QuantLib
A free/open-source library for quantitative finance
Reference manual - version 1.20
Public Member Functions | List of all members
CDO Class Reference

collateralized debt obligation More...

#include <ql/experimental/credit/cdo.hpp>

+ Inheritance diagram for CDO:

Public Member Functions

 CDO (Real attachment, Real detachment, const std::vector< Real > &nominals, const std::vector< Handle< DefaultProbabilityTermStructure > > &basket, const Handle< OneFactorCopula > &copula, bool protectionSeller, const Schedule &premiumSchedule, Rate premiumRate, const DayCounter &dayCounter, Rate recoveryRate, Rate upfrontPremiumRate, const Handle< YieldTermStructure > &yieldTS, Size nBuckets, const Period &integrationStep=Period(10, Years))
 
Real nominal () const
 
Real lgd () const
 
Real attachment () const
 
Real detachment () const
 
std::vector< Realnominals ()
 
Size size ()
 
bool isExpired () const
 returns whether the instrument might have value greater than zero.
 
Rate fairPremium () const
 
Rate premiumValue () const
 
Rate protectionValue () const
 
Size error () const
 
- Public Member Functions inherited from Instrument
Real NPV () const
 returns the net present value of the instrument.
 
Real errorEstimate () const
 returns the error estimate on the NPV when available.
 
const DatevaluationDate () const
 returns the date the net present value refers to.
 
template<typename T >
result (const std::string &tag) const
 returns any additional result returned by the pricing engine.
 
const std::map< std::string, boost::any > & additionalResults () const
 returns all additional result returned by the pricing engine.
 
void setPricingEngine (const ext::shared_ptr< PricingEngine > &)
 set the pricing engine to be used. More...
 
virtual void setupArguments (PricingEngine::arguments *) const
 
virtual void fetchResults (const PricingEngine::results *) const
 
- Public Member Functions inherited from LazyObject
void update ()
 
void recalculate ()
 
void freeze ()
 
void unfreeze ()
 
void alwaysForwardNotifications ()
 
- Public Member Functions inherited from Observable
 Observable (const Observable &)
 
Observableoperator= (const Observable &)
 
void notifyObservers ()
 
- Public Member Functions inherited from Observer
 Observer (const Observer &)
 
Observeroperator= (const Observer &)
 
std::pair< iterator, bool > registerWith (const ext::shared_ptr< Observable > &)
 
void registerWithObservables (const ext::shared_ptr< Observer > &)
 
Size unregisterWith (const ext::shared_ptr< Observable > &)
 
void unregisterWithAll ()
 
virtual void deepUpdate ()
 

Additional Inherited Members

- Public Types inherited from Observer
typedef boost::unordered_set< ext::shared_ptr< Observable > > set_type
 
typedef set_type::iterator iterator
 
- Protected Member Functions inherited from Instrument
void calculate () const
 
- Protected Member Functions inherited from LazyObject
- Protected Attributes inherited from Instrument
Real NPV_
 
Real errorEstimate_
 
Date valuationDate_
 
std::map< std::string, boost::any > additionalResults_
 
ext::shared_ptr< PricingEngineengine_
 
- Protected Attributes inherited from LazyObject
bool calculated_
 
bool frozen_
 
bool alwaysForward_
 

Detailed Description

collateralized debt obligation

The instrument prices a mezzanine CDO tranche with loss given default between attachment point \( D_1\) and detachment point \( D_2 > D_1 \).

For purchased protection, the instrument value is given by the difference of the protection value \( V_1 \) and premium value \( V_2 \),

\[ V = V_1 - V_2. \]

The protection leg is priced as follows:

The premium is paid on the protected notional amount, initially \( D_2 - D_1. \) This notional amount is reduced by the expected protection payments \( E_i \) at times \( t_i, \) so that the premium value is calculated as

\[ V_2 = m \, \cdot \sum_{i=1}^N \,(D_2 - D_1 - E_i) \cdot \Delta_{i-1,i}\,d_i \]

where \( m \) is the premium rate, \( \Delta_{i-1, i}\) is the day count fraction between date/time \( t_{i-1}\) and \( t_i.\)

The construction of the portfolio loss distribution \( E_i \) is based on the probability bucketing algorithm described in

John Hull and Alan White, "Valuation of a CDO and nth to default CDS without Monte Carlo simulation", Journal of Derivatives 12, 2, 2004

The pricing algorithm allows for varying notional amounts and default termstructures of the underlyings.

Constructor & Destructor Documentation

◆ CDO()

CDO ( Real  attachment,
Real  detachment,
const std::vector< Real > &  nominals,
const std::vector< Handle< DefaultProbabilityTermStructure > > &  basket,
const Handle< OneFactorCopula > &  copula,
bool  protectionSeller,
const Schedule premiumSchedule,
Rate  premiumRate,
const DayCounter dayCounter,
Rate  recoveryRate,
Rate  upfrontPremiumRate,
const Handle< YieldTermStructure > &  yieldTS,
Size  nBuckets,
const Period integrationStep = Period(10, Years) 
)
Parameters
attachmentfraction of the LGD where protection starts
detachmentfraction of the LGD where protection ends
nominalsvector of basket nominal amounts
basketdefault basket represented by a vector of default term structures that allow computing single name default probabilities depending on time
copulaone-factor copula
protectionSellersold protection if set to true, purchased otherwise
premiumScheduleschedule for premium payments
premiumRateannual premium rate, e.g. 0.05 for 5% p.a.
dayCounterday count convention for the premium rate
recoveryRaterecovery rate as a fraction
upfrontPremiumRatepremium as a tranche notional fraction
yieldTSyield term structure handle
nBucketsnumber of distribution buckets
integrationSteptime step for integrating over one premium period; if larger than premium period length, a single step is taken