QuantLib
A free/open-source library for quantitative finance
Reference manual - version 1.20
Public Types | Public Member Functions | List of all members
PolynomialFunction Class Reference

Cubic functional form More...

#include <ql/math/polynomialmathfunction.hpp>

Public Types

typedef Time argument_type
 
typedef Real result_type
 

Public Member Functions

 PolynomialFunction (const std::vector< Real > &coeff)
 
Real operator() (Time t) const
 function value at time t: More...
 
Real derivative (Time t) const
 
Real primitive (Time t) const
 
Real definiteIntegral (Time t1, Time t2) const
 
Size order () const
 
const std::vector< Real > & coefficients ()
 
const std::vector< Real > & derivativeCoefficients ()
 
const std::vector< Real > & primitiveCoefficients ()
 
std::vector< RealdefiniteIntegralCoefficients (Time t, Time t2) const
 
std::vector< RealdefiniteDerivativeCoefficients (Time t, Time t2) const
 

Detailed Description

Cubic functional form

\[ f(t) = \sum_{i=0}^n{c_i t^i} \]

Member Function Documentation

◆ operator()()

Real operator() ( Time  t) const

function value at time t:

\[ f(t) = \sum_{i=0}^n{c_i t^i} \]

◆ derivative()

Real derivative ( Time  t) const

first derivative of the function at time t

\[ f'(t) = \sum_{i=0}^{n-1}{(i+1) c_{i+1} t^i} \]

◆ primitive()

Real primitive ( Time  t) const

indefinite integral of the function at time t

\[ \int f(t)dt = \sum_{i=0}^n{c_i t^{i+1} / (i+1)} + K \]

◆ definiteIntegral()

Real definiteIntegral ( Time  t1,
Time  t2 
) const

definite integral of the function between t1 and t2

\[ \int_{t1}^{t2} f(t)dt \]

◆ order()

Size order ( ) const

Inspectors

◆ definiteIntegralCoefficients()

std::vector<Real> definiteIntegralCoefficients ( Time  t,
Time  t2 
) const

coefficients of a PolynomialFunction defined as definite integral on a rolling window of length tau, with tau = t2-t

◆ definiteDerivativeCoefficients()

std::vector<Real> definiteDerivativeCoefficients ( Time  t,
Time  t2 
) const

coefficients of a PolynomialFunction defined as definite derivative on a rolling window of length tau, with tau = t2-t