QuantLib
A free/open-source library for quantitative finance
Reference manual - version 1.20
Public Types | Public Member Functions | List of all members
GenericRiskStatistics< S > Class Template Reference

empirical-distribution risk measures More...

#include <ql/math/statistics/riskstatistics.hpp>

Inherits S.

Public Types

typedef S::value_type value_type
 

Public Member Functions

Real semiVariance () const
 
Real semiDeviation () const
 
Real downsideVariance () const
 
Real downsideDeviation () const
 
Real regret (Real target) const
 
Real potentialUpside (Real percentile) const
 potential upside (the reciprocal of VAR) at a given percentile More...
 
Real valueAtRisk (Real percentile) const
 value-at-risk at a given percentile More...
 
Real expectedShortfall (Real percentile) const
 expected shortfall at a given percentile More...
 
Real shortfall (Real target) const
 
Real averageShortfall (Real target) const
 

Detailed Description

template<class S>
class QuantLib::GenericRiskStatistics< S >

empirical-distribution risk measures

This class wraps a somewhat generic statistic tool and adds a number of risk measures (e.g.: value-at-risk, expected shortfall, etc.) based on the data distribution as reported by the underlying statistic tool.

Examples
DiscreteHedging.cpp, and MarketModels.cpp.

Member Function Documentation

◆ semiVariance()

Real semiVariance

returns the variance of observations below the mean,

\[ \frac{N}{N-1} \mathrm{E}\left[ (x-\langle x \rangle)^2 \;|\; x < \langle x \rangle \right]. \]

See Markowitz (1959).

◆ semiDeviation()

Real semiDeviation

returns the semi deviation, defined as the square root of the semi variance.

◆ downsideVariance()

Real downsideVariance

returns the variance of observations below 0.0,

\[ \frac{N}{N-1} \mathrm{E}\left[ x^2 \;|\; x < 0\right]. \]

◆ downsideDeviation()

Real downsideDeviation

returns the downside deviation, defined as the square root of the downside variance.

◆ regret()

Real regret ( Real  target) const

returns the variance of observations below target,

\[ \frac{N}{N-1} \mathrm{E}\left[ (x-t)^2 \;|\; x < t \right]. \]

See Dembo and Freeman, "The Rules Of Risk", Wiley (2001).

◆ potentialUpside()

Real potentialUpside ( Real  centile) const

potential upside (the reciprocal of VAR) at a given percentile

Precondition
percentile must be in range [90%-100%)

◆ valueAtRisk()

Real valueAtRisk ( Real  centile) const

value-at-risk at a given percentile

Precondition
percentile must be in range [90%-100%)

◆ expectedShortfall()

Real expectedShortfall ( Real  centile) const

expected shortfall at a given percentile

returns the expected loss in case that the loss exceeded a VaR threshold,

\[ \mathrm{E}\left[ x \;|\; x < \mathrm{VaR}(p) \right], \]

that is the average of observations below the given percentile \( p \). Also know as conditional value-at-risk.

See Artzner, Delbaen, Eber and Heath, "Coherent measures of risk", Mathematical Finance 9 (1999)

Precondition
percentile must be in range [90%-100%)

◆ shortfall()

Real shortfall ( Real  target) const

probability of missing the given target, defined as

\[ \mathrm{E}\left[ \Theta \;|\; (-\infty,\infty) \right] \]

where

\[ \Theta(x) = \left\{ \begin{array}{ll} 1 & x < t \\ 0 & x \geq t \end{array} \right. \]

◆ averageShortfall()

Real averageShortfall ( Real  target) const

averaged shortfallness, defined as

\[ \mathrm{E}\left[ t-x \;|\; x<t \right] \]