QuantLib
A free/open-source library for quantitative finance
Reference manual - version 1.20
Public Member Functions | Protected Attributes | List of all members
StochasticProcessArray Class Reference

Array of correlated 1-D stochastic processes More...

#include <ql/processes/stochasticprocessarray.hpp>

+ Inheritance diagram for StochasticProcessArray:

Public Member Functions

 StochasticProcessArray (const std::vector< ext::shared_ptr< StochasticProcess1D > > &, const Matrix &correlation)
 
Size size () const
 returns the number of dimensions of the stochastic process
 
Disposable< ArrayinitialValues () const
 returns the initial values of the state variables
 
Disposable< Arraydrift (Time t, const Array &x) const
 returns the drift part of the equation, i.e., \( \mu(t, \mathrm{x}_t) \)
 
Disposable< Arrayexpectation (Time t0, const Array &x0, Time dt) const
 
Disposable< Matrixdiffusion (Time t, const Array &x) const
 returns the diffusion part of the equation, i.e. \( \sigma(t, \mathrm{x}_t) \)
 
Disposable< Matrixcovariance (Time t0, const Array &x0, Time dt) const
 
Disposable< MatrixstdDeviation (Time t0, const Array &x0, Time dt) const
 
Disposable< Arrayapply (const Array &x0, const Array &dx) const
 
Disposable< Arrayevolve (Time t0, const Array &x0, Time dt, const Array &dw) const
 
Time time (const Date &) const
 
const ext::shared_ptr< StochasticProcess1D > & process (Size i) const
 
Disposable< Matrixcorrelation () const
 
- Public Member Functions inherited from StochasticProcess
virtual Size factors () const
 returns the number of independent factors of the process
 
void update ()
 
- Public Member Functions inherited from Observer
 Observer (const Observer &)
 
Observeroperator= (const Observer &)
 
std::pair< iterator, bool > registerWith (const ext::shared_ptr< Observable > &)
 
void registerWithObservables (const ext::shared_ptr< Observer > &)
 
Size unregisterWith (const ext::shared_ptr< Observable > &)
 
void unregisterWithAll ()
 
virtual void deepUpdate ()
 
- Public Member Functions inherited from Observable
 Observable (const Observable &)
 
Observableoperator= (const Observable &)
 
void notifyObservers ()
 

Protected Attributes

std::vector< ext::shared_ptr< StochasticProcess1D > > processes_
 
Matrix sqrtCorrelation_
 
- Protected Attributes inherited from StochasticProcess
ext::shared_ptr< discretizationdiscretization_
 

Additional Inherited Members

- Public Types inherited from Observer
typedef boost::unordered_set< ext::shared_ptr< Observable > > set_type
 
typedef set_type::iterator iterator
 
- Protected Member Functions inherited from StochasticProcess
 StochasticProcess ()
 
 StochasticProcess (const ext::shared_ptr< discretization > &)
 

Detailed Description

Array of correlated 1-D stochastic processes

Member Function Documentation

◆ expectation()

Disposable<Array> expectation ( Time  t0,
const Array x0,
Time  dt 
) const
virtual

returns the expectation \( E(\mathrm{x}_{t_0 + \Delta t} | \mathrm{x}_{t_0} = \mathrm{x}_0) \) of the process after a time interval \( \Delta t \) according to the given discretization. This method can be overridden in derived classes which want to hard-code a particular discretization.

Reimplemented from StochasticProcess.

◆ covariance()

Disposable<Matrix> covariance ( Time  t0,
const Array x0,
Time  dt 
) const
virtual

returns the covariance \( V(\mathrm{x}_{t_0 + \Delta t} | \mathrm{x}_{t_0} = \mathrm{x}_0) \) of the process after a time interval \( \Delta t \) according to the given discretization. This method can be overridden in derived classes which want to hard-code a particular discretization.

Reimplemented from StochasticProcess.

◆ stdDeviation()

Disposable<Matrix> stdDeviation ( Time  t0,
const Array x0,
Time  dt 
) const
virtual

returns the standard deviation \( S(\mathrm{x}_{t_0 + \Delta t} | \mathrm{x}_{t_0} = \mathrm{x}_0) \) of the process after a time interval \( \Delta t \) according to the given discretization. This method can be overridden in derived classes which want to hard-code a particular discretization.

Reimplemented from StochasticProcess.

◆ apply()

Disposable<Array> apply ( const Array x0,
const Array dx 
) const
virtual

applies a change to the asset value. By default, it returns \( \mathrm{x} + \Delta \mathrm{x} \).

Reimplemented from StochasticProcess.

◆ evolve()

Disposable<Array> evolve ( Time  t0,
const Array x0,
Time  dt,
const Array dw 
) const
virtual

returns the asset value after a time interval \( \Delta t \) according to the given discretization. By default, it returns

\[ E(\mathrm{x}_0,t_0,\Delta t) + S(\mathrm{x}_0,t_0,\Delta t) \cdot \Delta \mathrm{w} \]

where \( E \) is the expectation and \( S \) the standard deviation.

Reimplemented from StochasticProcess.

◆ time()

Time time ( const Date ) const
virtual

returns the time value corresponding to the given date in the reference system of the stochastic process.

Note
As a number of processes might not need this functionality, a default implementation is given which raises an exception.

Reimplemented from StochasticProcess.