1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
|
/******************************************************************************
* Copyright © 2009-2016 -- LIRMM/CNRS *
* (Laboratoire d'Informatique, de Robotique et de *
* Microélectronique de Montpellier / *
* Centre National de la Recherche Scientifique) *
* LIFL/INRIA *
* (Laboratoire d'Informatique Fondamentale de *
* Lille / Institut National de Recherche en *
* Informatique et Automatique) *
* LITIS *
* (Laboratoire d'Informatique, du Traitement de *
* l'Information et des Systèmes). *
* *
* Copyright © 2011-2016 -- IRB/INSERM *
* (Institut de Recherches en Biothérapie / *
* Institut National de la Santé et de la Recherche *
* Médicale). *
* *
* Copyright © 2015-2016 -- AxLR/SATT *
* (Lanquedoc Roussilon / *
* Societe d'Acceleration de Transfert de *
* Technologie). *
* *
* Programmeurs/Progammers: *
* Nicolas PHILIPPE <nphilippe.resear@gmail.com> *
* Mikaël SALSON <mikael.salson@lifl.fr> *
* Jérôme Audoux <jerome.audoux@gmail.com> *
* with additional contribution for the packaging of: *
* Alban MANCHERON <alban.mancheron@lirmm.fr> *
* *
* Contact: CRAC list <crac-bugs@lists.gforge.inria.fr> *
* Paper: CRAC: An integrated RNA-Seq read analysis *
* Philippe N., Salson M., Commes T., Rivals E. *
* Genome Biology 2013; 14:R30. *
* *
* ------------------------------------------------------------------------- *
* *
* This File is part of the CRAC program. *
* *
* This program is free software: you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation, either version 3 of the License, or (at *
* your option) any later version. This program is distributed in the *
* hope that it will be useful, but WITHOUT ANY WARRANTY; without even *
* the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR *
* PURPOSE. See the GNU General Public License for more details. You *
* should have received a copy of the GNU General Public License along *
* with this program. If not, see <http://www.gnu.org/licenses/>. *
* *
******************************************************************************/
#include <cassert>
#include <cmath>
#include <sys/types.h>
#include "bitarray.h"
#include "basic.h"
/////////////
//Rank(B,i)//
/////////////
//This Class use a superblock size of 256 bits
//and a block size of 32 bits also
//we use a 32 bit to represent Rs and
//we use a 8 bit to represent Rb
// The bitarray goes form 0..n-1
BitRankF::BitRankF(ulong *bitarray, ulong n, bool owner) {
data=bitarray;
this->owner = owner;
this->n=n;
b=32; // b is a word
factor=8; // 8 word in 256 bits
s=b*factor;
ulong aux=(n+1)%W;
if (aux != 0)
integers = (n+1)/W+1;
else
integers = (n+1)/W;
BuildRank();
}
BitRankF::~BitRankF() {
delete [] Rs;
delete [] Rb;
if (owner) delete [] data;
}
ulong BitRankF::SpaceRequirementInBits() {
return (owner?n:0)+(n/s)*sizeof(ulong)*8 +(n/b)*sizeof(uchar)*8+sizeof(BitRankF)*8;
}
//Build the rank (blocks and superblocks)
void BitRankF::BuildRank(){
ulong num_sblock = n/s;
ulong num_block = n/b;
Rs = new ulong[num_sblock+1];//+1 we add the 0 pos
Rb = new uchar[num_block+1];//+1 we add the 0 pos
ulong j;
Rs[0]=0;
for (j=1;j<=num_sblock;j++)
Rs[j]=BuildRankSub((j-1)*factor,factor)+Rs[j-1];
Rb[0]=0;
for (ulong k=1;k<=num_block;k++) {
j = k / factor;
Rb[k]=BuildRankSub(j*factor,k%factor);
}
}
int BitRankF::save(FILE *f) {
if (f == NULL) return 20;
if (fwrite (&n,sizeof(ulong),1,f) != 1) return 21;
if (fwrite (data,sizeof(ulong),n/W+1,f) != n/W+1) return 21;
if (fwrite (Rs,sizeof(ulong),n/s+1,f) != n/s+1) return 21;
if (fwrite (Rb,sizeof(uchar),n/b+1,f) != n/b+1) return 21;
return 0;
}
int BitRankF::load(FILE *f) {
if (f == NULL) return 23;
if (fread (&n,sizeof(ulong),1,f) != 1) return 25;
b=32; // b is a word
factor=8; // 8 word in 256 bits
s=b*factor;
ulong aux=(n+1)%W;
if (aux != 0)
integers = (n+1)/W+1;
else
integers = (n+1)/W;
data= new ulong[n/W+1];
if (!data) return 1;
if (fread (data,sizeof(ulong),n/W+1,f) != n/W+1) return 25;
this->owner = true;
Rs= new ulong[n/s+1];
if (!Rs) return 1;
if (fread (Rs,sizeof(ulong),n/s+1,f) != n/s+1) return 25;
Rb= new uchar[n/b+1];
if (!Rb) return 1;
if (fread (Rb,sizeof(uchar),n/b+1,f) != n/b+1) return 25;
return 0;
}
BitRankF::BitRankF(FILE *f, int *error) {
*error = BitRankF::load(f);
}
ulong BitRankF::BuildRankSub(ulong ini,ulong bloques){
ulong rank=0,aux;
for(ulong i=ini;i<ini+bloques;i++) {
if (i < integers) {
aux=data[i];
rank+=popcount32(aux);
}
}
return rank; //return the numbers of 1's in the interval
}
//this rank ask from 0 to n-1
ulong BitRankF::rank(ulong i) {
++i; // the following gives sum of 1s before i
return Rs[i>>8]+Rb[i>>5]
+popcount32(data[i>>5] & ((1<<(i & mask31))-1));
}
//this rank ask from 0 to n-1
ulong BitRankF::rank2(ulong i) {
++i;
ulong resp=Rs[i>>factor];
ulong aux=(i/s)*factor;
for (ulong a=aux;a<i/W;a++)
resp+=popcount32(data[a]);
resp+=popcount32(data[i/W] & ((1<<(i & mask31))-1));
return resp;
}
ulong BitRankF::prev(ulong start) {
// returns the position of the previous 1 bit before and including start.
// tuned to 32 bit machine
ulong i = start >> 5;
int offset = (start % W);
ulong answer = start;
ulong val = data[i] << (Wminusone-offset);
if (!val) { val = data[--i]; answer -= 1+offset; }
while (!val) { val = data[--i]; answer -= W; }
if (!(val & 0xFFFF0000)) { val <<= 16; answer -= 16; }
if (!(val & 0xFF000000)) { val <<= 8; answer -= 8; }
while (!(val & 0x80000000)) { val <<= 1; answer--; }
return answer;
}
ulong BitRankF::select(ulong x) {
// returns i such that x=rank(i) && rank(i-1)<x or n if that i not exist
// first binary search over first level rank structure
// then sequential search using popcount over a int
// then sequential search using popcount over a char
// then sequential search bit a bit
//binary search over first level rank structure
ulong l=0, r=n/s;
ulong mid=(l+r)/2;
ulong rankmid = Rs[mid];
while (l<=r) {
if (rankmid<x)
l = mid+1;
else
r = mid-1;
mid = (l+r)/2;
rankmid = Rs[mid];
}
//sequential search using popcount over a int
ulong left;
left=mid*factor;
x-=rankmid;
ulong j=data[left];
ulong ones = popcount32(j);
while (ones < x) {
x-=ones;left++;
if (left > integers) return n;
j = data[left];
ones = popcount32(j);
}
//sequential search using popcount over a char
left=left*b;
rankmid = popcount8(j);
if (rankmid < x) {
j=j>>8;
x-=rankmid;
left+=8;
rankmid = popcount8(j);
if (rankmid < x) {
j=j>>8;
x-=rankmid;
left+=8;
rankmid = popcount8(j);
if (rankmid < x) {
j=j>>8;
x-=rankmid;
left+=8;
}
}
}
// then sequential search bit a bit
while (x>0) {
if (j&1) x--;
j=j>>1;
left++;
}
return left-1;
}
bool BitRankF::IsBitSet(ulong i) {
return (1u << (i % W)) & data[i/W];
}
/* Implementation of Bitselect Next */
BitSelectNext::BitSelectNext(ulong *bit, ulong n, bool owner) {
this->owner = owner;
this->datos=bit;
this->n=n;
ulong aux=(n+1)%W;
if (aux != 0)
integers = (n+1)/W+1;
else
integers = (n+1)/W;
}
//Select Next
//this selectnext ask from 1 to n
ulong BitSelectNext::select_next(ulong k) {
ulong count = k-1;
ulong des,aux2;
des=count%W;
aux2= datos[count/W] >> des;
if (aux2 > 0) {
if ((aux2&0xff) > 0) return count+select_tab[aux2&0xff];
else if ((aux2&0xff00) > 0) return count+8+select_tab[(aux2>>8)&0xff];
else if ((aux2&0xff0000) > 0) return count+16+select_tab[(aux2>>16)&0xff];
else {return count+24+select_tab[(aux2>>24)&0xff];}
}
for (ulong i=count/W+1;i<integers;i++) {
aux2=datos[i];
if (aux2 > 0) {
if ((aux2&0xff) > 0) return i*W+select_tab[aux2&0xff];
else if ((aux2&0xff00) > 0) return i*W+8+select_tab[(aux2>>8)&0xff];
else if ((aux2&0xff0000) > 0) return i*W+16+select_tab[(aux2>>16)&0xff];
else {return i*W+24+select_tab[(aux2>>24)&0xff];}
}
}
return n+1;
}
BitSelectNext::~BitSelectNext() {
if (owner) delete datos;
}
// The bitarray have positions from 0..n-1
BitRankFSparse::BitRankFSparse(ulong *bitarray, ulong n){
ulong ones=0;
ulong i,j,*sblockbit,*blockbit;
assert(bitget(bitarray,n-1));
for (i=0;i<n;i++)
if (bitget(bitarray,i)) ones++;
L=(ulong)ceil(sqrt(n/ones));
sblockbit=new ulong[(n/L)/W+1];
ulong aux=0;
for (i=0;i<(n/L)/W+1;i++) sblockbit[i] = 0;
for (i=0;i*L<n;i++){
assert(i*L<n);
for (j=i*L;j<mmin(n,(i+1)*L);j++) {
if (bitget(bitarray,j)) { bitset(sblockbit,i); aux++; break; }
}
//printf("maximo j revisado=%d\n", j);
}
sblock = new BitRankF(sblockbit,n/L,true);
blockbit=new ulong[(L*sblock->rank(n/L))/W+1];
for (i=0;i<(L*sblock->rank(n/L))/W+1;i++) blockbit[i] = 0;
ulong loc=0;
for (i=0;i*L<n;i++){
assert(i*L<n);
if (bitget(sblockbit,i)) {
for (j=i*L;j<mmin(n,(i+1)*L);j++) {
if (bitget(bitarray,j)) bitset(blockbit,j-i*L+loc);
}
loc+=L;
// printf("maximo j revisado=%d\n", j);
}
}
block = new BitRankF(blockbit,L*sblock->rank(n/L),true);
//printf("largo de bloque %lu\n", L);
//printf("numero de bloques activos%lu %lu\n", aux, sblock-> rank(n/L));
}
BitRankFSparse::~BitRankFSparse() {
delete sblock;
delete block;
}
bool BitRankFSparse::IsBitSet(ulong i){
ulong numblock=i/L;
if (sblock->IsBitSet(numblock) == false) return false;
else {
ulong one_blocks=sblock->rank(numblock);
ulong zero_blocks=numblock-one_blocks+1;
//printf("mmm i=%d, zero_blocks=%d, L=%d, res=%d \n",i,zero_blocks,L, i-zero_blocks*L);
return block->IsBitSet(i-zero_blocks*L);
}
}
ulong BitRankFSparse::rank(ulong i){
ulong numblock=i/L;
ulong one_blocks=sblock->rank(numblock);
if (sblock->IsBitSet(numblock) == false) {
return block->rank(one_blocks*L-1);
} else {
ulong zero_blocks=numblock-one_blocks+1;
return block->rank(i-zero_blocks*L);
}
}
ulong BitRankFSparse::select(ulong i){
ulong pos1=block->select(i);
ulong one_blocks=pos1/L+1;
ulong pos2=sblock->select(one_blocks);
ulong zero_blocks=pos2-one_blocks+1;
return pos1+zero_blocks*L;
}
ulong BitRankFSparse::SpaceRequirementInBits(){
return block->SpaceRequirementInBits()+sblock->SpaceRequirementInBits()+sizeof(BitRankFSparse)*8;
}
ulong BitRankFSparse::prev(ulong start) {
// returns the position of the previous 1 bit before and including start.
// tuned to 32 bit machine
ulong temp,zero_blocks;
ulong numblock=start/L+1;
ulong one_blocks=sblock->rank(numblock-1);
zero_blocks=numblock-one_blocks;
if (sblock->IsBitSet(numblock-1) == false) {
temp = block->prev(one_blocks*L-1);
numblock = sblock->prev(numblock-1)+1;
zero_blocks=numblock-(one_blocks-1)-1;
//printf("Caso1 ");
return temp+zero_blocks*L;
} else {
temp = block->prev(start-zero_blocks*L);
if (temp < (one_blocks-1)*L) {
numblock = sblock->prev(numblock-2)+1;
zero_blocks=numblock-(one_blocks-1);
//printf("Caso2 ");
return temp+zero_blocks*L;
} else {
zero_blocks=numblock-(one_blocks-1)-1;
//printf("Caso3 ");
return temp+zero_blocks*L;
}
}
}
|