1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
|
#!/usr/bin/perl -w
#
# Copyright 2011, Ben Langmead <langmea@cs.jhu.edu>
#
# This file is part of Bowtie 2.
#
# Bowtie 2 is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# Bowtie 2 is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with Bowtie 2. If not, see <http://www.gnu.org/licenses/>.
#
package Mutate;
use strict;
use Carp;
use FindBin qw($Bin);
use lib $Bin;
use DNA;
use Test;
use List::Util qw(max min);
#use Math::Random;
##
# Default SNP rate generator. Doesn't generate the SNP per se, just
# the rate.
#
sub defaultSNPGen() {
return Math::Random::random_uniform(1, 0, 0.05);
}
##
# Default read gap rate generator. Doesn't generate the gaps or
# lengths, just the rate.
#
sub defaultRdGapGen() {
return Math::Random::random_uniform(1, 0, 0.005);
}
##
# Default reference gap rate generator. Doesn't generate the gaps or
# lengths, just the rate.
#
sub defaultRfGapGen() {
return Math::Random::random_uniform(1, 0, 0.005);
}
##
# Default rearrangement rate generator.
#
sub defaultRearrGen() {
return Math::Random::random_uniform(1, 0, 0.005);
}
##
# Default function for generating gap lengths when introducing a gap.
#
sub defaultGapLenGen() {
return int(Math::Random::random_exponential(1, 3))+1;
}
##
# Default function for generating random sequence to insert into a gap.
#
sub defaultSeqGen($) {
my $len = shift;
($len == int($len) && $len > 0) ||
die "Bad length for sequence generator: $len";
my $ret = "";
for (1..$len) {
$ret .= substr("ACGT", int(rand(4)), 1);
}
return $ret;
}
##
# Create a new DNA mutator
#
sub new {
my (
$class,
$name, # name
$snp, # SNP rate
$rdgap, # read gap rate
$rfgap, # ref gap rate
$rearr, # rearrangement rate
$gaplen, # gap length
$seqgen, # DNA generator
) = @_;
$name = "noname" unless defined($name);
$snp = \&defaultSNPGen unless defined($snp);
$rdgap = \&defaultRdGapGen unless defined($rdgap);
$rfgap = \&defaultRfGapGen unless defined($rfgap);
$rearr = \&defaultRearrGen unless defined($rearr);
$gaplen = \&defaultGapLenGen unless defined($gaplen);
$seqgen = \&defaultSeqGen unless defined($seqgen);
return bless {
_name => $name,
_snp => $snp,
_rdgap => $rdgap,
_rfgap => $rfgap,
_rearr => $rearr,
_gaplen => $gaplen,
_seqgen => $seqgen,
}, $class;
}
sub snp { return $_[0]->{_snp} }
sub rdgap { return $_[0]->{_rdgap} }
sub rfgap { return $_[0]->{_rfgap} }
sub rearr { return $_[0]->{_rearr} }
sub gaplen { return $_[0]->{_gaplen} }
sub seqgen { return $_[0]->{_seqgen} }
##
# Given a sequence (i.e. a key $srcchr into the reference hash),
# mutate that string. Note that rearrangement mutations can affect
# more than one sequence at a time.
#
# Returns a list containing counts for:
#
# 1: number of SNPs added
# 2: number of read gaps added
# 3: number of ref gaps added
# 4: number of rearrangements added
#
sub mutateSeq {
my ($self, $srcchr, $ref) = @_;
my ($nsnp, $nrfgap, $nrdgap, $nrearr) = (0, 0, 0, 0);
my $mutseq = $ref->{$srcchr};
# Calculate # SNPs to add
my $len = length($mutseq);
my $snpRate = $self->snp->();
my $rfgapRate = $self->rfgap->();
my $rdgapRate = $self->rdgap->();
my $rearrRate = $self->rearr->();
$nsnp = Math::Random::random_binomial(1, $len, $snpRate);
$nrfgap = Math::Random::random_binomial(1, $len, $rfgapRate);
$nrdgap = Math::Random::random_binomial(1, $len, $rdgapRate);
$nrearr = Math::Random::random_binomial(1, $len, $rearrRate);
print STDERR " Introducing $nsnp SNPs, $nrfgap/$nrdgap ref/read gaps, and $nrearr rearrangements\n";
$nsnp = min($nsnp, $len);
# Add the SNPs
for (1..$nsnp) {
my $off = int(rand($len)); # where to mutate
my $add = int(rand(3))+1; # how to mutate
my $c = substr($mutseq, $off, 1);
$c eq "A" || $c eq "C" || $c eq "G" || $c eq "T" || $c eq "N" || die "Bad char '$c' in:\n$ref->{$srcchr}";
substr($mutseq, $off, 1) = DNA::plus(substr($mutseq, $off, 1), $add);
}
print STDERR " Finished SNPs\n";
# Calculate # ref gaps to add
for (1..$nrfgap) {
my $off = int(rand($len)); # where to mutate
my $gaplen = $self->gaplen->(); # how many gap positions in ref
# Insert characters into the subject genome
my $insseq = $self->seqgen->($gaplen);
substr($mutseq, $off, 0) = $insseq;
$len = length($mutseq);
}
print STDERR " Finished ref gaps\n";
# Calculate # read gaps to add
for (1..$nrdgap) {
my $off = int(rand($len)); # where to mutate
my $gaplen = $self->gaplen->(); # how many gap positions in ref
# Delete characters from subject genome
substr($mutseq, $off, $gaplen) = "";
$len = length($mutseq);
}
print STDERR " Finished read gaps\n";
$ref->{$srcchr} = $mutseq;
return ($nsnp, $nrfgap, $nrdgap, $nrearr);
my $totlen = 0;
for (keys %$ref) { $totlen += length($ref->{$_}); }
# Calculate # rearrangements to add
for (1..$nrearr) {
# Pick two loci, at least one on this reference sequence and
# then cross them over somehow
my $off = int(rand($len));
my @refkeys = keys %$ref;
my $ochr = $refkeys[int(rand(scalar(@refkeys)))];
my $oseq = $ref->{$ochr};
my $ooff = int(rand(length($oseq)));
my $srcleft = int(rand(2));
my $dstleft = int(rand(2));
my $srcrc = int(rand(2));
my $dstrc = int(rand(2));
# Check that the source and dest don't overlap
next if $srcchr eq $ochr;
# Get the sequence to move
my $presrclen = length($mutseq);
my $predstlen = length($oseq);
my $srcseq;
if($srcleft) {
$srcseq = substr($mutseq, 0, $off);
} else {
$srcseq = substr($mutseq, $off);
}
my $dstseq;
if($dstleft) {
$dstseq = substr($oseq, 0, $ooff);
} else {
$dstseq = substr($oseq, $ooff);
}
# Delete the sequence from the source
length($srcseq) <= length($mutseq) || die;
length($dstseq) <= length($oseq) || die;
if($srcleft) {
substr($mutseq, 0, length($srcseq)) = "";
} else {
substr($mutseq, -length($srcseq)) = "";
}
if($dstleft) {
substr($oseq, 0, length($dstseq)) = "";
} else {
substr($oseq, -length($dstseq)) = "";
}
# Possibly reverse the pieces we broke off
my $len1 = length($srcseq);
my $len2 = length($dstseq);
$srcseq = DNA::revcomp($srcseq) if $srcrc;
$dstseq = DNA::revcomp($dstseq) if $dstrc;
length($srcseq) == $len1 || die "$srcseq";
length($dstseq) == $len2 || die;
# Mutate the current chromosome
if($srcleft) {
$mutseq = $dstseq . $mutseq;
} else {
$mutseq = $mutseq . $dstseq;
}
# Mutate the other chromosome
if($dstleft) {
$oseq = $srcseq . $oseq;
} else {
$oseq = $oseq . $srcseq;
}
my $postsrclen = length($mutseq);
my $postdstlen = length($oseq);
($presrclen + $presrclen) == ($postsrclen + $postsrclen) ||
die "from $srcchr to $ochr: $presrclen + $presrclen != $postsrclen + $postsrclen";
$ref->{$srcchr} = $mutseq;
$ref->{$ochr} = $oseq;
my $ntotlen = 0;
for (keys %$ref) { $ntotlen += length($ref->{$_}); }
$totlen == $ntotlen || die "Total length changed after rearrangements from $srcchr to $ochr ($totlen -> $ntotlen)";
}
print STDERR " Finished rearrangements\n";
$ref->{$srcchr} = $mutseq;
return ($nsnp, $nrfgap, $nrdgap, $nrearr);
}
sub test1 {
my $mut = Mutate->new("UnitTest mutator");
my %refs = (
"r1" => "TATGACGGTCGAAACCAGGCGA",
"r2" => "TATATTTAGTCTCGTCTGGCTGTCTCGGCTGCGCGCGAGTAAAGACCGGCCTGATC");
$mut->mutateSeq("r1", \%refs);
$mut->mutateSeq("r2", \%refs);
return 1;
}
sub test2 {
my $mut = Mutate->new(
"UnitTest mutator",
\&defaultSNPGen,
\&defaultRdGapGen,
\&defaultRfGapGen,
sub { return 0.1 },
\&defaultGapLenGen,
\&defaultSeqGen);
my %refs = (
"r1" => "TATGACGGTCGAAACCAGGCGA",
"r2" => "TATATTTAGTCTCGTCTGGCTGTCTCGGCTGCGCGCGAGTAAAGACCGGCCTGATC",
"r3" => "TATATTTAGTCTCGTCTGGCTGTCTCGGCTGCGCGCGAGTAAAGACCGGCCTGATC".
"ATTGGTGTCGCGGCGCGCGTATATATATATATATATAGCCTGCTACGTCAGCTAGC",
"r4" => "TATATTTAGTCTCGTCTGGCTGTCTCGGCTGCGCGCGAGTAAAGACCGGCCTGATC".
"ATTGGTGTCGCGGCGCGCGTATATATATATATATATAGCCTGCTACGTCAGCTAGC".
"ATATAACAAAAAAACCCCACACGACGCGGACTCTAGCACTATCGGACTATCATCGG");
$mut->mutateSeq("r1", \%refs);
$mut->mutateSeq("r2", \%refs);
$mut->mutateSeq("r3", \%refs);
$mut->mutateSeq("r4", \%refs);
return 1;
}
if($0 =~ /[^0-9a-zA-Z_]?Mutate\.pm$/) {
print "Skipping unit tests requiring Math::Random which is non-free\n";
# Run unit tests
# Test::shouldSucceed("test1", \&test1);
# Test::shouldSucceed("test2", \&test2);
}
1;
|