QuantLib
A free/open-source library for quantitative finance
Reference manual - version 1.20
Classes | Public Member Functions | Protected Attributes | Friends | List of all members
FireflyAlgorithm Class Reference

#include <ql/experimental/math/fireflyalgorithm.hpp>

+ Inheritance diagram for FireflyAlgorithm:

Classes

class  Intensity
 Base intensity class. More...
 
class  RandomWalk
 Base Random Walk class. More...
 

Public Member Functions

 FireflyAlgorithm (Size M, const ext::shared_ptr< Intensity > &intensity, const ext::shared_ptr< RandomWalk > &randomWalk, Size Mde=0, Real mutationFactor=1.0, Real crossoverFactor=0.5, unsigned long seed=SeedGenerator::instance().get())
 
void startState (Problem &P, const EndCriteria &endCriteria)
 
EndCriteria::Type minimize (Problem &P, const EndCriteria &endCriteria)
 minimize the optimization problem P
 

Protected Attributes

std::vector< Arrayx_
 
std::vector< ArrayxI_
 
std::vector< ArrayxRW_
 
std::vector< std::pair< Real, Size > > values_
 
Array lX_
 
Array uX_
 
Real mutation_
 
Real crossover_
 
Size M_
 
Size N_
 
Size Mde_
 
Size Mfa_
 
ext::shared_ptr< Intensityintensity_
 
ext::shared_ptr< RandomWalkrandomWalk_
 
variate_integer drawIndex_
 
MersenneTwisterUniformRng rng_
 

Friends

class RandomWalk
 
class Intensity
 

Detailed Description

The main process is as follows: M individuals are used to explore the N-dimensional parameter space: \( X_{i}^k = (X_{i, 1}^k, X_{i, 2}^k, \ldots, X_{i, N}^k) \) is the kth-iteration for the ith-individual. X is updated via the rule

\[ X_{i, j}^{k+1} = X_{i, j}^k + I(X^k)_{i,j} + RandomWalk_{i,j}^k \]

The intensity function I(X) should be monotonic The optimization stops either because the number of iterations has been reached or because the stationary function value limit has been reached.

The current implementation extends the normal Firefly Algorithm with a differential evolution (DE) optimizer according to: Afnizanfaizal Abdullah, et al. "A New Hybrid Firefly Algorithm for Complex and Nonlinear Problem". Volume 151 of the series Advances in Intelligent and Soft Computing pp 673-680, 2012. http://link.springer.com/chapter/10.1007%2F978-3-642-28765-7_81

In effect this implementation provides a fully fledged DE global optimizer as well. The Firefly Algorithm was easy to combine with DE because it already contained a step where the current solutions are sorted. The population is then divided into two subpopulations based on their order. The subpopulation with the best results are updated via the firefly algorithm. The worse subpopulation is updated via the DE operator:

\[ Y^{k+1} = X_{best}^k + F(X_{r1}^k - X_{r2}^k) \]

and

\[ X_{i,j}^{k+1} = Y_{i,j}^{k+1}\ \text{if} R_{i,j} <= C \]

\[ X_{i,j}^{k+1} = X_{i,j}^{k+1}\ \text{otherwise} \]

where C is the crossover constant, and R is a random uniformly distributed number.

Examples
GlobalOptimizer.cpp.