QuantLib
A free/open-source library for quantitative finance
Reference manual - version 1.20
Public Types | Public Member Functions | List of all members
GaussianCopulaPolicy Struct Reference

#include <ql/experimental/math/gaussiancopulapolicy.hpp>

Public Types

typedef int initTraits
 

Public Member Functions

 GaussianCopulaPolicy (const std::vector< std::vector< Real > > &factorWeights=std::vector< std::vector< Real > >(), const initTraits &dummy=int())
 
Size numFactors () const
 
initTraits getInitTraits () const
 returns a copy of the initialization arguments
 
Probability cumulativeY (Real val, Size iVariable) const
 
Probability cumulativeZ (Real z) const
 Cumulative probability of the idiosyncratic factors (all the same)
 
Probability density (const std::vector< Real > &m) const
 
Real inverseCumulativeY (Probability p, Size iVariable) const
 
Real inverseCumulativeZ (Probability p) const
 
Real inverseCumulativeDensity (Probability p, Size iFactor) const
 
Disposable< std::vector< Real > > allFactorCumulInverter (const std::vector< Real > &probs) const
 

Detailed Description

Gaussian Latent Model's copula policy. Its simplicity is a result of the convolution stability of the Gaussian distribution.

Examples
BasketLosses.cpp.

Member Function Documentation

◆ numFactors()

Size numFactors ( ) const

Number of independent random factors. This is the only methos that ould stop the class from being static, it is needed for the MC generator construction.

◆ cumulativeY()

Probability cumulativeY ( Real  val,
Size  iVariable 
) const

Cumulative probability of a given latent variable The iVariable parameter is the index of the requested variable.

◆ density()

Probability density ( const std::vector< Real > &  m) const

Probability density of a given realization of values of the systemic factors (remember they are independent). In the normal case, since they all follow the same law it is just a trivial product of the same density. Intended to be used in numerical integration of an arbitrary function depending on those values.

◆ inverseCumulativeY()

Real inverseCumulativeY ( Probability  p,
Size  iVariable 
) const

Returns the inverse of the cumulative distribution of the (modelled) latent variable (as indexed by iVariable). The normal stability avoids the convolution of the factors' distributions

◆ inverseCumulativeZ()

Real inverseCumulativeZ ( Probability  p) const

Returns the inverse of the cumulative distribution of the idiosyncratic factor (identically distributed for all latent variables)

◆ inverseCumulativeDensity()

Real inverseCumulativeDensity ( Probability  p,
Size  iFactor 
) const

Returns the inverse of the cumulative distribution of the systemic factor iFactor.