analytic Heston-model engine based on Fourier transform More...
#include <ql/pricingengines/vanilla/analytichestonengine.hpp>
Public Types | |
enum | ComplexLogFormula { Gatheral, BranchCorrection, AndersenPiterbarg, AndersenPiterbargOptCV, AsymptoticChF, OptimalCV } |
![]() | |
typedef boost::unordered_set< ext::shared_ptr< Observable > > | set_type |
typedef set_type::iterator | iterator |
Public Member Functions | |
AnalyticHestonEngine (const ext::shared_ptr< HestonModel > &model, Real relTolerance, Size maxEvaluations) | |
AnalyticHestonEngine (const ext::shared_ptr< HestonModel > &model, Size integrationOrder=144) | |
AnalyticHestonEngine (const ext::shared_ptr< HestonModel > &model, ComplexLogFormula cpxLog, const Integration &itg, Real andersenPiterbargEpsilon=1e-8) | |
std::complex< Real > | chF (const std::complex< Real > &z, Time t) const |
std::complex< Real > | lnChF (const std::complex< Real > &z, Time t) const |
void | calculate () const |
Size | numberOfEvaluations () const |
![]() | |
GenericModelEngine (const Handle< HestonModel > &model=Handle< HestonModel >()) | |
GenericModelEngine (const ext::shared_ptr< HestonModel > &model) | |
![]() | |
PricingEngine::arguments * | getArguments () const |
const PricingEngine::results * | getResults () const |
void | reset () |
void | update () |
![]() | |
virtual arguments * | getArguments () const =0 |
virtual const results * | getResults () const =0 |
![]() | |
Observable (const Observable &) | |
Observable & | operator= (const Observable &) |
void | notifyObservers () |
![]() | |
Observer (const Observer &) | |
Observer & | operator= (const Observer &) |
std::pair< iterator, bool > | registerWith (const ext::shared_ptr< Observable > &) |
void | registerWithObservables (const ext::shared_ptr< Observer > &) |
Size | unregisterWith (const ext::shared_ptr< Observable > &) |
void | unregisterWithAll () |
virtual void | deepUpdate () |
Static Public Member Functions | |
static void | doCalculation (Real riskFreeDiscount, Real dividendDiscount, Real spotPrice, Real strikePrice, Real term, Real kappa, Real theta, Real sigma, Real v0, Real rho, const TypePayoff &type, const Integration &integration, ComplexLogFormula cpxLog, const AnalyticHestonEngine *enginePtr, Real &value, Size &evaluations) |
static ComplexLogFormula | optimalControlVariate (Time t, Real v0, Real kappa, Real theta, Real sigma, Real rho) |
Protected Member Functions | |
virtual std::complex< Real > | addOnTerm (Real phi, Time t, Size j) const |
Additional Inherited Members | |
![]() | |
Handle< HestonModel > | model_ |
![]() | |
VanillaOption::arguments | arguments_ |
VanillaOption::results | results_ |
analytic Heston-model engine based on Fourier transform
Integration detail: Two algebraically equivalent formulations of the complex logarithm of the Heston model exist. Gatherals [2005] (also Duffie, Pan and Singleton [2000], and Schoutens, Simons and Tistaert[2004]) version does not cause discoutinuities whereas the original version (e.g. Heston [1993]) needs some sort of "branch correction" to work properly. Gatheral's version does also work with adaptive integration routines and should be preferred over the original Heston version.
References:
Heston, Steven L., 1993. A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options. The review of Financial Studies, Volume 6, Issue 2, 327-343.
A. Sepp, Pricing European-Style Options under Jump Diffusion Processes with Stochastic Volatility: Applications of Fourier Transform (http://math.ut.ee/~spartak/papers/stochjumpvols.pdf)
R. Lord and C. Kahl, Why the rotation count algorithm works, http://papers.ssrn.com/sol3/papers.cfm?abstract_id=921335
H. Albrecher, P. Mayer, W.Schoutens and J. Tistaert, The Little Heston Trap, http://www.schoutens.be/HestonTrap.pdf
J. Gatheral, The Volatility Surface: A Practitioner's Guide, Wiley Finance
F. Le Floc'h, Fourier Integration and Stochastic Volatility Calibration, https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2362968
L. Andersen, and V. Piterbarg, 2010, Interest Rate Modeling, Volume I: Foundations and Vanilla Models, Atlantic Financial Press London.