff, AERE Harwell. Jeremy Du Croz, Numerical Algorithms Group Ltd. Sven Hammarling, Numerical Algorithms Group Ltd. .. External Functions ..
side
- uplo
- transa
- diag
- m
- n
- alpha
- a
- lda
- b
- ldb
- public abstract void dtrmv(java.lang.String uplo, java.lang.String trans, java.lang.String diag, int n, double[] a, int lda, double[] x, int incx)
.. Purpose ======= DTRMV performs one of the matrix-vector operations x := A*x, or x := A'*x, where x is an n element vector and A is an n by n unit, or non-unit, upper or lower triangular matrix. Arguments ========== UPLO - CHARACTER*1. On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix. Unchanged on exit. TRANS - CHARACTER*1. On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' x := A*x. TRANS = 'T' or 't' x := A'*x. TRANS = 'C' or 'c' x := A'*x. Unchanged on exit. DIAG - CHARACTER*1. On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular. Unchanged on exit. N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular matrix and the strictly lower triangular part of A is not referenced. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular matrix and the strictly upper triangular part of A is not referenced. Note that when DIAG = 'U' or 'u', the diagonal elements of A are not referenced either, but are assumed to be unity. Unchanged on exit. LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, n ). Unchanged on exit. X - DOUBLE PRECISION array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. On exit, X is overwritten with the tranformed vector x. INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. .. Parameters ..
uplo
- trans
- diag
- n
- a
- lda
- x
- incx
- public abstract void dtrsm(java.lang.String side, java.lang.String uplo, java.lang.String transa, java.lang.String diag, int m, int n, double alpha, double[] a, int lda, double[] b, int ldb)
.. Purpose ======= DTRSM solves one of the matrix equations op( A )*X = alpha*B, or X*op( A ) = alpha*B, where alpha is a scalar, X and B are m by n matrices, A is a unit, or non-unit, upper or lower triangular matrix and op( A ) is one of op( A ) = A or op( A ) = A'. The matrix X is overwritten on B. Arguments ========== SIDE - CHARACTER*1. On entry, SIDE specifies whether op( A ) appears on the left or right of X as follows: SIDE = 'L' or 'l' op( A )*X = alpha*B. SIDE = 'R' or 'r' X*op( A ) = alpha*B. Unchanged on exit. UPLO - CHARACTER*1. On entry, UPLO specifies whether the matrix A is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix. Unchanged on exit. TRANSA - CHARACTER*1. On entry, TRANSA specifies the form of op( A ) to be used in the matrix multiplication as follows: TRANSA = 'N' or 'n' op( A ) = A. TRANSA = 'T' or 't' op( A ) = A'. TRANSA = 'C' or 'c' op( A ) = A'. Unchanged on exit. DIAG - CHARACTER*1. On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular. Unchanged on exit. M - INTEGER. On entry, M specifies the number of rows of B. M must be at least zero. Unchanged on exit. N - INTEGER. On entry, N specifies the number of columns of B. N must be at least zero. Unchanged on exit. ALPHA - DOUBLE PRECISION. On entry, ALPHA specifies the scalar alpha. When alpha is zero then A is not referenced and B need not be set before entry. Unchanged on exit. A - DOUBLE PRECISION array of DIMENSION ( LDA, k ), where k is m when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. Before entry with UPLO = 'U' or 'u', the leading k by k upper triangular part of the array A must contain the upper triangular matrix and the strictly lower triangular part of A is not referenced. Before entry with UPLO = 'L' or 'l', the leading k by k lower triangular part of the array A must contain the lower triangular matrix and the strictly upper triangular part of A is not referenced. Note that when DIAG = 'U' or 'u', the diagonal elements of A are not referenced either, but are assumed to be unity. Unchanged on exit. LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When SIDE = 'L' or 'l' then LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' then LDA must be at least max( 1, n ). Unchanged on exit. B - DOUBLE PRECISION array of DIMENSION ( LDB, n ). Before entry, the leading m by n part of the array B must contain the right-hand side matrix B, and on exit is overwritten by the solution matrix X. LDB - INTEGER. On entry, LDB specifies the first dimension of B as declared in the calling (sub) program. LDB must be at least max( 1, m ). Unchanged on exit. Level 3 Blas routine. -- Written on 8-February-1989. Jack Dongarra, Argonne National Laboratory. Iain Duff, AERE Harwell. Jeremy Du Croz, Numerical Algorithms Group Ltd. Sven Hammarling, Numerical Algorithms Group Ltd. .. External Functions ..
side
- uplo
- transa
- diag
- m
- n
- alpha
- a
- lda
- b
- ldb
- public abstract void dtrsv(java.lang.String uplo, java.lang.String trans, java.lang.String diag, int n, double[] a, int lda, double[] x, int incx)
.. Purpose ======= DTRSV solves one of the systems of equations A*x = b, or A'*x = b, where b and x are n element vectors and A is an n by n unit, or non-unit, upper or lower triangular matrix. No test for singularity or near-singularity is included in this routine. Such tests must be performed before calling this routine. Arguments ========== UPLO - CHARACTER*1. On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix. Unchanged on exit. TRANS - CHARACTER*1. On entry, TRANS specifies the equations to be solved as follows: TRANS = 'N' or 'n' A*x = b. TRANS = 'T' or 't' A'*x = b. TRANS = 'C' or 'c' A'*x = b. Unchanged on exit. DIAG - CHARACTER*1. On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular. Unchanged on exit. N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. A - DOUBLE PRECISION array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular matrix and the strictly lower triangular part of A is not referenced. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular matrix and the strictly upper triangular part of A is not referenced. Note that when DIAG = 'U' or 'u', the diagonal elements of A are not referenced either, but are assumed to be unity. Unchanged on exit. LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, n ). Unchanged on exit. X - DOUBLE PRECISION array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element right-hand side vector b. On exit, X is overwritten with the solution vector x. INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. .. Parameters ..
uplo
- trans
- diag
- n
- a
- lda
- x
- incx
- public abstract int idamax(int n, double[] dx, int incx)
.. Purpose ======= finds the index of element having max. absolute value. jack dongarra, linpack, 3/11/78. modified 3/93 to return if incx .le. 0. modified 12/3/93, array(1) declarations changed to array(*) .. Local Scalars ..
n
- dx
- incx
- public abstract int isamax(int n, float[] sx, int incx)
.. Purpose ======= finds the index of element having max. absolute value. jack dongarra, linpack, 3/11/78. modified 3/93 to return if incx .le. 0. modified 12/3/93, array(1) declarations changed to array(*) .. Local Scalars ..
n
- sx
- incx
- public boolean lsame(java.lang.String ca, java.lang.String cb)
.. Purpose ======= LSAME returns .TRUE. if CA is the same letter as CB regardless of case. Arguments ========= CA (input) CHARACTER*1 CB (input) CHARACTER*1 CA and CB specify the single characters to be compared. ===================================================================== .. Intrinsic Functions ..
ca
- cb
- public abstract float sasum(int n, float[] sx, int incx)
.. Purpose ======= takes the sum of the absolute values. uses unrolled loops for increment equal to one. jack dongarra, linpack, 3/11/78. modified 3/93 to return if incx .le. 0. modified 12/3/93, array(1) declarations changed to array(*) .. Local Scalars ..
n
- sx
- incx
- public abstract void saxpy(int n, float sa, float[] sx, int incx, float[] sy, int incy)
.. Purpose ======= SAXPY constant times a vector plus a vector. uses unrolled loop for increments equal to one. jack dongarra, linpack, 3/11/78. modified 12/3/93, array(1) declarations changed to array(*) .. Local Scalars ..
n
- sa
- sx
- incx
- sy
- incy
- public abstract void scopy(int n, float[] sx, int incx, float[] sy, int incy)
.. Purpose ======= copies a vector, x, to a vector, y. uses unrolled loops for increments equal to 1. jack dongarra, linpack, 3/11/78. modified 12/3/93, array(1) declarations changed to array(*) .. Local Scalars ..
n
- sx
- incx
- sy
- incy
- public abstract float sdot(int n, float[] sx, int incx, float[] sy, int incy)
.. Purpose ======= forms the dot product of two vectors. uses unrolled loops for increments equal to one. jack dongarra, linpack, 3/11/78. modified 12/3/93, array(1) declarations changed to array(*) .. Local Scalars ..
n
- sx
- incx
- sy
- incy
- public abstract float sdsdot(int n, float sb, float[] sx, int incx, float[] sy, int incy)
.. PURPOSE ======= Compute the inner product of two vectors with extended precision accumulation. Returns S.P. result with dot product accumulated in D.P. SDSDOT = SB + sum for I = 0 to N-1 of SX(LX+I*INCX)*SY(LY+I*INCY), where LX = 1 if INCX .GE. 0, else LX = 1+(1-N)*INCX, and LY is defined in a similar way using INCY. AUTHOR ====== Lawson, C. L., (JPL), Hanson, R. J., (SNLA), Kincaid, D. R., (U. of Texas), Krogh, F. T., (JPL) ARGUMENTS ========= N (input) INTEGER number of elements in input vector(s) SB (input) REAL single precision scalar to be added to inner product SX (input) REAL array, dimension (N) single precision vector with N elements INCX (input) INTEGER storage spacing between elements of SX SY (input) REAL array, dimension (N) single precision vector with N elements INCY (input) INTEGER storage spacing between elements of SY SDSDOT (output) REAL single precision dot product (SB if N .LE. 0) REFERENCES ========== C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. Krogh, Basic linear algebra subprograms for Fortran usage, Algorithm No. 539, Transactions on Mathematical Software 5, 3 (September 1979), pp. 308-323. REVISION HISTORY (YYMMDD) ========================== 791001 DATE WRITTEN 890531 Changed all specific intrinsics to generic. (WRB) 890831 Modified array declarations. (WRB) 890831 REVISION DATE from Version 3.2 891214 Prologue converted to Version 4.0 format. (BAB) 920310 Corrected definition of LX in DESCRIPTION. (WRB) 920501 Reformatted the REFERENCES section. (WRB) 070118 Reformat to LAPACK coding style ===================================================================== .. Local Scalars ..
n
- sb
- sx
- incx
- sy
- incy
- public abstract void sgbmv(java.lang.String trans, int m, int n, int kl, int ku, float alpha, float[] a, int lda, float[] x, int incx, float beta, float[] y, int incy)
.. Purpose ======= SGBMV performs one of the matrix-vector operations y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, where alpha and beta are scalars, x and y are vectors and A is an m by n band matrix, with kl sub-diagonals and ku super-diagonals. Arguments ========== TRANS - CHARACTER*1. On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' y := alpha*A*x + beta*y. TRANS = 'T' or 't' y := alpha*A'*x + beta*y. TRANS = 'C' or 'c' y := alpha*A'*x + beta*y. Unchanged on exit. M - INTEGER. On entry, M specifies the number of rows of the matrix A. M must be at least zero. Unchanged on exit. N - INTEGER. On entry, N specifies the number of columns of the matrix A. N must be at least zero. Unchanged on exit. KL - INTEGER. On entry, KL specifies the number of sub-diagonals of the matrix A. KL must satisfy 0 .le. KL. Unchanged on exit. KU - INTEGER. On entry, KU specifies the number of super-diagonals of the matrix A. KU must satisfy 0 .le. KU. Unchanged on exit. ALPHA - REAL . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. A - REAL array of DIMENSION ( LDA, n ). Before entry, the leading ( kl + ku + 1 ) by n part of the array A must contain the matrix of coefficients, supplied column by column, with the leading diagonal of the matrix in row ( ku + 1 ) of the array, the first super-diagonal starting at position 2 in row ku, the first sub-diagonal starting at position 1 in row ( ku + 2 ), and so on. Elements in the array A that do not correspond to elements in the band matrix (such as the top left ku by ku triangle) are not referenced. The following program segment will transfer a band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N K = KU + 1 - J DO 10, I = MAX( 1, J - KU ), MIN( M, J + KL ) A( K + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Unchanged on exit. LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least ( kl + ku + 1 ). Unchanged on exit. X - REAL array of DIMENSION at least ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' and at least ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. Before entry, the incremented array X must contain the vector x. Unchanged on exit. INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. BETA - REAL . On entry, BETA specifies the scalar beta. When BETA is supplied as zero then Y need not be set on input. Unchanged on exit. Y - REAL array of DIMENSION at least ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' and at least ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. Before entry, the incremented array Y must contain the vector y. On exit, Y is overwritten by the updated vector y. INCY - INTEGER. On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. .. Parameters ..
trans
- m
- n
- kl
- ku
- alpha
- a
- lda
- x
- incx
- beta
- y
- incy
- public abstract void sgemm(java.lang.String transa, java.lang.String transb, int m, int n, int k, float alpha, float[] a, int lda, float[] b, int ldb, float beta, float[] c, int Ldc)
.. Purpose ======= SGEMM performs one of the matrix-matrix operations C := alpha*op( A )*op( B ) + beta*C, where op( X ) is one of op( X ) = X or op( X ) = X', alpha and beta are scalars, and A, B and C are matrices, with op( A ) an m by k matrix, op( B ) a k by n matrix and C an m by n matrix. Arguments ========== TRANSA - CHARACTER*1. On entry, TRANSA specifies the form of op( A ) to be used in the matrix multiplication as follows: TRANSA = 'N' or 'n', op( A ) = A. TRANSA = 'T' or 't', op( A ) = A'. TRANSA = 'C' or 'c', op( A ) = A'. Unchanged on exit. TRANSB - CHARACTER*1. On entry, TRANSB specifies the form of op( B ) to be used in the matrix multiplication as follows: TRANSB = 'N' or 'n', op( B ) = B. TRANSB = 'T' or 't', op( B ) = B'. TRANSB = 'C' or 'c', op( B ) = B'. Unchanged on exit. M - INTEGER. On entry, M specifies the number of rows of the matrix op( A ) and of the matrix C. M must be at least zero. Unchanged on exit. N - INTEGER. On entry, N specifies the number of columns of the matrix op( B ) and the number of columns of the matrix C. N must be at least zero. Unchanged on exit. K - INTEGER. On entry, K specifies the number of columns of the matrix op( A ) and the number of rows of the matrix op( B ). K must be at least zero. Unchanged on exit. ALPHA - REAL . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. A - REAL array of DIMENSION ( LDA, ka ), where ka is k when TRANSA = 'N' or 'n', and is m otherwise. Before entry with TRANSA = 'N' or 'n', the leading m by k part of the array A must contain the matrix A, otherwise the leading k by m part of the array A must contain the matrix A. Unchanged on exit. LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When TRANSA = 'N' or 'n' then LDA must be at least max( 1, m ), otherwise LDA must be at least max( 1, k ). Unchanged on exit. B - REAL array of DIMENSION ( LDB, kb ), where kb is n when TRANSB = 'N' or 'n', and is k otherwise. Before entry with TRANSB = 'N' or 'n', the leading k by n part of the array B must contain the matrix B, otherwise the leading n by k part of the array B must contain the matrix B. Unchanged on exit. LDB - INTEGER. On entry, LDB specifies the first dimension of B as declared in the calling (sub) program. When TRANSB = 'N' or 'n' then LDB must be at least max( 1, k ), otherwise LDB must be at least max( 1, n ). Unchanged on exit. BETA - REAL . On entry, BETA specifies the scalar beta. When BETA is supplied as zero then C need not be set on input. Unchanged on exit. C - REAL array of DIMENSION ( LDC, n ). Before entry, the leading m by n part of the array C must contain the matrix C, except when beta is zero, in which case C need not be set on entry. On exit, the array C is overwritten by the m by n matrix ( alpha*op( A )*op( B ) + beta*C ). LDC - INTEGER. On entry, LDC specifies the first dimension of C as declared in the calling (sub) program. LDC must be at least max( 1, m ). Unchanged on exit. Level 3 Blas routine. -- Written on 8-February-1989. Jack Dongarra, Argonne National Laboratory. Iain Duff, AERE Harwell. Jeremy Du Croz, Numerical Algorithms Group Ltd. Sven Hammarling, Numerical Algorithms Group Ltd. .. External Functions ..
transa
- transb
- m
- n
- k
- alpha
- a
- lda
- b
- ldb
- beta
- c
- Ldc
- public abstract void sgemv(java.lang.String trans, int m, int n, float alpha, float[] a, int lda, float[] x, int incx, float beta, float[] y, int incy)
.. Purpose ======= SGEMV performs one of the matrix-vector operations y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y, where alpha and beta are scalars, x and y are vectors and A is an m by n matrix. Arguments ========== TRANS - CHARACTER*1. On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' y := alpha*A*x + beta*y. TRANS = 'T' or 't' y := alpha*A'*x + beta*y. TRANS = 'C' or 'c' y := alpha*A'*x + beta*y. Unchanged on exit. M - INTEGER. On entry, M specifies the number of rows of the matrix A. M must be at least zero. Unchanged on exit. N - INTEGER. On entry, N specifies the number of columns of the matrix A. N must be at least zero. Unchanged on exit. ALPHA - REAL . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. A - REAL array of DIMENSION ( LDA, n ). Before entry, the leading m by n part of the array A must contain the matrix of coefficients. Unchanged on exit. LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, m ). Unchanged on exit. X - REAL array of DIMENSION at least ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n' and at least ( 1 + ( m - 1 )*abs( INCX ) ) otherwise. Before entry, the incremented array X must contain the vector x. Unchanged on exit. INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. BETA - REAL . On entry, BETA specifies the scalar beta. When BETA is supplied as zero then Y need not be set on input. Unchanged on exit. Y - REAL array of DIMENSION at least ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n' and at least ( 1 + ( n - 1 )*abs( INCY ) ) otherwise. Before entry with BETA non-zero, the incremented array Y must contain the vector y. On exit, Y is overwritten by the updated vector y. INCY - INTEGER. On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. .. Parameters ..
trans
- m
- n
- alpha
- a
- lda
- x
- incx
- beta
- y
- incy
- public abstract void sger(int m, int n, float alpha, float[] x, int incx, float[] y, int incy, float[] a, int lda)
.. Purpose ======= SGER performs the rank 1 operation A := alpha*x*y' + A, where alpha is a scalar, x is an m element vector, y is an n element vector and A is an m by n matrix. Arguments ========== M - INTEGER. On entry, M specifies the number of rows of the matrix A. M must be at least zero. Unchanged on exit. N - INTEGER. On entry, N specifies the number of columns of the matrix A. N must be at least zero. Unchanged on exit. ALPHA - REAL . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. X - REAL array of dimension at least ( 1 + ( m - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the m element vector x. Unchanged on exit. INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. Y - REAL array of dimension at least ( 1 + ( n - 1 )*abs( INCY ) ). Before entry, the incremented array Y must contain the n element vector y. Unchanged on exit. INCY - INTEGER. On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit. A - REAL array of DIMENSION ( LDA, n ). Before entry, the leading m by n part of the array A must contain the matrix of coefficients. On exit, A is overwritten by the updated matrix. LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, m ). Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. .. Parameters ..
m
- n
- alpha
- x
- incx
- y
- incy
- a
- lda
- public abstract float snrm2(int n, float[] x, int incx)
.. Purpose ======= SNRM2 returns the euclidean norm of a vector via the function name, so that SNRM2 := sqrt( x'*x ). Further Details =============== -- This version written on 25-October-1982. Modified on 14-October-1993 to inline the call to SLASSQ. Sven Hammarling, Nag Ltd. .. Parameters ..
n
- x
- incx
- public abstract void srot(int n, float[] sx, int incx, float[] sy, int incy, float c, float s)
.. Purpose ======= applies a plane rotation. Further Details =============== jack dongarra, linpack, 3/11/78. modified 12/3/93, array(1) declarations changed to array(*) .. Local Scalars ..
n
- sx
- incx
- sy
- incy
- c
- s
- public abstract void srotg(org.netlib.util.floatW sa, org.netlib.util.floatW sb, org.netlib.util.floatW c, org.netlib.util.floatW s)
.. Purpose ======= construct givens plane rotation. jack dongarra, linpack, 3/11/78. .. Local Scalars ..
sa
- sb
- c
- s
- public abstract void srotm(int n, float[] sx, int incx, float[] sy, int incy, float[] sparam)
.. Purpose ======= APPLY THE MODIFIED GIVENS TRANSFORMATION, H, TO THE 2 BY N MATRIX (SX**T) , WHERE **T INDICATES TRANSPOSE. THE ELEMENTS OF SX ARE IN (DX**T) SX(LX+I*INCX), I = 0 TO N-1, WHERE LX = 1 IF INCX .GE. 0, ELSE LX = (-INCX)*N, AND SIMILARLY FOR SY USING USING LY AND INCY. WITH SPARAM(1)=SFLAG, H HAS ONE OF THE FOLLOWING FORMS.. SFLAG=-1.E0 SFLAG=0.E0 SFLAG=1.E0 SFLAG=-2.E0 (SH11 SH12) (1.E0 SH12) (SH11 1.E0) (1.E0 0.E0) H=( ) ( ) ( ) ( ) (SH21 SH22), (SH21 1.E0), (-1.E0 SH22), (0.E0 1.E0). SEE SROTMG FOR A DESCRIPTION OF DATA STORAGE IN SPARAM. Arguments ========= N (input) INTEGER number of elements in input vector(s) SX (input/output) REAL array, dimension N double precision vector with 5 elements INCX (input) INTEGER storage spacing between elements of SX SY (input/output) REAL array, dimension N double precision vector with N elements INCY (input) INTEGER storage spacing between elements of SY SPARAM (input/output) REAL array, dimension 5 SPARAM(1)=SFLAG SPARAM(2)=SH11 SPARAM(3)=SH21 SPARAM(4)=SH12 SPARAM(5)=SH22 ===================================================================== .. Local Scalars ..
n
- sx
- incx
- sy
- incy
- sparam
- public abstract void srotmg(org.netlib.util.floatW sd1, org.netlib.util.floatW sd2, org.netlib.util.floatW sx1, float sy1, float[] sparam)
.. Purpose ======= CONSTRUCT THE MODIFIED GIVENS TRANSFORMATION MATRIX H WHICH ZEROS THE SECOND COMPONENT OF THE 2-VECTOR (SQRT(SD1)*SX1,SQRT(SD2)* SY2)**T. WITH SPARAM(1)=SFLAG, H HAS ONE OF THE FOLLOWING FORMS.. SFLAG=-1.E0 SFLAG=0.E0 SFLAG=1.E0 SFLAG=-2.E0 (SH11 SH12) (1.E0 SH12) (SH11 1.E0) (1.E0 0.E0) H=( ) ( ) ( ) ( ) (SH21 SH22), (SH21 1.E0), (-1.E0 SH22), (0.E0 1.E0). LOCATIONS 2-4 OF SPARAM CONTAIN SH11,SH21,SH12, AND SH22 RESPECTIVELY. (VALUES OF 1.E0, -1.E0, OR 0.E0 IMPLIED BY THE VALUE OF SPARAM(1) ARE NOT STORED IN SPARAM.) THE VALUES OF GAMSQ AND RGAMSQ SET IN THE DATA STATEMENT MAY BE INEXACT. THIS IS OK AS THEY ARE ONLY USED FOR TESTING THE SIZE OF SD1 AND SD2. ALL ACTUAL SCALING OF DATA IS DONE USING GAM. Arguments ========= SD1 (input/output) REAL SD2 (input/output) REAL SX1 (input/output) REAL SY1 (input) REAL SPARAM (input/output) REAL array, dimension 5 SPARAM(1)=SFLAG SPARAM(2)=SH11 SPARAM(3)=SH21 SPARAM(4)=SH12 SPARAM(5)=SH22 ===================================================================== .. Local Scalars ..
sd1
- sd2
- sx1
- sy1
- sparam
- public abstract void ssbmv(java.lang.String uplo, int n, int k, float alpha, float[] a, int lda, float[] x, int incx, float beta, float[] y, int incy)
.. Purpose ======= SSBMV performs the matrix-vector operation y := alpha*A*x + beta*y, where alpha and beta are scalars, x and y are n element vectors and A is an n by n symmetric band matrix, with k super-diagonals. Arguments ========== UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the band matrix A is being supplied as follows: UPLO = 'U' or 'u' The upper triangular part of A is being supplied. UPLO = 'L' or 'l' The lower triangular part of A is being supplied. Unchanged on exit. N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. K - INTEGER. On entry, K specifies the number of super-diagonals of the matrix A. K must satisfy 0 .le. K. Unchanged on exit. ALPHA - REAL . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. A - REAL array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) by n part of the array A must contain the upper triangular band part of the symmetric matrix, supplied column by column, with the leading diagonal of the matrix in row ( k + 1 ) of the array, the first super-diagonal starting at position 2 in row k, and so on. The top left k by k triangle of the array A is not referenced. The following program segment will transfer the upper triangular part of a symmetric band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N M = K + 1 - J DO 10, I = MAX( 1, J - K ), J A( M + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) by n part of the array A must contain the lower triangular band part of the symmetric matrix, supplied column by column, with the leading diagonal of the matrix in row 1 of the array, the first sub-diagonal starting at position 1 in row 2, and so on. The bottom right k by k triangle of the array A is not referenced. The following program segment will transfer the lower triangular part of a symmetric band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N M = 1 - J DO 10, I = J, MIN( N, J + K ) A( M + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Unchanged on exit. LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least ( k + 1 ). Unchanged on exit. X - REAL array of DIMENSION at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the vector x. Unchanged on exit. INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. BETA - REAL . On entry, BETA specifies the scalar beta. Unchanged on exit. Y - REAL array of DIMENSION at least ( 1 + ( n - 1 )*abs( INCY ) ). Before entry, the incremented array Y must contain the vector y. On exit, Y is overwritten by the updated vector y. INCY - INTEGER. On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. .. Parameters ..
uplo
- n
- k
- alpha
- a
- lda
- x
- incx
- beta
- y
- incy
- public abstract void sscal(int n, float sa, float[] sx, int incx)
.. Purpose ======= scales a vector by a constant. uses unrolled loops for increment equal to 1. jack dongarra, linpack, 3/11/78. modified 3/93 to return if incx .le. 0. modified 12/3/93, array(1) declarations changed to array(*) .. Local Scalars ..
n
- sa
- sx
- incx
- public abstract void sspmv(java.lang.String uplo, int n, float alpha, float[] ap, float[] x, int incx, float beta, float[] y, int incy)
.. Purpose ======= SSPMV performs the matrix-vector operation y := alpha*A*x + beta*y, where alpha and beta are scalars, x and y are n element vectors and A is an n by n symmetric matrix, supplied in packed form. Arguments ========== UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the matrix A is supplied in the packed array AP as follows: UPLO = 'U' or 'u' The upper triangular part of A is supplied in AP. UPLO = 'L' or 'l' The lower triangular part of A is supplied in AP. Unchanged on exit. N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. ALPHA - REAL . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. AP - REAL array of DIMENSION at least ( ( n*( n + 1 ) )/2 ). Before entry with UPLO = 'U' or 'u', the array AP must contain the upper triangular part of the symmetric matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) respectively, and so on. Before entry with UPLO = 'L' or 'l', the array AP must contain the lower triangular part of the symmetric matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) respectively, and so on. Unchanged on exit. X - REAL array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. Unchanged on exit. INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. BETA - REAL . On entry, BETA specifies the scalar beta. When BETA is supplied as zero then Y need not be set on input. Unchanged on exit. Y - REAL array of dimension at least ( 1 + ( n - 1 )*abs( INCY ) ). Before entry, the incremented array Y must contain the n element vector y. On exit, Y is overwritten by the updated vector y. INCY - INTEGER. On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. .. Parameters ..
uplo
- n
- alpha
- ap
- x
- incx
- beta
- y
- incy
- public abstract void sspr(java.lang.String uplo, int n, float alpha, float[] x, int incx, float[] ap)
.. Purpose ======= SSPR performs the symmetric rank 1 operation A := alpha*x*x' + A, where alpha is a real scalar, x is an n element vector and A is an n by n symmetric matrix, supplied in packed form. Arguments ========== UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the matrix A is supplied in the packed array AP as follows: UPLO = 'U' or 'u' The upper triangular part of A is supplied in AP. UPLO = 'L' or 'l' The lower triangular part of A is supplied in AP. Unchanged on exit. N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. ALPHA - REAL . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. X - REAL array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. Unchanged on exit. INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. AP - REAL array of DIMENSION at least ( ( n*( n + 1 ) )/2 ). Before entry with UPLO = 'U' or 'u', the array AP must contain the upper triangular part of the symmetric matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) respectively, and so on. On exit, the array AP is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the array AP must contain the lower triangular part of the symmetric matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) respectively, and so on. On exit, the array AP is overwritten by the lower triangular part of the updated matrix. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. .. Parameters ..
uplo
- n
- alpha
- x
- incx
- ap
- public abstract void sspr2(java.lang.String uplo, int n, float alpha, float[] x, int incx, float[] y, int incy, float[] ap)
.. Purpose ======= SSPR2 performs the symmetric rank 2 operation A := alpha*x*y' + alpha*y*x' + A, where alpha is a scalar, x and y are n element vectors and A is an n by n symmetric matrix, supplied in packed form. Arguments ========== UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the matrix A is supplied in the packed array AP as follows: UPLO = 'U' or 'u' The upper triangular part of A is supplied in AP. UPLO = 'L' or 'l' The lower triangular part of A is supplied in AP. Unchanged on exit. N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. ALPHA - REAL . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. X - REAL array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. Unchanged on exit. INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. Y - REAL array of dimension at least ( 1 + ( n - 1 )*abs( INCY ) ). Before entry, the incremented array Y must contain the n element vector y. Unchanged on exit. INCY - INTEGER. On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit. AP - REAL array of DIMENSION at least ( ( n*( n + 1 ) )/2 ). Before entry with UPLO = 'U' or 'u', the array AP must contain the upper triangular part of the symmetric matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) respectively, and so on. On exit, the array AP is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the array AP must contain the lower triangular part of the symmetric matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) respectively, and so on. On exit, the array AP is overwritten by the lower triangular part of the updated matrix. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. .. Parameters ..
uplo
- n
- alpha
- x
- incx
- y
- incy
- ap
- public abstract void sswap(int n, float[] sx, int incx, float[] sy, int incy)
.. Purpose ======= interchanges two vectors. uses unrolled loops for increments equal to 1. jack dongarra, linpack, 3/11/78. modified 12/3/93, array(1) declarations changed to array(*) .. Local Scalars ..
n
- sx
- incx
- sy
- incy
- public abstract void ssymm(java.lang.String side, java.lang.String uplo, int m, int n, float alpha, float[] a, int lda, float[] b, int ldb, float beta, float[] c, int Ldc)
.. Purpose ======= SSYMM performs one of the matrix-matrix operations C := alpha*A*B + beta*C, or C := alpha*B*A + beta*C, where alpha and beta are scalars, A is a symmetric matrix and B and C are m by n matrices. Arguments ========== SIDE - CHARACTER*1. On entry, SIDE specifies whether the symmetric matrix A appears on the left or right in the operation as follows: SIDE = 'L' or 'l' C := alpha*A*B + beta*C, SIDE = 'R' or 'r' C := alpha*B*A + beta*C, Unchanged on exit. UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the symmetric matrix A is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of the symmetric matrix is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of the symmetric matrix is to be referenced. Unchanged on exit. M - INTEGER. On entry, M specifies the number of rows of the matrix C. M must be at least zero. Unchanged on exit. N - INTEGER. On entry, N specifies the number of columns of the matrix C. N must be at least zero. Unchanged on exit. ALPHA - REAL . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. A - REAL array of DIMENSION ( LDA, ka ), where ka is m when SIDE = 'L' or 'l' and is n otherwise. Before entry with SIDE = 'L' or 'l', the m by m part of the array A must contain the symmetric matrix, such that when UPLO = 'U' or 'u', the leading m by m upper triangular part of the array A must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of A is not referenced, and when UPLO = 'L' or 'l', the leading m by m lower triangular part of the array A must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of A is not referenced. Before entry with SIDE = 'R' or 'r', the n by n part of the array A must contain the symmetric matrix, such that when UPLO = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of A is not referenced, and when UPLO = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of A is not referenced. Unchanged on exit. LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When SIDE = 'L' or 'l' then LDA must be at least max( 1, m ), otherwise LDA must be at least max( 1, n ). Unchanged on exit. B - REAL array of DIMENSION ( LDB, n ). Before entry, the leading m by n part of the array B must contain the matrix B. Unchanged on exit. LDB - INTEGER. On entry, LDB specifies the first dimension of B as declared in the calling (sub) program. LDB must be at least max( 1, m ). Unchanged on exit. BETA - REAL . On entry, BETA specifies the scalar beta. When BETA is supplied as zero then C need not be set on input. Unchanged on exit. C - REAL array of DIMENSION ( LDC, n ). Before entry, the leading m by n part of the array C must contain the matrix C, except when beta is zero, in which case C need not be set on entry. On exit, the array C is overwritten by the m by n updated matrix. LDC - INTEGER. On entry, LDC specifies the first dimension of C as declared in the calling (sub) program. LDC must be at least max( 1, m ). Unchanged on exit. Level 3 Blas routine. -- Written on 8-February-1989. Jack Dongarra, Argonne National Laboratory. Iain Duff, AERE Harwell. Jeremy Du Croz, Numerical Algorithms Group Ltd. Sven Hammarling, Numerical Algorithms Group Ltd. .. External Functions ..
side
- uplo
- m
- n
- alpha
- a
- lda
- b
- ldb
- beta
- c
- Ldc
- public abstract void ssymv(java.lang.String uplo, int n, float alpha, float[] a, int lda, float[] x, int incx, float beta, float[] y, int incy)
.. Purpose ======= SSYMV performs the matrix-vector operation y := alpha*A*x + beta*y, where alpha and beta are scalars, x and y are n element vectors and A is an n by n symmetric matrix. Arguments ========== UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the array A is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of A is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of A is to be referenced. Unchanged on exit. N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. ALPHA - REAL . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. A - REAL array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of A is not referenced. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of A is not referenced. Unchanged on exit. LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, n ). Unchanged on exit. X - REAL array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. Unchanged on exit. INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. BETA - REAL . On entry, BETA specifies the scalar beta. When BETA is supplied as zero then Y need not be set on input. Unchanged on exit. Y - REAL array of dimension at least ( 1 + ( n - 1 )*abs( INCY ) ). Before entry, the incremented array Y must contain the n element vector y. On exit, Y is overwritten by the updated vector y. INCY - INTEGER. On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. .. Parameters ..
uplo
- n
- alpha
- a
- lda
- x
- incx
- beta
- y
- incy
- public abstract void ssyr(java.lang.String uplo, int n, float alpha, float[] x, int incx, float[] a, int lda)
.. Purpose ======= SSYR performs the symmetric rank 1 operation A := alpha*x*x' + A, where alpha is a real scalar, x is an n element vector and A is an n by n symmetric matrix. Arguments ========== UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the array A is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of A is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of A is to be referenced. Unchanged on exit. N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. ALPHA - REAL . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. X - REAL array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. Unchanged on exit. INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. A - REAL array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of A is not referenced. On exit, the upper triangular part of the array A is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of A is not referenced. On exit, the lower triangular part of the array A is overwritten by the lower triangular part of the updated matrix. LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, n ). Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. .. Parameters ..
uplo
- n
- alpha
- x
- incx
- a
- lda
- public abstract void ssyr2(java.lang.String uplo, int n, float alpha, float[] x, int incx, float[] y, int incy, float[] a, int lda)
.. Purpose ======= SSYR2 performs the symmetric rank 2 operation A := alpha*x*y' + alpha*y*x' + A, where alpha is a scalar, x and y are n element vectors and A is an n by n symmetric matrix. Arguments ========== UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the array A is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of A is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of A is to be referenced. Unchanged on exit. N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. ALPHA - REAL . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. X - REAL array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. Unchanged on exit. INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. Y - REAL array of dimension at least ( 1 + ( n - 1 )*abs( INCY ) ). Before entry, the incremented array Y must contain the n element vector y. Unchanged on exit. INCY - INTEGER. On entry, INCY specifies the increment for the elements of Y. INCY must not be zero. Unchanged on exit. A - REAL array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of A is not referenced. On exit, the upper triangular part of the array A is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of A is not referenced. On exit, the lower triangular part of the array A is overwritten by the lower triangular part of the updated matrix. LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, n ). Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. .. Parameters ..
uplo
- n
- alpha
- x
- incx
- y
- incy
- a
- lda
- public abstract void ssyr2k(java.lang.String uplo, java.lang.String trans, int n, int k, float alpha, float[] a, int lda, float[] b, int ldb, float beta, float[] c, int Ldc)
.. Purpose ======= SSYR2K performs one of the symmetric rank 2k operations C := alpha*A*B' + alpha*B*A' + beta*C, or C := alpha*A'*B + alpha*B'*A + beta*C, where alpha and beta are scalars, C is an n by n symmetric matrix and A and B are n by k matrices in the first case and k by n matrices in the second case. Arguments ========== UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the array C is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of C is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of C is to be referenced. Unchanged on exit. TRANS - CHARACTER*1. On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' C := alpha*A*B' + alpha*B*A' + beta*C. TRANS = 'T' or 't' C := alpha*A'*B + alpha*B'*A + beta*C. TRANS = 'C' or 'c' C := alpha*A'*B + alpha*B'*A + beta*C. Unchanged on exit. N - INTEGER. On entry, N specifies the order of the matrix C. N must be at least zero. Unchanged on exit. K - INTEGER. On entry with TRANS = 'N' or 'n', K specifies the number of columns of the matrices A and B, and on entry with TRANS = 'T' or 't' or 'C' or 'c', K specifies the number of rows of the matrices A and B. K must be at least zero. Unchanged on exit. ALPHA - REAL . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. A - REAL array of DIMENSION ( LDA, ka ), where ka is k when TRANS = 'N' or 'n', and is n otherwise. Before entry with TRANS = 'N' or 'n', the leading n by k part of the array A must contain the matrix A, otherwise the leading k by n part of the array A must contain the matrix A. Unchanged on exit. LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When TRANS = 'N' or 'n' then LDA must be at least max( 1, n ), otherwise LDA must be at least max( 1, k ). Unchanged on exit. B - REAL array of DIMENSION ( LDB, kb ), where kb is k when TRANS = 'N' or 'n', and is n otherwise. Before entry with TRANS = 'N' or 'n', the leading n by k part of the array B must contain the matrix B, otherwise the leading k by n part of the array B must contain the matrix B. Unchanged on exit. LDB - INTEGER. On entry, LDB specifies the first dimension of B as declared in the calling (sub) program. When TRANS = 'N' or 'n' then LDB must be at least max( 1, n ), otherwise LDB must be at least max( 1, k ). Unchanged on exit. BETA - REAL . On entry, BETA specifies the scalar beta. Unchanged on exit. C - REAL array of DIMENSION ( LDC, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array C must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of C is not referenced. On exit, the upper triangular part of the array C is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array C must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of C is not referenced. On exit, the lower triangular part of the array C is overwritten by the lower triangular part of the updated matrix. LDC - INTEGER. On entry, LDC specifies the first dimension of C as declared in the calling (sub) program. LDC must be at least max( 1, n ). Unchanged on exit. Level 3 Blas routine. -- Written on 8-February-1989. Jack Dongarra, Argonne National Laboratory. Iain Duff, AERE Harwell. Jeremy Du Croz, Numerical Algorithms Group Ltd. Sven Hammarling, Numerical Algorithms Group Ltd. .. External Functions ..
uplo
- trans
- n
- k
- alpha
- a
- lda
- b
- ldb
- beta
- c
- Ldc
- public abstract void ssyrk(java.lang.String uplo, java.lang.String trans, int n, int k, float alpha, float[] a, int lda, float beta, float[] c, int Ldc)
.. Purpose ======= SSYRK performs one of the symmetric rank k operations C := alpha*A*A' + beta*C, or C := alpha*A'*A + beta*C, where alpha and beta are scalars, C is an n by n symmetric matrix and A is an n by k matrix in the first case and a k by n matrix in the second case. Arguments ========== UPLO - CHARACTER*1. On entry, UPLO specifies whether the upper or lower triangular part of the array C is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of C is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of C is to be referenced. Unchanged on exit. TRANS - CHARACTER*1. On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' C := alpha*A*A' + beta*C. TRANS = 'T' or 't' C := alpha*A'*A + beta*C. TRANS = 'C' or 'c' C := alpha*A'*A + beta*C. Unchanged on exit. N - INTEGER. On entry, N specifies the order of the matrix C. N must be at least zero. Unchanged on exit. K - INTEGER. On entry with TRANS = 'N' or 'n', K specifies the number of columns of the matrix A, and on entry with TRANS = 'T' or 't' or 'C' or 'c', K specifies the number of rows of the matrix A. K must be at least zero. Unchanged on exit. ALPHA - REAL . On entry, ALPHA specifies the scalar alpha. Unchanged on exit. A - REAL array of DIMENSION ( LDA, ka ), where ka is k when TRANS = 'N' or 'n', and is n otherwise. Before entry with TRANS = 'N' or 'n', the leading n by k part of the array A must contain the matrix A, otherwise the leading k by n part of the array A must contain the matrix A. Unchanged on exit. LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When TRANS = 'N' or 'n' then LDA must be at least max( 1, n ), otherwise LDA must be at least max( 1, k ). Unchanged on exit. BETA - REAL . On entry, BETA specifies the scalar beta. Unchanged on exit. C - REAL array of DIMENSION ( LDC, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array C must contain the upper triangular part of the symmetric matrix and the strictly lower triangular part of C is not referenced. On exit, the upper triangular part of the array C is overwritten by the upper triangular part of the updated matrix. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array C must contain the lower triangular part of the symmetric matrix and the strictly upper triangular part of C is not referenced. On exit, the lower triangular part of the array C is overwritten by the lower triangular part of the updated matrix. LDC - INTEGER. On entry, LDC specifies the first dimension of C as declared in the calling (sub) program. LDC must be at least max( 1, n ). Unchanged on exit. Level 3 Blas routine. -- Written on 8-February-1989. Jack Dongarra, Argonne National Laboratory. Iain Duff, AERE Harwell. Jeremy Du Croz, Numerical Algorithms Group Ltd. Sven Hammarling, Numerical Algorithms Group Ltd. .. External Functions ..
uplo
- trans
- n
- k
- alpha
- a
- lda
- beta
- c
- Ldc
- public abstract void stbmv(java.lang.String uplo, java.lang.String trans, java.lang.String diag, int n, int k, float[] a, int lda, float[] x, int incx)
.. Purpose ======= STBMV performs one of the matrix-vector operations x := A*x, or x := A'*x, where x is an n element vector and A is an n by n unit, or non-unit, upper or lower triangular band matrix, with ( k + 1 ) diagonals. Arguments ========== UPLO - CHARACTER*1. On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix. Unchanged on exit. TRANS - CHARACTER*1. On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' x := A*x. TRANS = 'T' or 't' x := A'*x. TRANS = 'C' or 'c' x := A'*x. Unchanged on exit. DIAG - CHARACTER*1. On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular. Unchanged on exit. N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. K - INTEGER. On entry with UPLO = 'U' or 'u', K specifies the number of super-diagonals of the matrix A. On entry with UPLO = 'L' or 'l', K specifies the number of sub-diagonals of the matrix A. K must satisfy 0 .le. K. Unchanged on exit. A - REAL array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) by n part of the array A must contain the upper triangular band part of the matrix of coefficients, supplied column by column, with the leading diagonal of the matrix in row ( k + 1 ) of the array, the first super-diagonal starting at position 2 in row k, and so on. The top left k by k triangle of the array A is not referenced. The following program segment will transfer an upper triangular band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N M = K + 1 - J DO 10, I = MAX( 1, J - K ), J A( M + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) by n part of the array A must contain the lower triangular band part of the matrix of coefficients, supplied column by column, with the leading diagonal of the matrix in row 1 of the array, the first sub-diagonal starting at position 1 in row 2, and so on. The bottom right k by k triangle of the array A is not referenced. The following program segment will transfer a lower triangular band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N M = 1 - J DO 10, I = J, MIN( N, J + K ) A( M + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Note that when DIAG = 'U' or 'u' the elements of the array A corresponding to the diagonal elements of the matrix are not referenced, but are assumed to be unity. Unchanged on exit. LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least ( k + 1 ). Unchanged on exit. X - REAL array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. On exit, X is overwritten with the tranformed vector x. INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. .. Parameters ..
uplo
- trans
- diag
- n
- k
- a
- lda
- x
- incx
- public abstract void stbsv(java.lang.String uplo, java.lang.String trans, java.lang.String diag, int n, int k, float[] a, int lda, float[] x, int incx)
.. Purpose ======= STBSV solves one of the systems of equations A*x = b, or A'*x = b, where b and x are n element vectors and A is an n by n unit, or non-unit, upper or lower triangular band matrix, with ( k + 1 ) diagonals. No test for singularity or near-singularity is included in this routine. Such tests must be performed before calling this routine. Arguments ========== UPLO - CHARACTER*1. On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix. Unchanged on exit. TRANS - CHARACTER*1. On entry, TRANS specifies the equations to be solved as follows: TRANS = 'N' or 'n' A*x = b. TRANS = 'T' or 't' A'*x = b. TRANS = 'C' or 'c' A'*x = b. Unchanged on exit. DIAG - CHARACTER*1. On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular. Unchanged on exit. N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. K - INTEGER. On entry with UPLO = 'U' or 'u', K specifies the number of super-diagonals of the matrix A. On entry with UPLO = 'L' or 'l', K specifies the number of sub-diagonals of the matrix A. K must satisfy 0 .le. K. Unchanged on exit. A - REAL array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) by n part of the array A must contain the upper triangular band part of the matrix of coefficients, supplied column by column, with the leading diagonal of the matrix in row ( k + 1 ) of the array, the first super-diagonal starting at position 2 in row k, and so on. The top left k by k triangle of the array A is not referenced. The following program segment will transfer an upper triangular band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N M = K + 1 - J DO 10, I = MAX( 1, J - K ), J A( M + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) by n part of the array A must contain the lower triangular band part of the matrix of coefficients, supplied column by column, with the leading diagonal of the matrix in row 1 of the array, the first sub-diagonal starting at position 1 in row 2, and so on. The bottom right k by k triangle of the array A is not referenced. The following program segment will transfer a lower triangular band matrix from conventional full matrix storage to band storage: DO 20, J = 1, N M = 1 - J DO 10, I = J, MIN( N, J + K ) A( M + I, J ) = matrix( I, J ) 10 CONTINUE 20 CONTINUE Note that when DIAG = 'U' or 'u' the elements of the array A corresponding to the diagonal elements of the matrix are not referenced, but are assumed to be unity. Unchanged on exit. LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least ( k + 1 ). Unchanged on exit. X - REAL array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element right-hand side vector b. On exit, X is overwritten with the solution vector x. INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. .. Parameters ..
uplo
- trans
- diag
- n
- k
- a
- lda
- x
- incx
- public abstract void stpmv(java.lang.String uplo, java.lang.String trans, java.lang.String diag, int n, float[] ap, float[] x, int incx)
.. Purpose ======= STPMV performs one of the matrix-vector operations x := A*x, or x := A'*x, where x is an n element vector and A is an n by n unit, or non-unit, upper or lower triangular matrix, supplied in packed form. Arguments ========== UPLO - CHARACTER*1. On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix. Unchanged on exit. TRANS - CHARACTER*1. On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' x := A*x. TRANS = 'T' or 't' x := A'*x. TRANS = 'C' or 'c' x := A'*x. Unchanged on exit. DIAG - CHARACTER*1. On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular. Unchanged on exit. N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. AP - REAL array of DIMENSION at least ( ( n*( n + 1 ) )/2 ). Before entry with UPLO = 'U' or 'u', the array AP must contain the upper triangular matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) respectively, and so on. Before entry with UPLO = 'L' or 'l', the array AP must contain the lower triangular matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) respectively, and so on. Note that when DIAG = 'U' or 'u', the diagonal elements of A are not referenced, but are assumed to be unity. Unchanged on exit. X - REAL array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. On exit, X is overwritten with the tranformed vector x. INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. .. Parameters ..
uplo
- trans
- diag
- n
- ap
- x
- incx
- public abstract void stpsv(java.lang.String uplo, java.lang.String trans, java.lang.String diag, int n, float[] ap, float[] x, int incx)
.. Purpose ======= STPSV solves one of the systems of equations A*x = b, or A'*x = b, where b and x are n element vectors and A is an n by n unit, or non-unit, upper or lower triangular matrix, supplied in packed form. No test for singularity or near-singularity is included in this routine. Such tests must be performed before calling this routine. Arguments ========== UPLO - CHARACTER*1. On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix. Unchanged on exit. TRANS - CHARACTER*1. On entry, TRANS specifies the equations to be solved as follows: TRANS = 'N' or 'n' A*x = b. TRANS = 'T' or 't' A'*x = b. TRANS = 'C' or 'c' A'*x = b. Unchanged on exit. DIAG - CHARACTER*1. On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular. Unchanged on exit. N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. AP - REAL array of DIMENSION at least ( ( n*( n + 1 ) )/2 ). Before entry with UPLO = 'U' or 'u', the array AP must contain the upper triangular matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 ) respectively, and so on. Before entry with UPLO = 'L' or 'l', the array AP must contain the lower triangular matrix packed sequentially, column by column, so that AP( 1 ) contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 ) respectively, and so on. Note that when DIAG = 'U' or 'u', the diagonal elements of A are not referenced, but are assumed to be unity. Unchanged on exit. X - REAL array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element right-hand side vector b. On exit, X is overwritten with the solution vector x. INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. .. Parameters ..
uplo
- trans
- diag
- n
- ap
- x
- incx
- public abstract void strmm(java.lang.String side, java.lang.String uplo, java.lang.String transa, java.lang.String diag, int m, int n, float alpha, float[] a, int lda, float[] b, int ldb)
.. Purpose ======= STRMM performs one of the matrix-matrix operations B := alpha*op( A )*B, or B := alpha*B*op( A ), where alpha is a scalar, B is an m by n matrix, A is a unit, or non-unit, upper or lower triangular matrix and op( A ) is one of op( A ) = A or op( A ) = A'. Arguments ========== SIDE - CHARACTER*1. On entry, SIDE specifies whether op( A ) multiplies B from the left or right as follows: SIDE = 'L' or 'l' B := alpha*op( A )*B. SIDE = 'R' or 'r' B := alpha*B*op( A ). Unchanged on exit. UPLO - CHARACTER*1. On entry, UPLO specifies whether the matrix A is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix. Unchanged on exit. TRANSA - CHARACTER*1. On entry, TRANSA specifies the form of op( A ) to be used in the matrix multiplication as follows: TRANSA = 'N' or 'n' op( A ) = A. TRANSA = 'T' or 't' op( A ) = A'. TRANSA = 'C' or 'c' op( A ) = A'. Unchanged on exit. DIAG - CHARACTER*1. On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular. Unchanged on exit. M - INTEGER. On entry, M specifies the number of rows of B. M must be at least zero. Unchanged on exit. N - INTEGER. On entry, N specifies the number of columns of B. N must be at least zero. Unchanged on exit. ALPHA - REAL . On entry, ALPHA specifies the scalar alpha. When alpha is zero then A is not referenced and B need not be set before entry. Unchanged on exit. A - REAL array of DIMENSION ( LDA, k ), where k is m when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. Before entry with UPLO = 'U' or 'u', the leading k by k upper triangular part of the array A must contain the upper triangular matrix and the strictly lower triangular part of A is not referenced. Before entry with UPLO = 'L' or 'l', the leading k by k lower triangular part of the array A must contain the lower triangular matrix and the strictly upper triangular part of A is not referenced. Note that when DIAG = 'U' or 'u', the diagonal elements of A are not referenced either, but are assumed to be unity. Unchanged on exit. LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When SIDE = 'L' or 'l' then LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' then LDA must be at least max( 1, n ). Unchanged on exit. B - REAL array of DIMENSION ( LDB, n ). Before entry, the leading m by n part of the array B must contain the matrix B, and on exit is overwritten by the transformed matrix. LDB - INTEGER. On entry, LDB specifies the first dimension of B as declared in the calling (sub) program. LDB must be at least max( 1, m ). Unchanged on exit. Level 3 Blas routine. -- Written on 8-February-1989. Jack Dongarra, Argonne National Laboratory. Iain Duff, AERE Harwell. Jeremy Du Croz, Numerical Algorithms Group Ltd. Sven Hammarling, Numerical Algorithms Group Ltd. .. External Functions ..
side
- uplo
- transa
- diag
- m
- n
- alpha
- a
- lda
- b
- ldb
- public abstract void strmv(java.lang.String uplo, java.lang.String trans, java.lang.String diag, int n, float[] a, int lda, float[] x, int incx)
.. Purpose ======= STRMV performs one of the matrix-vector operations x := A*x, or x := A'*x, where x is an n element vector and A is an n by n unit, or non-unit, upper or lower triangular matrix. Arguments ========== UPLO - CHARACTER*1. On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix. Unchanged on exit. TRANS - CHARACTER*1. On entry, TRANS specifies the operation to be performed as follows: TRANS = 'N' or 'n' x := A*x. TRANS = 'T' or 't' x := A'*x. TRANS = 'C' or 'c' x := A'*x. Unchanged on exit. DIAG - CHARACTER*1. On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular. Unchanged on exit. N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. A - REAL array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular matrix and the strictly lower triangular part of A is not referenced. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular matrix and the strictly upper triangular part of A is not referenced. Note that when DIAG = 'U' or 'u', the diagonal elements of A are not referenced either, but are assumed to be unity. Unchanged on exit. LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, n ). Unchanged on exit. X - REAL array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element vector x. On exit, X is overwritten with the tranformed vector x. INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. .. Parameters ..
uplo
- trans
- diag
- n
- a
- lda
- x
- incx
- public abstract void strsm(java.lang.String side, java.lang.String uplo, java.lang.String transa, java.lang.String diag, int m, int n, float alpha, float[] a, int lda, float[] b, int ldb)
.. Purpose ======= STRSM solves one of the matrix equations op( A )*X = alpha*B, or X*op( A ) = alpha*B, where alpha is a scalar, X and B are m by n matrices, A is a unit, or non-unit, upper or lower triangular matrix and op( A ) is one of op( A ) = A or op( A ) = A'. The matrix X is overwritten on B. Arguments ========== SIDE - CHARACTER*1. On entry, SIDE specifies whether op( A ) appears on the left or right of X as follows: SIDE = 'L' or 'l' op( A )*X = alpha*B. SIDE = 'R' or 'r' X*op( A ) = alpha*B. Unchanged on exit. UPLO - CHARACTER*1. On entry, UPLO specifies whether the matrix A is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix. Unchanged on exit. TRANSA - CHARACTER*1. On entry, TRANSA specifies the form of op( A ) to be used in the matrix multiplication as follows: TRANSA = 'N' or 'n' op( A ) = A. TRANSA = 'T' or 't' op( A ) = A'. TRANSA = 'C' or 'c' op( A ) = A'. Unchanged on exit. DIAG - CHARACTER*1. On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular. Unchanged on exit. M - INTEGER. On entry, M specifies the number of rows of B. M must be at least zero. Unchanged on exit. N - INTEGER. On entry, N specifies the number of columns of B. N must be at least zero. Unchanged on exit. ALPHA - REAL . On entry, ALPHA specifies the scalar alpha. When alpha is zero then A is not referenced and B need not be set before entry. Unchanged on exit. A - REAL array of DIMENSION ( LDA, k ), where k is m when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'. Before entry with UPLO = 'U' or 'u', the leading k by k upper triangular part of the array A must contain the upper triangular matrix and the strictly lower triangular part of A is not referenced. Before entry with UPLO = 'L' or 'l', the leading k by k lower triangular part of the array A must contain the lower triangular matrix and the strictly upper triangular part of A is not referenced. Note that when DIAG = 'U' or 'u', the diagonal elements of A are not referenced either, but are assumed to be unity. Unchanged on exit. LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When SIDE = 'L' or 'l' then LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' then LDA must be at least max( 1, n ). Unchanged on exit. B - REAL array of DIMENSION ( LDB, n ). Before entry, the leading m by n part of the array B must contain the right-hand side matrix B, and on exit is overwritten by the solution matrix X. LDB - INTEGER. On entry, LDB specifies the first dimension of B as declared in the calling (sub) program. LDB must be at least max( 1, m ). Unchanged on exit. Level 3 Blas routine. -- Written on 8-February-1989. Jack Dongarra, Argonne National Laboratory. Iain Duff, AERE Harwell. Jeremy Du Croz, Numerical Algorithms Group Ltd. Sven Hammarling, Numerical Algorithms Group Ltd. .. External Functions ..
side
- uplo
- transa
- diag
- m
- n
- alpha
- a
- lda
- b
- ldb
- public abstract void strsv(java.lang.String uplo, java.lang.String trans, java.lang.String diag, int n, float[] a, int lda, float[] x, int incx)
.. Purpose ======= STRSV solves one of the systems of equations A*x = b, or A'*x = b, where b and x are n element vectors and A is an n by n unit, or non-unit, upper or lower triangular matrix. No test for singularity or near-singularity is included in this routine. Such tests must be performed before calling this routine. Arguments ========== UPLO - CHARACTER*1. On entry, UPLO specifies whether the matrix is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix. Unchanged on exit. TRANS - CHARACTER*1. On entry, TRANS specifies the equations to be solved as follows: TRANS = 'N' or 'n' A*x = b. TRANS = 'T' or 't' A'*x = b. TRANS = 'C' or 'c' A'*x = b. Unchanged on exit. DIAG - CHARACTER*1. On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular. Unchanged on exit. N - INTEGER. On entry, N specifies the order of the matrix A. N must be at least zero. Unchanged on exit. A - REAL array of DIMENSION ( LDA, n ). Before entry with UPLO = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular matrix and the strictly lower triangular part of A is not referenced. Before entry with UPLO = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular matrix and the strictly upper triangular part of A is not referenced. Note that when DIAG = 'U' or 'u', the diagonal elements of A are not referenced either, but are assumed to be unity. Unchanged on exit. LDA - INTEGER. On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. LDA must be at least max( 1, n ). Unchanged on exit. X - REAL array of dimension at least ( 1 + ( n - 1 )*abs( INCX ) ). Before entry, the incremented array X must contain the n element right-hand side vector b. On exit, X is overwritten with the solution vector x. INCX - INTEGER. On entry, INCX specifies the increment for the elements of X. INCX must not be zero. Unchanged on exit. Level 2 Blas routine. -- Written on 22-October-1986. Jack Dongarra, Argonne National Lab. Jeremy Du Croz, Nag Central Office. Sven Hammarling, Nag Central Office. Richard Hanson, Sandia National Labs. .. Parameters ..
uplo
- trans
- diag
- n
- a
- lda
- x
- incx
-
|
||||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |