This example shows the use of interest-rate market models.
#include <ql/qldefines.hpp>
#ifdef BOOST_MSVC
# include <ql/auto_link.hpp>
#endif
#include <ql/models/marketmodels/marketmodel.hpp>
#include <ql/models/marketmodels/accountingengine.hpp>
#include <ql/models/marketmodels/pathwiseaccountingengine.hpp>
#include <ql/models/marketmodels/products/multiproductcomposite.hpp>
#include <ql/models/marketmodels/products/multistep/multistepswap.hpp>
#include <ql/models/marketmodels/products/multistep/callspecifiedmultiproduct.hpp>
#include <ql/models/marketmodels/products/multistep/exerciseadapter.hpp>
#include <ql/models/marketmodels/products/multistep/multistepnothing.hpp>
#include <ql/models/marketmodels/products/multistep/multistepinversefloater.hpp>
#include <ql/models/marketmodels/products/pathwise/pathwiseproductswap.hpp>
#include <ql/models/marketmodels/products/pathwise/pathwiseproductinversefloater.hpp>
#include <ql/models/marketmodels/products/pathwise/pathwiseproductcallspecified.hpp>
#include <ql/models/marketmodels/models/flatvol.hpp>
#include <ql/models/marketmodels/callability/swapratetrigger.hpp>
#include <ql/models/marketmodels/callability/swapbasissystem.hpp>
#include <ql/models/marketmodels/callability/swapforwardbasissystem.hpp>
#include <ql/models/marketmodels/callability/nothingexercisevalue.hpp>
#include <ql/models/marketmodels/callability/collectnodedata.hpp>
#include <ql/models/marketmodels/callability/lsstrategy.hpp>
#include <ql/models/marketmodels/callability/upperboundengine.hpp>
#include <ql/models/marketmodels/correlations/expcorrelations.hpp>
#include <ql/models/marketmodels/browniangenerators/mtbrowniangenerator.hpp>
#include <ql/models/marketmodels/browniangenerators/sobolbrowniangenerator.hpp>
#include <ql/models/marketmodels/evolvers/lognormalfwdratepc.hpp>
#include <ql/models/marketmodels/evolvers/lognormalfwdrateeuler.hpp>
#include <ql/models/marketmodels/pathwisegreeks/bumpinstrumentjacobian.hpp>
#include <ql/models/marketmodels/utilities.hpp>
#include <ql/methods/montecarlo/genericlsregression.hpp>
#include <ql/legacy/libormarketmodels/lmlinexpcorrmodel.hpp>
#include <ql/legacy/libormarketmodels/lmextlinexpvolmodel.hpp>
#include <ql/time/schedule.hpp>
#include <ql/time/calendars/nullcalendar.hpp>
#include <ql/time/daycounters/simpledaycounter.hpp>
#include <ql/pricingengines/blackformula.hpp>
#include <ql/pricingengines/blackcalculator.hpp>
#include <ql/utilities/dataformatters.hpp>
#include <ql/math/integrals/segmentintegral.hpp>
#include <ql/math/statistics/convergencestatistics.hpp>
#include <ql/termstructures/volatility/abcd.hpp>
#include <ql/termstructures/volatility/abcdcalibration.hpp>
#include <ql/math/functional.hpp>
#include <ql/math/optimization/simplex.hpp>
#include <ql/quotes/simplequote.hpp>
#include <sstream>
#include <iostream>
#include <ctime>
#if defined(QL_ENABLE_SESSIONS)
ThreadKey sessionId() { return 0; }
}
#endif
std::vector<std::vector<Matrix> >
theVegaBumps(bool factorwiseBumping, const ext::shared_ptr<MarketModel>& marketModel, bool doCaps) {
Real multiplierCutOff = 50.0;
Real projectionTolerance = 1E-4;
Size numberRates= marketModel->numberOfRates();
std::vector<VolatilityBumpInstrumentJacobian::Cap> caps;
if (doCaps)
{
Rate capStrike = marketModel->initialRates()[0];
for (
Size i=0; i< numberRates-1; i=i+1)
{
VolatilityBumpInstrumentJacobian::Cap nextCap;
nextCap.startIndex_ = i;
nextCap.endIndex_ = i+1;
nextCap.strike_ = capStrike;
caps.push_back(nextCap);
}
}
std::vector<VolatilityBumpInstrumentJacobian::Swaption> swaptions(numberRates);
for (
Size i=0; i < numberRates; ++i)
{
swaptions[i].startIndex_ = i;
swaptions[i].endIndex_ = numberRates;
}
factorwiseBumping);
swaptions,
caps,
multiplierCutOff,
projectionTolerance);
std::vector<std::vector<Matrix> > theBumps;
bumpFinder.GetVegaBumps(theBumps);
return theBumps;
}
int Bermudan()
{
std::vector<Real> rateTimes(numberRates+1);
for (
Size i=0; i < rateTimes.size(); ++i)
rateTimes[i] = firstTime + i*accrual;
std::vector<Real> paymentTimes(numberRates);
std::vector<Real> accruals(numberRates,accrual);
for (
Size i=0; i < paymentTimes.size(); ++i)
paymentTimes[i] = firstTime + (i+1)*accrual;
std::vector<Real> strikes(numberRates,fixedRate);
MultiStepSwap payerSwap(rateTimes, accruals, accruals, paymentTimes,
fixedRate, true);
MultiStepSwap receiverSwap(rateTimes, accruals, accruals, paymentTimes,
fixedRate, false);
std::vector<Rate> exerciseTimes(rateTimes);
exerciseTimes.pop_back();
std::vector<Rate> swapTriggers(exerciseTimes.size(), fixedRate);
SwapRateTrigger naifStrategy(rateTimes, swapTriggers, exerciseTimes);
std::vector<std::vector<NodeData> > collectedData;
std::vector<std::vector<Real> > basisCoefficients;
NothingExerciseValue control(rateTimes);
SwapBasisSystem basisSystem(rateTimes,exerciseTimes);
NothingExerciseValue nullRebate(rateTimes);
CallSpecifiedMultiProduct dummyProduct =
CallSpecifiedMultiProduct(receiverSwap, naifStrategy,
ExerciseAdapter(nullRebate));
Size trainingPaths = 65536;
Size vegaPaths = 16384*64;
std::cout << "training paths, " << trainingPaths << "\n";
std::cout << "paths, " << paths << "\n";
std::cout << "vega Paths, " << vegaPaths << "\n";
#ifdef _DEBUG
trainingPaths = 512;
paths = 1024;
vegaPaths = 1024;
#endif
Real initialNumeraireValue = 0.95;
Size numberOfFactors = std::min<Size>(5,numberRates);
Spread displacementLevel =0.02;
std::vector<Rate> initialRates(numberRates,rateLevel);
std::vector<Volatility> volatilities(numberRates, volLevel);
std::vector<Spread> displacements(numberRates, displacementLevel);
ExponentialForwardCorrelation correlations(
rateTimes,volLevel, beta,gamma);
FlatVol calibration(
volatilities,
ext::shared_ptr<PiecewiseConstantCorrelation>(new ExponentialForwardCorrelation(correlations)),
evolution,
numberOfFactors,
initialRates,
displacements);
ext::shared_ptr<MarketModel> marketModel(new FlatVol(calibration));
SobolBrownianGeneratorFactory generatorFactory(
generatorFactory,
numeraires
);
int t1= clock();
collectNodeData(evolver,
receiverSwap,
basisSystem,
nullRebate,
control,
trainingPaths,
collectedData);
int t2 = clock();
basisCoefficients);
LongstaffSchwartzExerciseStrategy exerciseStrategy(
basisSystem, basisCoefficients,
evolution, numeraires,
nullRebate, control);
CallSpecifiedMultiProduct bermudanProduct =
CallSpecifiedMultiProduct(
MultiStepNothing(evolution),
exerciseStrategy, payerSwap);
CallSpecifiedMultiProduct callableProduct =
CallSpecifiedMultiProduct(
receiverSwap, exerciseStrategy,
ExerciseAdapter(nullRebate));
allProducts.
add(payerSwap);
allProducts.add(receiverSwap);
allProducts.add(bermudanProduct);
allProducts.add(callableProduct);
initialNumeraireValue);
accounter.multiplePathValues (stats,paths);
int t3 = clock();
std::vector<Real> means(stats.
mean());
for (
Size i=0; i < means.size(); ++i)
std::cout << means[i] << "\n";
std::cout <<
" time to build strategy, " << (t2-t1)/
static_cast<Real>(CLOCKS_PER_SEC)<<
", seconds.\n";
std::cout <<
" time to price, " << (t3-t2)/
static_cast<Real>(CLOCKS_PER_SEC)<<
", seconds.\n";
Size pathsToDoVegas = vegaPaths;
for (
Size i=0; i < 4; ++i)
{
bool allowFactorwiseBumping = i % 2 > 0 ;
bool doCaps = i / 2 > 0 ;
generatorFactory,
numeraires
) ;
accruals,
strikes,
receive);
CallSpecifiedPathwiseMultiProduct callableProductPathwise(receiverPathwiseSwapPtr,
exerciseStrategy);
std::vector<std::vector<Matrix> > theBumps(theVegaBumps(allowFactorwiseBumping,
marketModel,
doCaps));
accountingEngineVegas(ext::make_shared<LogNormalFwdRateEuler>(evolverEuler),
callableProductPathwisePtr,
marketModel,
theBumps,
initialNumeraireValue);
std::vector<Real> values,errors;
accountingEngineVegas.multiplePathValues(values,errors,pathsToDoVegas);
std::cout << "vega output \n";
std::cout << " factorwise bumping " << allowFactorwiseBumping << "\n";
std::cout << " doCaps " << doCaps << "\n";
std::cout << " price estimate, " << values[r++] << "\n";
for (
Size i=0; i < numberRates; ++i, ++r)
std::cout << " Delta, " << i << ", " << values[r] << ", " << errors[r] << "\n";
for (; r < values.size(); ++r)
{
std::cout << " vega, " << r - 1 - numberRates<< ", " << values[r] << " ," << errors[r] << "\n";
totalVega += values[r];
}
std::cout << " total Vega, " << totalVega << "\n";
}
MTBrownianGeneratorFactory uFactory(seed+142);
ext::shared_ptr<MarketModelEvolver> upperEvolver(
new LogNormalFwdRatePc( ext::shared_ptr<MarketModel>(
new FlatVol(calibration)),
uFactory,
numeraires
));
std::vector<ext::shared_ptr<MarketModelEvolver> > innerEvolvers;
std::valarray<bool> isExerciseTime =
isInSubset(evolution.
evolutionTimes(), exerciseStrategy.exerciseTimes());
for (
Size s=0; s < isExerciseTime.size(); ++s)
{
if (isExerciseTime[s])
{
MTBrownianGeneratorFactory iFactory(seed+s);
ext::shared_ptr<MarketModelEvolver> e =ext::shared_ptr<MarketModelEvolver> (
static_cast<MarketModelEvolver*
>(
new LogNormalFwdRatePc(ext::shared_ptr<MarketModel>(
new FlatVol(calibration)),
uFactory,
numeraires ,
s)));
innerEvolvers.push_back(e);
}
}
innerEvolvers,
receiverSwap,
nullRebate,
receiverSwap,
nullRebate,
exerciseStrategy,
initialNumeraireValue);
int t4 = clock();
uEngine.multiplePathValues(uStats,outerPaths,innerPaths);
Real upperBound = uStats.mean();
Real upperSE = uStats.errorEstimate();
int t5=clock();
std::cout << " Upper - lower is, " << upperBound << ", with standard error " << upperSE << "\n";
std::cout <<
" time to compute upper bound is, " << (t5-t4)/
static_cast<Real>(CLOCKS_PER_SEC) <<
", seconds.\n";
return 0;
}
int InverseFloater(
Real rateLevel)
{
Real fixedMultiplier = 2.0;
Real floatingSpread =0.0;
bool payer = true;
std::vector<Real> rateTimes(numberRates+1);
for (
Size i=0; i < rateTimes.size(); ++i)
rateTimes[i] = firstTime + i*accrual;
std::vector<Real> paymentTimes(numberRates);
std::vector<Real> accruals(numberRates,accrual);
std::vector<Real> fixedStrikes(numberRates,strike);
std::vector<Real> floatingSpreads(numberRates,floatingSpread);
std::vector<Real> fixedMultipliers(numberRates,fixedMultiplier);
for (
Size i=0; i < paymentTimes.size(); ++i)
paymentTimes[i] = firstTime + (i+1)*accrual;
MultiStepInverseFloater inverseFloater(
rateTimes,
accruals,
accruals,
fixedStrikes,
fixedMultipliers,
floatingSpreads,
paymentTimes,
payer);
std::vector<Rate> exerciseTimes(rateTimes);
exerciseTimes.pop_back();
std::vector<Rate> swapTriggers(exerciseTimes.size(), trigger);
SwapRateTrigger naifStrategy(rateTimes, swapTriggers, exerciseTimes);
std::vector<std::vector<NodeData> > collectedData;
std::vector<std::vector<Real> > basisCoefficients;
NothingExerciseValue control(rateTimes);
SwapForwardBasisSystem basisSystem(rateTimes,exerciseTimes);
NothingExerciseValue nullRebate(rateTimes);
CallSpecifiedMultiProduct dummyProduct =
CallSpecifiedMultiProduct(inverseFloater, naifStrategy,
ExerciseAdapter(nullRebate));
Size trainingPaths = 65536;
#ifdef _DEBUG
trainingPaths = 8192;
paths = 8192;
vegaPaths = 1024;
#endif
std::cout << " inverse floater \n";
std::cout << " fixed strikes : " << strike << "\n";
std::cout << " number rates : " << numberRates << "\n";
std::cout << "training paths, " << trainingPaths << "\n";
std::cout << "paths, " << paths << "\n";
std::cout << "vega Paths, " << vegaPaths << "\n";
std::cout << " rate level " << rateLevel << "\n";
Real initialNumeraireValue = 0.95;
Size numberOfFactors = std::min<Size>(5,numberRates);
Spread displacementLevel =0.02;
std::vector<Rate> initialRates(numberRates,rateLevel);
std::vector<Volatility> volatilities(numberRates, volLevel);
std::vector<Spread> displacements(numberRates, displacementLevel);
ExponentialForwardCorrelation correlations(
rateTimes,volLevel, beta,gamma);
FlatVol calibration(
volatilities,
ext::shared_ptr<PiecewiseConstantCorrelation>(new ExponentialForwardCorrelation(correlations)),
evolution,
numberOfFactors,
initialRates,
displacements);
ext::shared_ptr<MarketModel> marketModel(new FlatVol(calibration));
SobolBrownianGeneratorFactory generatorFactory(
generatorFactory,
numeraires
);
int t1= clock();
collectNodeData(evolver,
inverseFloater,
basisSystem,
nullRebate,
control,
trainingPaths,
collectedData);
int t2 = clock();
basisCoefficients);
LongstaffSchwartzExerciseStrategy exerciseStrategy(
basisSystem, basisCoefficients,
evolution, numeraires,
nullRebate, control);
CallSpecifiedMultiProduct callableProduct =
CallSpecifiedMultiProduct(
inverseFloater, exerciseStrategy,
ExerciseAdapter(nullRebate));
allProducts.add(inverseFloater);
allProducts.add(callableProduct);
allProducts.finalize();
initialNumeraireValue);
accounter.multiplePathValues (stats,paths);
int t3 = clock();
std::vector<Real> means(stats.mean());
for (
Size i=0; i < means.size(); ++i)
std::cout << means[i] << "\n";
std::cout <<
" time to build strategy, " << (t2-t1)/
static_cast<Real>(CLOCKS_PER_SEC)<<
", seconds.\n";
std::cout <<
" time to price, " << (t3-t2)/
static_cast<Real>(CLOCKS_PER_SEC)<<
", seconds.\n";
Size pathsToDoVegas = vegaPaths;
for (
Size i=0; i < 4; ++i)
{
bool allowFactorwiseBumping = i % 2 > 0 ;
bool doCaps = i / 2 > 0 ;
generatorFactory,
numeraires
) ;
rateTimes,
accruals,
accruals,
fixedStrikes,
fixedMultipliers,
floatingSpreads,
paymentTimes,
payer);
CallSpecifiedPathwiseMultiProduct callableProductPathwise(pathwiseInverseFloaterPtr,
exerciseStrategy);
std::vector<std::vector<Matrix> > theBumps(theVegaBumps(allowFactorwiseBumping,
marketModel,
doCaps));
accountingEngineVegas(ext::make_shared<LogNormalFwdRateEuler>(evolverEuler),
callableProductPathwisePtr,
marketModel,
theBumps,
initialNumeraireValue);
std::vector<Real> values,errors;
accountingEngineVegas.multiplePathValues(values,errors,pathsToDoVegas);
std::cout << "vega output \n";
std::cout << " factorwise bumping " << allowFactorwiseBumping << "\n";
std::cout << " doCaps " << doCaps << "\n";
std::cout << " price estimate, " << values[r++] << "\n";
for (
Size i=0; i < numberRates; ++i, ++r)
std::cout << " Delta, " << i << ", " << values[r] << ", " << errors[r] << "\n";
for (; r < values.size(); ++r)
{
std::cout << " vega, " << r - 1 - numberRates<< ", " << values[r] << " ," << errors[r] << "\n";
totalVega += values[r];
}
std::cout << " total Vega, " << totalVega << "\n";
}
MTBrownianGeneratorFactory uFactory(seed+142);
ext::shared_ptr<MarketModelEvolver> upperEvolver(
new LogNormalFwdRatePc( ext::shared_ptr<MarketModel>(
new FlatVol(calibration)),
uFactory,
numeraires
));
std::vector<ext::shared_ptr<MarketModelEvolver> > innerEvolvers;
std::valarray<bool> isExerciseTime =
isInSubset(evolution.evolutionTimes(), exerciseStrategy.exerciseTimes());
for (
Size s=0; s < isExerciseTime.size(); ++s)
{
if (isExerciseTime[s])
{
MTBrownianGeneratorFactory iFactory(seed+s);
ext::shared_ptr<MarketModelEvolver> e =ext::shared_ptr<MarketModelEvolver> (
static_cast<MarketModelEvolver*
>(
new LogNormalFwdRatePc(ext::shared_ptr<MarketModel>(
new FlatVol(calibration)),
uFactory,
numeraires ,
s)));
innerEvolvers.push_back(e);
}
}
innerEvolvers,
inverseFloater,
nullRebate,
inverseFloater,
nullRebate,
exerciseStrategy,
initialNumeraireValue);
int t4 = clock();
uEngine.multiplePathValues(uStats,outerPaths,innerPaths);
Real upperBound = uStats.mean();
Real upperSE = uStats.errorEstimate();
int t5=clock();
std::cout << " Upper - lower is, " << upperBound << ", with standard error " << upperSE << "\n";
std::cout <<
" time to compute upper bound is, " << (t5-t4)/
static_cast<Real>(CLOCKS_PER_SEC) <<
", seconds.\n";
return 0;
}
int main()
{
try {
for (
Size i=5; i < 10; ++i)
InverseFloater(i/100.0);
return 0;
} catch (std::exception& e) {
std::cerr << e.what() << std::endl;
return 1;
} catch (...) {
std::cerr << "unknown error" << std::endl;
return 1;
}
}