1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889
|
package jgi;
import java.io.File;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Random;
import dna.Data;
import fileIO.ByteStreamWriter;
import fileIO.FileFormat;
import fileIO.ReadWrite;
import fileIO.TextFile;
import gff.GffLine;
import prok.CallGenes;
import prok.GeneCaller;
import prok.GeneModel;
import prok.GeneModelParser;
import prok.Orf;
import shared.Parse;
import shared.Parser;
import shared.PreParser;
import shared.Shared;
import shared.Timer;
import shared.Tools;
import sketch.Sketch;
import sketch.SketchMakerMini;
import sketch.SketchObject;
import sketch.SketchTool;
import stream.ConcurrentReadInputStream;
import stream.FASTQ;
import stream.Read;
import stream.ReadInputStream;
import structures.DoubleList;
import structures.Feature;
import structures.ListNum;
/**
* Checks the strandedness of RNA-seq reads.
*
* @author Brian Bushnell
* @date Aug 4, 2023
*
*/
public class CheckStrand {
/**
* Code entrance from the command line.
* @param args Command line arguments
*/
public static void main(String[] args){
//Start a timer immediately upon code entrance.
Timer t=new Timer();
//Create an instance of this class
CheckStrand x=new CheckStrand(args);
//Run the object
x.process(t);
//Close the print stream if it was redirected
Shared.closeStream(x.outstream);
}
/**
* Constructor.
* @param args Command line arguments
*/
public CheckStrand(String[] args){
{//Preparse block for help, config files, and outstream
PreParser pp=new PreParser(args, getClass(), false);
args=pp.args;
outstream=pp.outstream;
}
Parser parser=new Parser();
parser.out1=out1;
for(int i=0; i<args.length; i++){
String arg=args[i];
String[] split=arg.split("=");
String a=split[0].toLowerCase();
String b=split.length>1 ? split[1] : null;
if(b!=null && b.equalsIgnoreCase("null")){b=null;}
if(a.equals("parse_flag_goes_here")){
//Set a variable here
}else if(a.equals("size") || a.equals("len") || a.equals("length") || a.equals("sketchsize")){
sketchSize=Parse.parseIntKMG(b);
}else if(a.equals("samplerate")){
samplerate=Float.parseFloat(b);
}else if(a.equals("sampleseed") || a.equals("seed")){
sampleseed=Long.parseLong(b);
}else if(a.equals("normalize")){
normalize=Parse.parseBoolean(b);
}else if(a.equals("ref") || a.equals("fna")){
fna=b;
}else if(a.equals("gff")){
gff=b;
}else if(parser.parse(arg, a, b)){
//do nothing
}else{
// throw new RuntimeException("Unknown parameter "+args[i]);
assert(false) : "Unknown parameter "+args[i];
outstream.println("Unknown parameter "+args[i]);
}
}
{//Process parser fields
Parser.processQuality();
maxReads=parser.maxReads;
in1=parser.in1;
out1=parser.out1;
}
ffout1=FileFormat.testOutput(out1, FileFormat.TXT, null, true, true, false, false);
ffin1=FileFormat.testInput(in1, FileFormat.FASTQ, null, true, true);
}
void process(Timer t){
if(verbose){System.err.println("Setting sketch params.");}
setSketchStatics();
SketchTool canonTool=new SketchTool(sketchSize, 0, true, true, true);
SketchTool forwardTool=new SketchTool(sketchSize, 0, true, true, false);
FASTQ.PAIR_READS=false;
final int threads=Tools.min(Shared.threads(), 16); //Can't seem to scale beyond around 8 threads...
System.err.println("Making canonical sketch.");
Sketch canonSketch=canonTool.processReadsMT(in1, threads, maxReads, SketchObject.ONE_SKETCH,
samplerate, 0, 0, (byte)0, false);
System.err.println("Making forward sketch.");
Sketch fwdSketch=forwardTool.processReadsMT(in1, threads, maxReads, SketchObject.ONE_SKETCH,
samplerate, 0, 0, (byte)0, false);
final double[] refResults=calcPMRatioWithRef(canonTool, forwardTool, canonSketch, fwdSketch);
FASTQ.PAIR_READS=true;
if(verbose){outstream.println("Finished reading data.");}
outstream.println();
double[] results=calcStrandedness(canonSketch, fwdSketch);
if(normalize) {results=calcStrandednessNormalized(canonSketch, fwdSketch);}
outputResults(results, refResults);
outstream.println();
t.stop("Time:\t");
assert(!errorState) : "An error was encountered.";
}
private void setSketchStatics() {
SketchObject.AUTOSIZE=false;
SketchObject.k=32;
SketchObject.k2=-1;//Otherwise the estimates are too high
SketchObject.setK=true;
SketchObject.sampleseed=sampleseed;
// SketchObject.defaultParams.minKeyOccuranceCount=2;
SketchObject.AUTOSIZE=false;
SketchObject.AUTOSIZE_LINEAR=false;
SketchObject.targetSketchSize=sketchSize;
SketchObject.SET_TARGET_SIZE=true;
SketchObject.processSSU=false;
SketchObject.defaultParams.parse("trackcounts", "trackcounts", null);
SketchObject.defaultParams.samplerate=samplerate;
SketchObject.postParse();
}
//Old version
// @Deprecated
// private double[] calcPMRatio_old(SketchTool canonTool, SketchTool fwdTool,
// Sketch canonSketch, Sketch fwdSketch) {
//
// FASTQ.PAIR_READS=false;
// SketchObject.rcomp=false;
//
// if(fna==null) {return null;}
//
// ArrayList<Read> genes=null;
// if(gff!=null) {
// ArrayList<GffLine> lines=getGffLines(gff, types);
// HashMap<String, Read> seqMap=getSequenceMap(fna);
// genes=CheckStrand.grabGenes(lines, seqMap);
// }else{
// System.err.println("Calling genes.");
// genes=callGenes(fna);
// }
// if(genes==null || genes.isEmpty()) {return null;}
// System.err.println("Processing "+genes.size()+" genes.");
//
// Sketch[] geneSketches=sketchGenes(genes, canonTool, fwdTool);
// Sketch canonGeneSketch=geneSketches[0], plusSketch=geneSketches[1], minusSketch=geneSketches[2];
//
// double[] p=CheckStrand.countSharedSum(fwdSketch, plusSketch);
// double[] m=CheckStrand.countSharedSum(fwdSketch, minusSketch);
//
// double ratio=p[3]/(p[3]+m[3]);
// double[] abFractions=CheckStrand.calcCoverage(canonSketch, canonGeneSketch);
//
// double[] ret={ratio, abFractions[0], abFractions[1]};
// return ret;
// }
/**
* Calculate the Plus/Minus mapping ratio using transcriptome kmers.
* @param canonTool SketchTool for canonical kmers.
* @param fwdTool SketchTool for forward kmers.
* @param canonSketch Read Sketch using canonical kmers.
* @param fwdSketch Read Sketch using forward kmers.
* @return Array of results (see calcPMRatio).
*/
private double[] calcPMRatioWithRef(SketchTool canonTool, SketchTool fwdTool,
Sketch canonSketch, Sketch fwdSketch) {
ArrayList<Read> genes=grabGenes();
if(genes==null) {return null;}
outstream.println("Processing "+genes.size()+" genes.");
Sketch[] geneSketches=sketchGenes(genes, canonTool, fwdTool);
Sketch canonGeneSketch=geneSketches[0], plusSketch=geneSketches[1], minusSketch=geneSketches[2];
return calcPMRatioWithGeneSketches(canonSketch, fwdSketch, canonGeneSketch, plusSketch, minusSketch);
}
/**
* Generate a list of gene sequences from the reference.
* @return The list.
*/
private ArrayList<Read> grabGenes(){
if(fna==null) {return null;}
ArrayList<Read> genes=null;
if(gff!=null) {
ArrayList<GffLine> lines=getGffLines(gff, types);
HashMap<String, Read> map=getSequenceMap(fna);
genes=CheckStrand.grabGenes(lines, map);
}else{
System.err.println("Calling genes.");
genes=callGenes(fna);
}
return (genes==null || genes.isEmpty()) ? null : genes;
}
/**
* Calculate the Plus/Minus mapping ratio using transcriptome kmers.
* @param canonSketch Read Sketch using canonical kmers.
* @param fwdSketch Read Sketch using forward kmers.
* @param canonGeneSketch Transcriptome Sketch using canonical kmers.
* @param plusSketch Transcriptome Sketch using plus-strand forward kmers.
* @param minusSketch Transcriptome Sketch using minus-strand forward kmers.
* @return Results vector: {ratio, abFractions[0], abFractions[1]}
*/
static double[] calcPMRatioWithGeneSketches(Sketch canonSketch, Sketch fwdSketch,
Sketch canonGeneSketch, Sketch plusSketch, Sketch minusSketch) {
double[] p=CheckStrand.countSharedSum(fwdSketch, plusSketch);
double[] m=CheckStrand.countSharedSum(fwdSketch, minusSketch);
double ratio=p[3]/(p[3]+m[3]);
double[] abFractions=CheckStrand.calcCoverage(canonSketch, canonGeneSketch);
double[] ret={ratio, abFractions[0], abFractions[1]};
return ret;
}
/**
* Create sketches of the transcriptome.
* @param genes List of gene sequences (sense on plus strand).
* @param canonTool SketchTool for canonical kmers.
* @param fwdTool SketchTool for forward kmers.
* @return Vector of: {canonGeneSketch, plusSketch, minusSketch}
*/
static Sketch[] sketchGenes(ArrayList<Read> genes, SketchTool canonTool, SketchTool fwdTool) {
SketchMakerMini smmPlus=new SketchMakerMini(fwdTool, SketchObject.ONE_SKETCH, SketchObject.defaultParams);
SketchMakerMini smmMinus=new SketchMakerMini(fwdTool, SketchObject.ONE_SKETCH, SketchObject.defaultParams);
SketchMakerMini smmCanon=new SketchMakerMini(canonTool, SketchObject.ONE_SKETCH, SketchObject.defaultParams);
for(Read r : genes) {
smmCanon.processRead(r);
smmPlus.processRead(r);
r.reverseComplement();
r.setStrand(0);
smmMinus.processRead(r);
}
Sketch canonGeneSketch=smmCanon.toSketch(0);
Sketch plusSketch=smmPlus.toSketch(0);
Sketch minusSketch=smmMinus.toSketch(0);
return new Sketch[] {canonGeneSketch, plusSketch, minusSketch};
}
/**
* Print the final program results.
* @param results Results from read kmer depth analysis
* @param refResults Results based on transcriptome kmer comparison
*/
private void outputResults(double[] results, double[] refResults){
if(ffout1==null) {return;}
ByteStreamWriter bsw=new ByteStreamWriter(ffout1);
bsw.start();
double strandedness=results[4];
double depth=results[5];
//Write stuff to the bsw
bsw.println(String.format("Strandedness:\t%.2f%%", strandedness*100));
bsw.println(String.format("AvgKmerDepth:\t%.2f", depth));
if(refResults!=null) {
double pmRatio=refResults[0];
double aFraction=refResults[1];
double bFraction=refResults[2];
bsw.println(String.format("P/(P+M)_Ratio:\t%.6f", pmRatio));
bsw.println("MajorStrand:\t"+((pmRatio>=0.5) ? "Plus" : "Minus"));
bsw.println(String.format("GeneCoverage:\t%.4f", aFraction));
bsw.println(String.format("GenePrecision:\t%.4f", bFraction));
}
errorState=bsw.poisonAndWait() | errorState;
}
/*--------------------------------------------------------------*/
/**
* Determine the strandedness of a set of reads by comparing a Sketch of
* canonical kmers to forward kmers.
* @param saCanon Sketch of canonical kmers.
* @param sbFwd Sketch of forward kmers.
* @return Results vector: {totalSum, minSum, expectedMinSum, maxPossibleMinSum,
* strandedness, depth, matches, nonUniqueFraction}
*/
static double[] calcStrandedness(Sketch saCanon, Sketch sbFwd) {
final long[] a=saCanon.keys, b=sbFwd.keys;
final int[] aCounts=saCanon.keyCounts, bCounts=sbFwd.keyCounts;
int matches=0;
int totalCount=0;
long sharedSum=0;
long nonUniqueCount=0;
double totalSum=0;
double minSum=0;
double expectedMinSum=0;
double maxPossibleMinSum=0;
//Here we walk down the Sketches and find where they share kmers.
//In those cases, the counts are compared to determine balance.
for(int i=0, j=0; i<a.length && j<b.length; ){
final long ka=a[i], kb=b[j];
if(ka==kb){//Match
matches++;
final int ca=aCounts[i];
final int cb=bCounts[j];
final int cmin=Tools.min(cb, ca-cb);
assert(cmin>=0) : ca+", "+cb;
nonUniqueCount+=(ca>1 ? 1 : 0);
totalSum+=ca;
totalCount++;
sharedSum+=ca;
minSum+=cmin;
maxPossibleMinSum+=(ca/2);
expectedMinSum+=expectedMinorAlleleCount(ca);
i++;
j++;
}else if(ka<kb){//kb was missing; thus it had a minor count of 0
final int ca=aCounts[i];
final int cb=0;
final int cmin=Tools.min(cb, ca-cb);//Should always be cb
assert(cmin>=0);//Should always be 0
nonUniqueCount+=(ca>1 ? 1 : 0);
totalSum+=ca;
totalCount++;
minSum+=cmin;
maxPossibleMinSum+=(ca/2);
expectedMinSum+=expectedMinorAlleleCount(ca);
i++;
}else{//ka was missing; thus this is a noncanonical key
j++;
}
}
//Strandedness will be (0.5-1.0) for normal (fully unstranded-fully stranded) libraries.
//Synthetic or binned libraries with a perfectly flat distribution will get 0.0,
//but anything between 0.0 and 0.5 would be unusual.
//Basically 1.0 is preference for a strand, 0.5 is no preference for a strand,
//and 0.0 is preference for perfect balance between strands - as you would get
//if you treated paired reads as single-ended.
double strandedness;
if(minSum<=expectedMinSum) {//Normal case; strandedness between 0 and 50%
// strandedness=1-(minSum/(expectedMinSum+minSum));//Not sure about the proper formula; needs thought
strandedness=0.5+(1-(minSum/expectedMinSum))*0.5;
}else{//Odd case; distribution is more even than expected by chance
assert(minSum<=maxPossibleMinSum) : minSum+", "+maxPossibleMinSum;
double range=(maxPossibleMinSum-expectedMinSum);
double delta=minSum-expectedMinSum;
assert(delta>=0 && delta<=range);
double x=0.5*(1-(delta/range));
strandedness=x;//Not really sure about this either
}
double depth=totalSum/totalCount;
double nonUniqueFraction=nonUniqueCount/(1.0*totalCount);
return new double[] {totalSum, minSum, expectedMinSum, maxPossibleMinSum,
strandedness, depth, matches, nonUniqueFraction};
}
/**
* Determine the strandedness of a set of reads by comparing a Sketch of
* canonical kmers to forward kmers.
* In this mode, each kmer contributes 0-1.0 strandedness regardless of its depth.
* @param saCanon Sketch of canonical kmers.
* @param sbFwd Sketch of forward kmers.
* @return Results vector: {totalSum, minSum, expectedMinSum, maxPossibleMinSum,
* strandedness, depth, matches, nonUniqueFraction}
*/
static double[] calcStrandednessNormalized(Sketch saCanon, Sketch sbFwd) {
final long[] a=saCanon.keys, b=sbFwd.keys;
final int[] aCounts=saCanon.keyCounts, bCounts=sbFwd.keyCounts;
int matches=0;
int totalCount=0;
long sharedSum=0;
long nonUniqueCount=0;
double totalSum=0;
double minSum=0;
double expectedMinSum=0;
double maxPossibleMinSum=0;
//Here we walk down the Sketches and find where they share kmers.
//In those cases, the counts are compared to determine balance.
for(int i=0, j=0; i<a.length && j<b.length; ){
final long ka=a[i], kb=b[j];
if(ka==kb){//Match
final int ca=aCounts[i];
final int cb=bCounts[j];
if(ca>1) {
matches++;
final int cmin=Tools.min(cb, ca-cb);
assert(cmin>=0) : ca+", "+cb;
nonUniqueCount+=(ca>1 ? 1 : 0);
double expectedMinor=expectedMinorAlleleCount(ca);
assert(expectedMinor>0);
double ratio=cmin/(double)ca;
totalSum+=ca;
totalCount++;
sharedSum+=ca;
minSum+=ratio;
maxPossibleMinSum+=((ca/2)/(double)ca);
expectedMinSum+=(expectedMinor/ca);
}
i++;
j++;
}else if(ka<kb){//kb was missing; thus it had a minor count of 0
final int ca=aCounts[i];//TODO
final int cb=0;
if(ca>1) {
final int cmin=Tools.min(cb, ca-cb);//Should always be cb
assert(cmin>=0);//Should always be 0
nonUniqueCount+=(ca>1 ? 1 : 0);
double expectedMinor=expectedMinorAlleleCount(ca);
double ratio=cmin/(double)ca;
totalSum+=ca;
totalCount++;
sharedSum+=ca;
minSum+=ratio;
maxPossibleMinSum+=((ca/2)/(double)ca);
expectedMinSum+=(expectedMinor/ca);
}
i++;
}else{//ka was missing; thus this is a noncanonical key
j++;
}
}
//Strandedness will be (0.5-1.0) for normal (fully unstranded-fully stranded) libraries.
//Synthetic or binned libraries with a perfectly flat distribution will get 0.0,
//but anything between 0.0 and 0.5 would be unusual.
//Basically 1.0 is preference for a strand, 0.5 is no preference for a strand,
//and 0.0 is preference for perfect balance between strands - as you would get
//if you treated paired reads as single-ended.
double strandedness;
if(minSum<=expectedMinSum) {//Normal case; strandedness between 0 and 50%
// strandedness=1-(minSum/(expectedMinSum+minSum));//Not sure about the proper formula; needs thought
strandedness=0.5+(1-(minSum/expectedMinSum))*0.5;
}else{//Odd case; distribution is more even than expected by chance
assert(minSum<=maxPossibleMinSum) : minSum+", "+maxPossibleMinSum;
double range=(maxPossibleMinSum-expectedMinSum);
double delta=minSum-expectedMinSum;
assert(delta>=0 && delta<=range);
double x=0.5*(1-(delta/range));
strandedness=x;//Not really sure about this either
}
double depth=totalSum/totalCount;
double nonUniqueFraction=nonUniqueCount/(1.0*totalCount);
return new double[] {totalSum, minSum, expectedMinSum, maxPossibleMinSum,
strandedness, depth, matches, nonUniqueFraction};
}
static float strandedness(long plus, long minus) {
long sum=plus+minus;
long maxPossibleMinor=sum/2;
float expectedMinor=(float)expectedMinorAlleleCount(sum);
assert(expectedMinor>0);
return strandedness(plus, minus, maxPossibleMinor, expectedMinor);
}
static float strandedness(long plus, long minus, long maxPossibleMinor, float expectedMinor) {
long sum=plus+minus;
long min=Math.min(plus, minus);
assert(expectedMinor>0);
if(min<=expectedMinor) {//Expected case
float strandedness=1-0.5f*(min/expectedMinor);//0.5-1
assert(strandedness>=0 && strandedness<=1.01) : strandedness+
", "+plus+", "+minus+", "+sum+", "+min+", "+expectedMinor;
return strandedness;
}else{//Rare case; overly unstranded
float range=maxPossibleMinor-expectedMinor;
float dif=min-expectedMinor;
float strandedness=0.5f*(1-(dif/range));
assert(strandedness>=0 && strandedness<=1.01) : strandedness+", "+plus+", "+minus+
", "+sum+", "+min+", "+expectedMinor+", "+range+", "+dif;
return strandedness;
}
}
/**
* Counts the fraction of total kmers shared between sketches, which includes their counts.
* @param saFwd Forward sketch of reads.
* @param sbTranscriptStrand Forward (or reverse) sketch of transcriptome.
* @return Results vector: {totalSum, depth, matches, sharedSum}
*/
static double[] countSharedSum(Sketch saFwd, Sketch sbTranscriptStrand) {
final long[] a=saFwd.keys, b=sbTranscriptStrand.keys;
final int[] aCounts=saFwd.keyCounts, bCounts=sbTranscriptStrand.keyCounts;
int matches=0;
int totalCount=0;
long sharedSum=0;
double totalSum=0;
for(int i=0, j=0; i<a.length && j<b.length; ){
final long ka=a[i], kb=b[j];
if(ka==kb){//Match
matches++;
final int ca=aCounts[i];
totalSum+=ca;
totalCount++;
sharedSum+=ca;
i++;
j++;
}else if(ka<kb){//kb was missing
final int ca=aCounts[i];
totalSum+=ca;
totalCount++;
i++;
}else{//ka was missing
j++;
}
}
double depth=sharedSum/(double)Tools.max(matches, 1);
return new double[] {totalSum, depth, matches, sharedSum};
}
/**
* Calculate each sketch's fractional coverage of the other sketch, ignoring counts.
* @return Results vector: {aFraction, bFraction},
* where aFraction is sketch a's coverage of sketch b.
*/
static double[] calcCoverage(Sketch sa, Sketch sb) {
final long[] a=sa.keys, b=sb.keys;
final int[] aCounts=sa.keyCounts, bCounts=sb.keyCounts;
int matches=0;
int i=0, j=0;
for(; i<a.length && j<b.length; ){
final long ka=a[i], kb=b[j];
if(ka==kb){//Match
matches++;
i++;
j++;
}else if(ka<kb){//kb was missing
i++;
}else{//ka was missing
j++;
}
}
double aFraction=matches/(double)j;
double bFraction=matches/(double)i;
return new double[] {aFraction, bFraction};
}
/*--------------------------------------------------------------*/
/**
* This works for a diploid het allele, or a fair coin, or other things with 50/50 outcomes.
* Returns the expected minor allele frequency for a given depth.
* @param depth i.e., number of observations.
* @return Expected number of observations of the minor allele.
*/
public static final double expectedMinorAlleleFrequency(final long depth) {
if(depth<expectedMinorAlleleFreq.length) {return depth>1 ? expectedMinorAlleleFreq[(int)depth] : 0;}
long d=depth;
double mult=1.0;
//If the depth is greater than array length, downscale it.
//This could alternatively use power-of-two multipliers
//like 2 and 4, or 8 and 64, where one is the square of the other.
//Or probably some formula using logs.
//TODO: Consider switching to a log-based formula instead of a loop
while(d>=expectedMinorAlleleFreq.length) {
d=d/100;
mult*=0.1;
}
double maf=expectedMinorAlleleFreq[(int)d];
double dif=0.5-maf;
return 0.5-(dif*mult);
}
public static final double expectedMinorAlleleCount(final long depth) {
if(depth<expectedMinorAlleleCount.length) {return depth>1 ? expectedMinorAlleleCount[(int)depth] : 0;}
return depth*expectedMinorAlleleFrequency(depth);
}
/** This is for generating the stats file for loading later; only needed once. */
private static void printMinorAlleleCount() {
System.out.println("#Expected minor allele count for N coin flips, starting at 0, 10m simulations.");
for(int i=0; i<expectedMinorAlleleCount.length; i++) {
double c=expectedMinorAlleleCount[i];
int decimals=Tools.max(1, 7-Integer.toString((int)c).length());
System.out.println(String.format("%."+decimals+"f", expectedMinorAlleleCount[i]));
}
}
/**
* Runs a simulation. This will happen automatically if minorAlleleCount.txt is not found,
* but it will be less precise due to fewer trials. The total number of coin flips
* is maxDepth*trials.
* @param maxDepth Max total allele count (coin flips in a series).
* @param trials Number of simulated series.
* @return Array of average minor allele counts.
*/
public static final double[] makeExpectedMinorAlleleArray(final int maxDepth, final int trials) {
{
double[] d=loadExpectedMinorAlleleArray();
if(d!=null) {return d;}
}
final long[] minorSum=new long[maxDepth+1];
final Random randy=Shared.threadLocalRandom();
final int[] headsTails=new int[2];
for(int trial=0; trial<trials; trial++) {
headsTails[0]=headsTails[1]=0;
for(int i=1; i<maxDepth+1; i++) {
int bit=randy.nextInt()&1;
headsTails[bit]++;
minorSum[i]+=Tools.min(headsTails[0], headsTails[1]);
}
}
final double[] expected=new double[maxDepth+1];
final double mult=1.0/trials;
for(int i=0; i<maxDepth+1; i++) {
expected[i]=minorSum[i]*mult;
}
return expected;
}
/**
* Load minor allele counts from a file.
* It should be in bbmap/resources/minorAlleleCount.txt
* */
public static double[] loadExpectedMinorAlleleArray() {
String path=Data.findPath("?minorAlleleCount.txt", true);
if(path==null) {return null;}
File f=new File(path);
if(!f.exists() || !f.canRead()) {return null;}
DoubleList dl=new DoubleList();
String[] lines=TextFile.toStringLines(path);
for(String s : lines) {
if(!Tools.startsWith(s, '#')) {
double d=Parse.parseDouble(s, 0, s.length());
dl.add(d);
}
}
return dl.toArray();
}
/** Make the frequency array from the count array */
private static double[] makeExpectedMinorAlleleFreq(double[] counts) {
double[] freq=new double[counts.length];
for(int i=1; i<counts.length; i++) {
freq[i]=counts[i]/i;
}
return freq;
}
/*--------------------------------------------------------------*/
/**
* Load a gff file.
* @param gff The file path.
* @param types Types of features to load, such as "CDS,rRNA".
* @return
*/
static ArrayList<GffLine> getGffLines(String gff, String types){
return GffLine.loadGffFile(gff, types, false);
}
/**
* Load a fasta file as a HashMap of names to sequences.
* @param fna Fasta file.
* @return Map of names to sequences.
*/
static HashMap<String, Read> getSequenceMap(String fna){
ArrayList<Read> list=ReadInputStream.toReads(fna, FileFormat.FA, -1);
return getSequenceMap(list);
}
/**
* Generate a map of names to sequences from a list of sequences.
* Also maps name prefix up to the first whitespace.
* @param list List of sequences.
* @return The map.
*/
static HashMap<String, Read> getSequenceMap(ArrayList<Read> list){
HashMap<String, Read> map=new HashMap<String, Read>(1+list.size()*3);
for(Read r : list){
map.put(r.id, r);
//Faster to use a lineparser but they don't support whitespaceplus
String id2=Tools.whitespacePlus.split(r.id)[0];
if(!id2.equals(r.id)) {map.put(id2, r);}
}
return map;
}
/**
* Generates a list of sequences by cutting out the specified regions.
* Intended for generating gene sequences given a list of GffLines.
* @param <K> A Feature such as a GffLine.
* @param lines List of features.
* @param map Map of name to sequence (for the reference genome).
* @return A list of sequences of the input features, named by the features.
*/
static <K extends Feature> ArrayList<Read> grabGenes(ArrayList<? extends K> lines, HashMap<String, Read> map){
ArrayList<Read> list=null;
// HashSet<String> set=new HashSet<String>();
// for(String s : types) {set.add(s);}
for(K gline : lines){
// if(set.contains(gline.type)){
Read scaf=map.get(gline.seqid());
assert(scaf!=null) : "Can't find "+gline.seqid()+" in "+map.keySet();
final int start=gline.start();
final int stop=gline.stop();
if(start>=0 && stop<scaf.length()){
String id=gline.name();
Read r=new Read(Arrays.copyOfRange(scaf.bases, start, stop+1), null, id, 1);
// assert(!r.containsLowercase()) : r.toFasta()+"\n"
// + "validated="+r.validated()+", scaf.validated="+scaf.validated()+", tuc="+Read.TO_UPPER_CASE+", vic="+Read.VALIDATE_IN_CONSTRUCTOR;
if(r!=null){
if(gline.strand()==1){r.reverseComplement();}
if(list==null){list=new ArrayList<Read>(8);}
list.add(r);
}
// }
}
}
return list;
}
/**
* Call genes from a reference file and return the gene sequences.
* @param fna Fasta reference.
* @return Gene sequences.
*/
private ArrayList<Read> callGenes(String fna){
final ConcurrentReadInputStream cris=makeFastaCris(fna);
if(pgmFile==null){
pgmFile=Data.findPath("?model.pgm");
}
GeneModel pgm=GeneModelParser.loadModel(pgmFile);
GeneCaller gCaller=CallGenes.makeGeneCaller(pgm);
ArrayList<Read> genes=callGenes(cris, gCaller);
//Close the input stream
errorState|=ReadWrite.closeStream(cris);
return genes;
}
/**
* Makes a read input stream for a file (assumed to be fasta).
* @param fname File path.
* @return The read input stream.
*/
private ConcurrentReadInputStream makeFastaCris(String fname){
FileFormat ffin=FileFormat.testInput(fname, FileFormat.FA, null, true, true);
ConcurrentReadInputStream cris=ConcurrentReadInputStream.getReadInputStream(maxReads, false, ffin, null);
cris.start(); //Start the stream
if(verbose){outstream.println("Started cris");}
return cris;
}
/**
* Call genes from a read stream and return the gene sequences.
* @param cris Read stream.
* @param gCaller The gene caller.
* @return Gene sequences.
*/
static ArrayList<Read> callGenes(ConcurrentReadInputStream cris, GeneCaller gCaller){
ArrayList<Read> genes=new ArrayList<Read>();
//Grab the first ListNum of reads
ListNum<Read> ln=cris.nextList();
CallGenes.callCDS=true;
CallGenes.calltRNA=CallGenes.call16S=CallGenes.call23S
=CallGenes.call5S=CallGenes.call18S=true;
//As long as there is a nonempty read list...
while(ln!=null && ln.size()>0){
for(Read r : ln) {
ArrayList<Orf> orfs=gCaller.callGenes(r);
if(orfs!=null) {
for(Orf orf : orfs) {
Read gene=CallGenes.fetch(orf, r);
genes.add(gene);
}
}
// System.err.println(r.length()+", "+orfs.size()+", "+orfs);
}
//Fetch a new list
ln=cris.nextList();
}
//Notify the input stream that the final list was used
if(ln!=null){
cris.returnList(ln.id, ln.list==null || ln.list.isEmpty());
}
return genes;
}
/*--------------------------------------------------------------*/
private int sketchSize=20000;
private String in1=null;
private String out1="stdout.txt";
String fna=null;
String gff=null;
String pgmFile=null;
private final FileFormat ffin1;
private final FileFormat ffout1;
/** Features to pull from gff files */
private String types="CDS,rRNA,tRNA,ncRNA,exon,5S,16S,23S";
/*--------------------------------------------------------------*/
private boolean normalize=false;
private long maxReads=-1;
private float samplerate=1;
private long sampleseed=17;
private boolean errorState=false;
/*--------------------------------------------------------------*/
static final double[] expectedMinorAlleleCount=
makeExpectedMinorAlleleArray(10000, 100000);
static final double[] expectedMinorAlleleFreq=
makeExpectedMinorAlleleFreq(expectedMinorAlleleCount);
/*--------------------------------------------------------------*/
/** Output screen messages here */
private java.io.PrintStream outstream=System.err;
public static boolean verbose=false;
}
|