File: SampleRead.pm

package info (click to toggle)
bowtie2 2.5.4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 27,492 kB
  • sloc: cpp: 63,838; perl: 7,232; sh: 1,131; python: 987; makefile: 541; ansic: 122
file content (244 lines) | stat: -rw-r--r-- 6,996 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
#!/usr/bin/perl -w

#
# Copyright 2011, Ben Langmead <langmea@cs.jhu.edu>
#
# This file is part of Bowtie 2.
#
# Bowtie 2 is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# Bowtie 2 is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with Bowtie 2.  If not, see <http://www.gnu.org/licenses/>.
#

package SampleRead;
use strict;
use Carp;
use FindBin qw($Bin); 
use lib $Bin;
use DNA;
use Test;
use List::Util qw(max min);
#use Math::Random;

##
# Default sequencing miscall rate generator.
#
sub defaultSeqMmGen() {
	return Math::Random::random_uniform(1, 0, 0.1);
}

##
# Default random generator for read length.
#
sub defaultFragLenGen() {
	return int(Math::Random::random_normal(1, 200, 40))+1;
}

##
# Default random generator for read length.
#
sub defaultReadLenGen() {
	my $r = int(rand(3));
	if($r == 0) {
		return int(Math::Random::random_exponential(1, 60))+1;
	} elsif($r == 1) {
		return int(Math::Random::random_exponential(1, 20))+1;
	} else {
		return int(Math::Random::random_exponential(1, 150))+1;
	}
}

##
# Create a new read sampler
#
sub new {
	my (
		$class,
		$name,       # name of simulator
		$fraglengen, # paired-end fragment length generator
		$m1lengen,   # random mate1 length generator
		$m2lengen,   # random mate2 length generator
	) = @_;
	$fraglengen = \&defaultFragLenGen unless defined($fraglengen);
	$m1lengen   = \&defaultReadLenGen unless defined($m1lengen);
	$m2lengen   = \&defaultReadLenGen unless defined($m2lengen);
	$name = "noname" unless defined($name);
	return bless {
		_name       => $name,
		_fraglengen => $fraglengen,
		_m1lengen   => $m1lengen,
		_m2lengen   => $m2lengen,
	}, $class;
}
sub name       { return $_[0]->{_name}       }
sub fraglengen { return $_[0]->{_fraglengen} }
sub m1lengen   { return $_[0]->{_m1lengen}   }
sub m2lengen   { return $_[0]->{_m2lengen}   }

##
# Generate a set of reads from a subject genome encoded in a hash ref.
#
sub genReads {
	my (
		$self,
		$num,          # number of reads/fragments to generate
		$color,        # colorize?
		$refs,         # hash ref holding reference sequences
		$seqs,         # put generated read sequences here
		$quals,        # put generated quality sequences here
		$lengen) = @_; # length generator

	ref($refs)  eq "HASH"  || die "Reference input must be hash ref, is ".ref($refs);
	ref($seqs)  eq "ARRAY" || die "seqs input must be array ref, is ".ref($seqs);
	ref($quals) eq "ARRAY" || die "quals input must be array ref, is".ref($quals);
	$lengen = $self->m1lengen() unless defined($lengen);
	my $totreflen = 0;
	my @keys = keys %$refs;
	for (@keys) { $totreflen += length($refs->{$_}); }
	for(1..$num) {
		if(rand() < 0.05 && scalar(@$seqs) > 0) {
			# Clone a previous read
			my $ci = int(rand(scalar(@$seqs)));
			push @$seqs, $seqs->[$ci];
			push @$quals, $quals->[$ci];
		} else {
			while(1) {
				my $ro = int(rand($totreflen));
				my $len = $lengen->();
				$len = 1 if $len < 1;
				my $key = undef;
				my $rflen = 0;
				for (@keys) {
					$rflen = length($refs->{$_});
					if($ro < $rflen) {
						$key = $_;
						last;
					}
					$ro -= $rflen;
				}
				defined($key) || die;
				$rflen > 0 || die;
				# If we are overhanging the end, discard and try again
				next if $ro + $len > $rflen;
				my $rfseq = substr($refs->{$key}, $ro, $len);
				length($rfseq) == $len || die;
				my $rc = int(rand(2));
				# Possibly reverse-complement it
				$rfseq = DNA::revcomp($rfseq) if $rc == 1;
				# Possible colorize
				if($color) {
					my $cseq = "";
					for(0..$len-2) {
						my ($c1, $c2) = (substr($rfseq, $_, 1), substr($rfseq, $_+1, 1));
						my $col = DNA::dinucToColor($c1, $c2);
						$cseq .= $col;
					}
					$rfseq = $cseq;
					$len = length($rfseq);
				}
				push @$seqs, $rfseq;
				# TODO: generate interesting qualities
				push @$quals, "I" x $len;
				last;
			}
		}
		# Simulate next read
	}
}

##
# Generate a set of read pairs from a subject genome encoded in a hash
# ref.  First we extract unpaired fragments, then take sequences from
# either end to make the mates.
#
sub genReadPairs {
	my (
		$self,
		$num,          # number of reads/fragments to generate
		$color,        # colorize?
		$refs,         # hash ref holding reference sequences
		$m1fw,         # orientation of mate 1 when fragment comes from Watson strand
		$m2fw,         # orientation of mate 2 when fragment comes from Watson strand
		$seq1s,        # put generated mate1 sequences here
		$seq2s,        # put generated mate2 sequences here
		$qual1s,       # put generated mate1 quality sequences here
		$qual2s) = @_; # put generated mate2 quality sequences here
	
	# First simulate fragments
	ref($refs)   eq "HASH"  || die "Reference input must be hash ref";
	ref($seq1s)  eq "ARRAY" || die "seq1s input must be array ref";
	ref($seq2s)  eq "ARRAY" || die "seq2s input must be array ref";
	ref($qual1s) eq "ARRAY" || die "qual1s input must be array ref";
	ref($qual2s) eq "ARRAY" || die "qual2s input must be array ref";
	my @fragseqs = ();
	my @fragquals = ();
	$self->genReads(
		$num,
		$color,
		$refs,
		\@fragseqs,
		\@fragquals,
		$self->fraglengen);
	scalar(@fragseqs) == scalar(@fragquals) || die;
	# For each fragment
	for (1..scalar(@fragseqs)) {
		# Take mates from either end
		my $m1len = $self->m1lengen->();
		my $m2len = $self->m2lengen->();
		$m1len = min($m1len, length($fragseqs[$_-1]));
		$m2len = min($m2len, length($fragseqs[$_-1]));
		my $m1seq  = substr($fragseqs [$_-1], 0, $m1len);
		my $m2seq  = substr($fragseqs [$_-1], -$m2len);
		my $m1qual = substr($fragquals[$_-1], 0, $m1len);
		my $m2qual = substr($fragquals[$_-1], -$m2len);
		if(!$m1fw) {
			$m1seq  = DNA::revcomp($m1seq);
			$m1qual = reverse $m1qual;
		}
		if(!$m2fw) {
			$m2seq  = DNA::revcomp($m2seq);
			$m2qual = reverse $m2qual;
		}
		# Commit new pair to the list
		push @$seq1s,  $m1seq;
		push @$seq2s,  $m2seq;
		push @$qual1s, $m1qual;
		push @$qual2s, $m2qual;
		# Simulate next pair
	}
}

sub test1 {
	my $samp = SampleRead->new("UnitTest read sampler");
	my %refs = (
		"r1" => "TATGACGGTCGAAACCAGGCGA",
		"r2" => "TATATTTAGTCTCGTCTGGCTGTCTCGGCTGCGCGCGAGTAAAGACCGGCCTGATC");
	my @seqs = ();
	my @quals = ();
	$samp->genReads(10, 0, \%refs, \@seqs, \@quals, \&defaultReadLenGen);
	scalar(@seqs) == 10 || die;
	scalar(@quals) == 10 || die;
	return 1;
}

sub test2 {
	return 1;
}

if($0 =~ /[^0-9a-zA-Z_]?SampleRead\.pm$/) {
	print "Skipping unit tests requiring Math::Random which is non-free\n";
	# Run unit tests
#	Test::shouldSucceed("test1", \&test1);
#	Test::shouldSucceed("test2", \&test2);
}

1;