|
typedef Real * | iterator |
|
typedef const Real * | const_iterator |
|
typedef boost::reverse_iterator< iterator > | reverse_iterator |
|
typedef boost::reverse_iterator< const_iterator > | const_reverse_iterator |
|
typedef Real * | row_iterator |
|
typedef const Real * | const_row_iterator |
|
typedef boost::reverse_iterator< row_iterator > | reverse_row_iterator |
|
typedef boost::reverse_iterator< const_row_iterator > | const_reverse_row_iterator |
|
typedef step_iterator< iterator > | column_iterator |
|
typedef step_iterator< const_iterator > | const_column_iterator |
|
typedef boost::reverse_iterator< column_iterator > | reverse_column_iterator |
|
typedef boost::reverse_iterator< const_column_iterator > | const_reverse_column_iterator |
|
|
|
| Matrix () |
| creates a null matrix
|
|
| Matrix (Size rows, Size columns) |
| creates a matrix with the given dimensions
|
|
| Matrix (Size rows, Size columns, Real value) |
| creates the matrix and fills it with value
|
|
| Matrix (const Matrix &) |
|
| Matrix (const Disposable< Matrix > &) |
|
Matrix & | operator= (const Matrix &) |
|
Matrix & | operator= (const Disposable< Matrix > &) |
|
|
const Matrix & | operator+= (const Matrix &) |
|
const Matrix & | operator-= (const Matrix &) |
|
const Matrix & | operator*= (Real) |
|
const Matrix & | operator/= (Real) |
|
|
const_iterator | begin () const |
|
iterator | begin () |
|
const_iterator | end () const |
|
iterator | end () |
|
const_reverse_iterator | rbegin () const |
|
reverse_iterator | rbegin () |
|
const_reverse_iterator | rend () const |
|
reverse_iterator | rend () |
|
const_row_iterator | row_begin (Size i) const |
|
row_iterator | row_begin (Size i) |
|
const_row_iterator | row_end (Size i) const |
|
row_iterator | row_end (Size i) |
|
const_reverse_row_iterator | row_rbegin (Size i) const |
|
reverse_row_iterator | row_rbegin (Size i) |
|
const_reverse_row_iterator | row_rend (Size i) const |
|
reverse_row_iterator | row_rend (Size i) |
|
const_column_iterator | column_begin (Size i) const |
|
column_iterator | column_begin (Size i) |
|
const_column_iterator | column_end (Size i) const |
|
column_iterator | column_end (Size i) |
|
const_reverse_column_iterator | column_rbegin (Size i) const |
|
reverse_column_iterator | column_rbegin (Size i) |
|
const_reverse_column_iterator | column_rend (Size i) const |
|
reverse_column_iterator | column_rend (Size i) |
|
|
const_row_iterator | operator[] (Size) const |
|
const_row_iterator | at (Size) const |
|
row_iterator | operator[] (Size) |
|
row_iterator | at (Size) |
|
Disposable< Array > | diagonal (void) const |
|
Real & | operator() (Size i, Size j) const |
|
|
Size | rows () const |
|
Size | columns () const |
|
bool | empty () const |
|
Size | size1 () const |
|
Size | size2 () const |
|
|
void | swap (Matrix &) |
|
|
(Note that these are not member functions.)
|
const Disposable< Matrix > | operator+ (const Matrix &, const Matrix &) |
|
const Disposable< Matrix > | operator- (const Matrix &, const Matrix &) |
|
const Disposable< Matrix > | operator* (const Matrix &, Real) |
|
const Disposable< Matrix > | operator* (Real, const Matrix &) |
|
const Disposable< Matrix > | operator/ (const Matrix &, Real) |
|
const Disposable< Array > | operator* (const Array &, const Matrix &) |
|
const Disposable< Array > | operator* (const Matrix &, const Array &) |
|
const Disposable< Matrix > | operator* (const Matrix &, const Matrix &) |
|
const Disposable< Matrix > | transpose (const Matrix &) |
|
const Disposable< Matrix > | outerProduct (const Array &v1, const Array &v2) |
|
template<class Iterator1 , class Iterator2 > |
const Disposable< Matrix > | outerProduct (Iterator1 v1begin, Iterator1 v1end, Iterator2 v2begin, Iterator2 v2end) |
|
void | swap (Matrix &, Matrix &) |
|
std::ostream & | operator<< (std::ostream &, const Matrix &) |
|
Disposable< Matrix > | inverse (const Matrix &m) |
|
Real | determinant (const Matrix &m) |
|
const Disposable< Matrix > | CholeskyDecomposition (const Matrix &m, bool flexible=false) |
|
const Disposable< Matrix > | pseudoSqrt (const Matrix &, SalvagingAlgorithm::Type=SalvagingAlgorithm::None) |
| Returns the pseudo square root of a real symmetric matrix. More...
|
|
const Disposable< Matrix > | rankReducedSqrt (const Matrix &, Size maxRank, Real componentRetainedPercentage, SalvagingAlgorithm::Type) |
| Returns the rank-reduced pseudo square root of a real symmetric matrix. More...
|
|
Matrix used in linear algebra.
This class implements the concept of Matrix as used in linear algebra. As such, it is not meant to be used as a container.
const Disposable< Matrix > pseudoSqrt |
( |
const Matrix & |
, |
|
|
SalvagingAlgorithm::Type |
= SalvagingAlgorithm::None |
|
) |
| |
|
related |
Returns the pseudo square root of a real symmetric matrix.
Given a matrix \( M \), the result \( S \) is defined as the matrix such that \( S S^T = M. \) If the matrix is not positive semi definite, it can return an approximation of the pseudo square root using a (user selected) salvaging algorithm.
For more information see: R. Rebonato and P. Jäckel, The most general methodology to create a valid correlation matrix for risk management and option pricing purposes, The Journal of Risk, 2(2), Winter 1999/2000. http://www.rebonato.com/correlationmatrix.pdf
Revised and extended in "Monte Carlo Methods in Finance", by Peter Jäckel, Chapter 6.
- Precondition
- the given matrix must be symmetric.
- Warning:
- Higham algorithm only works for correlation matrices.
- Tests:
- the correctness of the results is tested by reproducing known good data.
- the correctness of the results is tested by checking returned values against numerical calculations.
Returns the rank-reduced pseudo square root of a real symmetric matrix.
The result matrix has rank<=maxRank. If maxRank>=size, then the specified percentage of eigenvalues out of the eigenvalues' sum is retained.
If the input matrix is not positive semi definite, it can return an approximation of the pseudo square root using a (user selected) salvaging algorithm.
- Precondition
- the given matrix must be symmetric.