#include <assert.h>
#include <stdlib.h>
#include <string.h>
#include <polylib/polylib.h>
#include <polylib/homogenization.h>
Go to the source code of this file.
Functions | |
static evalue * | dehomogenize_periodic (enode *en) |
homogenization.c copyright 2004-2005 Bavo Nootaert | |
static evalue * | dehomogenize_polynomial (enode *en) |
dehomogenize a polynomial. | |
Polyhedron * | homogenize (Polyhedron *P, unsigned MAXRAYS) |
void | dehomogenize_evalue (evalue *ep, int nb_param) |
dehomogenize an evalue. | |
void | dehomogenize_enode (enode *p, int nb_param) |
dehomogenize all evalues in an enode. | |
Polyhedron * | dehomogenize_polyhedron (Polyhedron *p, int maxRays) |
dehomogenize a polyhedron. | |
void | dehomogenize_enumeration (Enumeration *en, int nb_params, int maxRays) |
dehomogenize an enumeration. |
void dehomogenize_enode | ( | enode * | p, | |
int | nb_param | |||
) |
dehomogenize all evalues in an enode.
This function is mutually recursive with dehomogenize_evalue.
Definition at line 77 of file homogenization.c.
References _enode::arr, dehomogenize_evalue(), and _enode::size.
Referenced by dehomogenize_evalue().
void dehomogenize_enumeration | ( | Enumeration * | en, | |
int | nb_params, | |||
int | maxRays | |||
) |
dehomogenize an enumeration.
Replaces each validity domain and Ehrhart polynomial in the Enumeration en with the dehomogenized form.
Definition at line 172 of file homogenization.c.
References dehomogenize_evalue(), dehomogenize_polyhedron(), _enumeration::EP, _enumeration::next, Polyhedron_Free(), and _enumeration::ValidityDomain.
Referenced by main().
void dehomogenize_evalue | ( | evalue * | ep, | |
int | nb_param | |||
) |
dehomogenize an evalue.
The last parameter (nb_param) is replaced by 1. This function is mutually recursive with dehomogenize_enode.
cannot dehomogenize rationals
we need to replace the last parameter
Not the last parameter. Recurse
Definition at line 48 of file homogenization.c.
References _evalue::d, dehomogenize_enode(), dehomogenize_periodic(), dehomogenize_polynomial(), free_evalue_refs(), periodic, and value_zero_p.
Referenced by dehomogenize_enode(), dehomogenize_enumeration(), and Polyhedron_Enumerate().
homogenization.c copyright 2004-2005 Bavo Nootaert
return the 1st element of an enode representing a periodic
Definition at line 87 of file homogenization.c.
References _enode::arr, assert, _evalue::d, periodic, _enode::size, _enode::type, value_assign, value_init, and value_notzero_p.
Referenced by dehomogenize_evalue().
Polyhedron* dehomogenize_polyhedron | ( | Polyhedron * | p, | |
int | maxRays | |||
) |
dehomogenize a polyhedron.
Assume the polyhedron p is homogenous. Returns a new polyhedron.
Definition at line 155 of file homogenization.c.
References Constraints2Polyhedron(), Matrix_Alloc(), Matrix_Free(), matrix::NbColumns, matrix::NbRows, matrix::p, Polyhedron2Constraints(), and Vector_Copy().
Referenced by dehomogenize_enumeration().
dehomogenize a polynomial.
Assume the enode contains a polynomial in one variable, the homogenous parameter. Returns an new evalue, representing a rational.
enumerate over all coefficients (which are either periodic or rational, but not polynomial)
add ev (fraction) to num/den
simplify num/den
create new evalue representing num/den
cleanup
Definition at line 102 of file homogenization.c.
References _enode::arr, assert, _evalue::d, polynomial, _enode::size, _enode::type, value_addto, value_assign, value_clear, value_divexact, value_gcd, value_init, value_multiply, value_set_si, and value_zero_p.
Referenced by dehomogenize_evalue().
Polyhedron* homogenize | ( | Polyhedron * | P, | |
unsigned | MAXRAYS | |||
) |
Definition at line 31 of file homogenization.c.
References AddANullColumn(), polyhedron::Constraint, Constraints2Polyhedron(), polyhedron::Dimension, Matrix_Free(), matrix::NbColumns, polyhedron::NbConstraints, matrix::NbRows, matrix::p, polyhedron::p_Init, and matrix::p_Init.
Referenced by Polyhedron_Enumerate().