Two-additive-factor gaussian model class. More...
#include <ql/models/shortrate/twofactormodels/g2.hpp>
Classes | |
class | FittingParameter |
Analytical term-structure fitting parameter \( \varphi(t) \). More... | |
Public Member Functions | |
G2 (const Handle< YieldTermStructure > &termStructure, Real a=0.1, Real sigma=0.01, Real b=0.1, Real eta=0.01, Real rho=-0.75) | |
ext::shared_ptr< ShortRateDynamics > | dynamics () const |
Returns the short-rate dynamics. | |
virtual Real | discountBond (Time now, Time maturity, Array factors) const |
Real | discountBond (Time, Time, Rate, Rate) const |
Real | discountBondOption (Option::Type type, Real strike, Time maturity, Time bondMaturity) const |
Real | swaption (const Swaption::arguments &arguments, Rate fixedRate, Real range, Size intervals) const |
DiscountFactor | discount (Time t) const |
Implied discount curve. | |
Real | a () const |
Real | sigma () const |
Real | b () const |
Real | eta () const |
Real | rho () const |
![]() | |
TwoFactorModel (Size nParams) | |
ext::shared_ptr< Lattice > | tree (const TimeGrid &grid) const |
Returns a two-dimensional trinomial tree. | |
![]() | |
ShortRateModel (Size nArguments) | |
![]() | |
CalibratedModel (Size nArguments) | |
void | update () |
virtual void | calibrate (const std::vector< ext::shared_ptr< CalibrationHelper > > &, OptimizationMethod &method, const EndCriteria &endCriteria, const Constraint &constraint=Constraint(), const std::vector< Real > &weights=std::vector< Real >(), const std::vector< bool > &fixParameters=std::vector< bool >()) |
Calibrate to a set of market instruments (usually caps/swaptions) More... | |
virtual QL_DEPRECATED void | calibrate (const std::vector< ext::shared_ptr< BlackCalibrationHelper > > &, OptimizationMethod &method, const EndCriteria &endCriteria, const Constraint &constraint=Constraint(), const std::vector< Real > &weights=std::vector< Real >(), const std::vector< bool > &fixParameters=std::vector< bool >()) |
Real | value (const Array ¶ms, const std::vector< ext::shared_ptr< CalibrationHelper > > &) |
QL_DEPRECATED Real | value (const Array ¶ms, const std::vector< ext::shared_ptr< BlackCalibrationHelper > > &) |
const ext::shared_ptr< Constraint > & | constraint () const |
EndCriteria::Type | endCriteria () const |
Returns end criteria result. | |
const Array & | problemValues () const |
Returns the problem values. | |
Disposable< Array > | params () const |
Returns array of arguments on which calibration is done. | |
virtual void | setParams (const Array ¶ms) |
Integer | functionEvaluation () const |
![]() | |
Observer (const Observer &) | |
Observer & | operator= (const Observer &) |
std::pair< iterator, bool > | registerWith (const ext::shared_ptr< Observable > &) |
void | registerWithObservables (const ext::shared_ptr< Observer > &) |
Size | unregisterWith (const ext::shared_ptr< Observable > &) |
void | unregisterWithAll () |
virtual void | deepUpdate () |
![]() | |
Observable (const Observable &) | |
Observable & | operator= (const Observable &) |
void | notifyObservers () |
![]() | |
virtual Real | discountBondOption (Option::Type type, Real strike, Time maturity, Time bondStart, Time bondMaturity) const |
![]() | |
TermStructureConsistentModel (const Handle< YieldTermStructure > &termStructure) | |
const Handle< YieldTermStructure > & | termStructure () const |
Protected Member Functions | |
void | generateArguments () |
Real | A (Time t, Time T) const |
Real | B (Real x, Time t) const |
Friends | |
class | SwaptionPricingFunction |
Additional Inherited Members | |
![]() | |
typedef boost::unordered_set< ext::shared_ptr< Observable > > | set_type |
typedef set_type::iterator | iterator |
![]() | |
std::vector< Parameter > | arguments_ |
ext::shared_ptr< Constraint > | constraint_ |
EndCriteria::Type | shortRateEndCriteria_ |
Array | problemValues_ |
Integer | functionEvaluation_ |
Two-additive-factor gaussian model class.
This class implements a two-additive-factor model defined by
\[ dr_t = \varphi(t) + x_t + y_t \]
where \( x_t \) and \( y_t \) are defined by
\[ dx_t = -a x_t dt + \sigma dW^1_t, x_0 = 0 \]
\[ dy_t = -b y_t dt + \sigma dW^2_t, y_0 = 0 \]
and \( dW^1_t dW^2_t = \rho dt \).