File: ClassVCF_creator.py

package info (click to toggle)
discosnp 1%3A2.6.2-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 3,656 kB
  • sloc: python: 5,893; sh: 2,966; cpp: 2,692; makefile: 14
file content (1274 lines) | stat: -rwxr-xr-x 101,585 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
#!/usr/bin/python3
# -*- coding: utf-8 -*-
###############################################
#Dresscode : class : uppercase
#            function : begins with a capital
#            variable : words separated by capital
#            object : words separated by underscore
from functionObjectVCF_creator import *
import re
import os
import sys
import subprocess
import re
import time


# #      CheckStrandAndReverseNucleotide(self,nucleo):"""Reverse the alt nucleotide if it is needed""" 
# char2char = dict() # for fast reverse complement computations
# char2char['A'] = 'T'
# char2char['T'] = 'A'
# char2char['C'] = 'G'
# char2char['G'] = 'C'
# char2char['a'] = 't'
# char2char['t'] = 'a'
# char2char['c'] = 'g'
# char2char['g'] = 'c'
# def ReverseComplement(nucleotide):
#         """Take a sequence or a nucleotide and reverse it"""
#         return ''.join(char2char[c] for c in nucleotide)[::-1]

rev = str.maketrans("acgtACGT", "tgcaTGCA")
def ReverseComplement(seq: str) -> str:
        return seq.translate(rev)[::-1]

#Class and methods_________________________________________________________________________________________________________
#INDEX_____________________________________________________________________________________________________________
#________________class VARIANT(): corresponds to a discosnp bubble with information common to both paths________________ 
#   ______
#__/      \__
#  \______/
# => Methods
#      FillInformationFromHeader(self,VCFObject):"""Parsing of the DiscoSnp++ header"""
#      CheckContigUnitig(self,unitig,contig):"""Checks if there is an extension in the form of contig or unitig to take into account in the mapping position"""
#      RetrievePolymorphismFromHeader(self):'''Gets from the dicoAllele all the positions, and the nucleotides'''
#      MismatchChecker(self):"""In case of divergent main position (case snp whose two paths are mapped ) to define the reference = > check the number of mismatch
#                               ( If the number of mismatch is the same in both cases it is the lower lexicographical SNP which is selected for reference .
#                                The Boolean allows to know the reference SNP ) """      
#      RetrieveGenotypes(self,nbGeno,VCFObject):"""Gets the genotype, the coverage and the likelihood by sample and print it in the correspondand fields. The genotype is determined by DiscoSnp++ (which considered the upper path as reference). If the “REF” corresponds the upper path, the genotype in the VCF is identical to the genotype in DiscoSnp++, else  it's the opposite ( 1/1 becomes 0/0 and so on)."""     
#      FillVCF(self,VCFfile,nbGeno,table,VCFObject): """Take all necessary input variables to fill the vcf;  Fills the fields of the table which will be printed in the vcf ; return the table"""  
#      WhichPathIsTheRef(self,VCFObject): """Finds which path is identical to the reference genome and defines it as the ref : specific method for each type of variant""" 
#      RetrieveMappingPositionCouple(self): """Defines the mapping position for the couple of variant"""
#      CheckCoupleVariantID(self):"""Test if the couple of paths has the same ID"""

#________________class PATH(): """corresponds to one path"""________________
#      RetrieveSeq(self,seq):"""Getter for sequence"""
#      RetrieveDicoMappingPosition(self):"""Retrieves for each path alignment information in a list ; retrieves a dictionary with all the positions of a path and the number of associated mismatch"""
#      CheckBitwiseFlag(self):"""Checks if the BitwiseFlag contains the tested value such as : read reverse strand, read unmmaped and so on."""
#      CigarcodeChecker(self):"""Checks in the cigarcode of the samfile if there is a shift in the alignment between the path and the reference"""
#      ReferenceChecker(self,shift,posCentraleRef,VCFObject):"""Function which allows to get the MD tag parsing; checks if path nucleotide is identical to the reference nucleotide"""
#      RetrieveCoverage(self):"""Get the coverage by path in the discosnp++ header"""
#      GetTag(self):"""Gets the number of mismatch in the samline"""
#      CheckPosVariantFromRef(self,VCFObject): """Checks if the variant is identical to the reference or not ; defines the nucleotide on the reference"""

#________________class SNP(VARIANT):________________
#       WhichPathIsTheRef(self,VCFObject):""""""

#________________class INDEL(VARIANT):________________
#      RetrievePolymorphismFromHeader(self):""""""
#      WhichPathIsTheRef(self,VCFObject):""""""
#      RetrieveMappingPositionCouple(self):""""""

#________________class SNPSCLOSE(VARIANT):________________
#      RetrieveDicoClose(self,dicoCloseUp,dicoCloseLow):
#      WhichPathIsTheRef(self,VCFObject):
#      FillVCF(self,VCFfile,nbGeno,table,VCFObject):

#________________class VCFFIELD():________________
#      PrintOneLine(self,table,VCF):

def shift_from_cigar_code(cigarcode, pospol):
        # print ("shift",cigarcode,pospol)
        parsingCigarCode=re.findall(r'(\d+|[A-Za-z])',cigarcode) #ParsingCigarCode=['2', 'S', '3', 'M', '1', 'I', '25', 'M']
        # print (parsingCigarCode)
        shift=0
        pos=0
        i=1
        while i<len(parsingCigarCode): #Goes through the list by twos to get all the letters and to take them into account
                local_cigar_code = parsingCigarCode[i]
                previous_local_cigar_code = parsingCigarCode[i-1]
                if local_cigar_code=="S":
                        shift-=int(previous_local_cigar_code)
                        pos+=int(previous_local_cigar_code)
                elif local_cigar_code=="M":
                        pos+=int(previous_local_cigar_code)
                elif local_cigar_code=="D":
                        shift+=int(previous_local_cigar_code)
                elif local_cigar_code=="I":
                        shift-=int(previous_local_cigar_code)#There is a nucleotide of shift compared to the reference
                        pos+=int(previous_local_cigar_code) #We advance in the query SEQ
                #Hard clipping (clipped sequences NOT present in SEQ)
                elif local_cigar_code=="H":
                        shift-=int(previous_local_cigar_code) # It's the shift in the alignment between the reference and the sequence of the variant 
                        pos+=int(previous_local_cigar_code)
                #Padding (silent deletion from padded reference)
                elif local_cigar_code=="P":
                        shift+=int(previous_local_cigar_code)
                        pos+=int(previous_local_cigar_code)
                elif local_cigar_code=="=":
                        pos+=int(previous_local_cigar_code)
                elif local_cigar_code=="X":
                        pos+=int(previous_local_cigar_code)
                        
                if pos>=pospol:
                        # print("return", str(pospol+shift))
                        return pospol+shift#takes into account the shift to add the after the mapping position and the variant position in the sequence                                
                i+=2

        # print("return", str(pospol+shift))
        return pospol+shift#takes into account the shift to add the after the mapping position and the variant position in the sequence

class VARIANT():
        """Object corresponding to a discosnp++ bubble"""
        def __init__(self,line1,line2):
                self.upper_path = PATH(line1)#line in the file corresponding to the upper path
                self.lower_path = PATH(line2)#line in the file corresponding to the lower path
                self.variantID = "" #ID of discoSnp++
                self.discoName = "" #name of the variant : SNP_higher_path_99
                self.len_unitig_left = 0#length of the unitig left
                self.len_unitig_right = 0#length of the unitig right
                self.len_contig_left = 0#length of the contig left
                self.len_contig_right = 0#length of the contig right
                self.rank = ""#rank calculated by discosnp++
                self.nb_pol = ""# number of polymorphism in the disco path 
                self.dicoGeno = {}#dictionnary with the information of the genotype dicoGeno[listgeno[0]] = [listgeno[1],listlikelihood]
                self.dicoAllele = {}#dictionnary of all the information from the header of discosnp++ : depending on the variant
                self.mappingPositionCouple = 0#mapping position of the bubble after correction
                self.dicoIndex = {}#dictionnary with all the index of every items in discoSnp++ header 

#---------------------------------------------------------------------------------------------------------------------------
##Example :SNP_higher_path_99|P_1:30_A/C|high|nb_pol_1|left_unitig_length_129|right_unitig_length_901|C1_0|C2_30|G1_1/1:744,116,6|G2_0/0:6,95,604|rank_1.00000
#---------------------------------------------------------------------------------------------------------------------------                                           
        def FillInformationFromHeader(self,VCFObject):
                """Parsing of the DiscoSnp++ header. Gets unitig, contig, rank, genotypes"""
                headerVariantUp = self.upper_path.listSam[0]#header of the upper path
                # headerVariantLow= self.lower_path.listSam[0]#header of the lower path
                discoList=headerVariantUp.split('|')#splitting the header of discosnp++ into a list
                self.discoName=discoList[0]#fills the attribut discoName of the variant object
                # print discoList
                self.variantID = self.discoName.split("_")[-1]#Gets the variantID ex:56468
                if self.discoName.startswith("SNP"): VCFObject.variantType="SNP"
                else: VCFObject.variantType="INDEL"
                # VCFObject.variantType = self.discoName.split("_")[0]#fills the VCF object with the variant type
                listgeno=[]#splitted informations by genotype contained in the header of discoSnp++
                #Get dicoAllele P_1:30_A/G => {'P_1': ['30', 'A', 'G']} 

                pos=discoList[self.dicoIndex["P_"]].split(',')
                if VCFObject.variantType=="SNP":#Specific dictionary dicoAllele in case of simple snp
                        for item in pos:
                                listP_=item.split(":")
                                self.dicoAllele[listP_[0]]=[(listP_[1].split("_")[0]),(listP_[1].split("_")[1].split("/")[0]),(listP_[1].split("_")[1].split("/")[1])]#{'P_1': ['30', 'A', 'G']}
                elif VCFObject.variantType=="INDEL":#INDEL case : P_1:30_3_2 => {'P_1': ['30', '3', '2']} specific to the INDEL
                        for item in pos:
                                listP_=item.split(":")
                                self.dicoAllele[listP_[0]]=[(listP_[1].split("_")[0]),(listP_[1].split("_")[1]),(listP_[1].split("_")[2])]#  {'P_1': ['30', '3', '2']}

                
                # for item in pos:
                #         if VCFObject.variantType=="SNP":#Specific dictionary dicoAllele in case of simple snp
                #                 # if ":" in item:
                #                 listP_=item.split(":")
                #                 self.dicoAllele[listP_[0]]=[(listP_[1].split("_")[0]),(listP_[1].split("_")[1].split("/")[0]),(listP_[1].split("_")[1].split("/")[1])]#{'P_1': ['30', 'A', 'G']}
                #         elif VCFObject.variantType=="INDEL":#INDEL case : P_1:30_3_2 => {'P_1': ['30', '3', '2']} specific to the INDEL
                #                 listP_=item.split(":")
                #                 self.dicoAllele[listP_[0]]=[(listP_[1].split("_")[0]),(listP_[1].split("_")[1]),(listP_[1].split("_")[2])]#  {'P_1': ['30', '3', '2']}
                #Get unitig
                if "unitig" in self.dicoIndex and "unitig" in headerVariantUp:
                        self.len_unitig_left=int(discoList[self.dicoIndex["unitig"][0]].split("_")[3])
                        self.len_unitig_right=int(discoList[self.dicoIndex["unitig"][1]].split("_")[3])
                #Get contig
                if "contig" in self.dicoIndex and "contig" in headerVariantUp:
                        self.len_contig_left=int(discoList[self.dicoIndex["contig"][0]].split("_")[3]) 
                        self.len_contig_right=int(discoList[self.dicoIndex["contig"][1]].split("_")[3]) 
                #Get rank
                if "rank" in self.dicoIndex and "rank" in headerVariantUp:
                        self.rank=discoList[self.dicoIndex["rank"]].split('_')[1]
                #Get nb_pol
                self.nb_pol=int(discoList[self.dicoIndex["nb_pol"]].split('_')[2])
                if "G" in self.dicoIndex and "G1" in headerVariantUp:
                        for i in self.dicoIndex["G"]:
                                listgeno=discoList[i].replace("_",":").split(":")
                                if len(listgeno)>2:
                                        self.dicoGeno[listgeno[0]]=[listgeno[1],(listgeno[2].split(','))]
                                else:                                     
                                        self.dicoGeno[listgeno[0]]=[listgeno[1]]  
                                                                                                                                                                 
#---------------------------------------------------------------------------------------------------------------------------
#---------------------------------------------------------------------------------------------------------------------------                                                   
        def RetrievePolymorphismFromHeader(self):
                '''Gets from the dicoAllele all the positions, and the nucleotides for each variant '''
                for key,(posD,ntUp,ntLow) in list(self.dicoAllele.items()): #Goes through the dictionary of parsed header
                        self.upper_path.listPosForward.append(int(posD)+1)
                        self.lower_path.listPosForward.append(int(posD)+1)
                        self.upper_path.listPosReverse.append(len(self.upper_path.seq)-int(posD))
                        self.lower_path.listPosReverse.append(len(self.upper_path.seq)-int(posD))
                        self.upper_path.listNucleotideForward.append(ntUp)
                        self.lower_path.listNucleotideForward.append(ntLow)
                        self.upper_path.listNucleotideReverse.append(ReverseComplement(ntUp))
                        self.lower_path.listNucleotideReverse.append(ReverseComplement(ntLow))
#---------------------------------------------------------------------------------------------------------------------------
#---------------------------------------------------------------------------------------------------------------------------                                                    
        def MismatchChecker(self):
                """In case of divergent main position (case snp whose two paths are mapped ) to define the reference = > check the number of mismatch
        ( If the number of mismatch is the same in both cases it is the lower lexicographical SNP which is selected for reference .
        The Boolean allows to know the reference SNP : It fills boolRef ) """
                nmUp=None
                nmLow=None
                #Two paths mapped
                if self.upper_path.mappingPosition>0 and self.lower_path.mappingPosition>0:             #Checks if both paths are mapped 
                        nmUp=int(self.upper_path.dicoMappingPos[self.upper_path.mappingPosition][0])    #Distance with the reference for the snpUp
                        nmLow=int(self.lower_path.dicoMappingPos[self.lower_path.mappingPosition][0])   #Distance with the reference for the snpLow
                        # Pierre 25 06 2021: BUG here in case the two paths are not mapped in the same orientation. 
                        if nmUp<nmLow:                                                                  #Checks if the upper path has a distance with the reference smaller than the lower path
                                self.lower_path.boolRef=False                                           # Defines the boolean to know which path will be defined as reference
                                self.upper_path.boolRef=True 
                                self.lower_path.nucleoRef = self.upper_path.nucleoRef
                                self.mappingPosition = self.upper_path.mappingPosition
                        elif nmUp>nmLow :                                                               #Checks if the lower path has a distance with the reference smaller than the upper path
                                self.lower_path.boolRef=True
                                self.upper_path.boolRef=False
                                self.upper_path.nucleoRef = self.lower_path.nucleoRef
                        elif nmUp==nmLow:                                                               #Checks if both path have the same number of difference
                                if self.discoName.split("_")[0]!="INDEL":                               #In case of simple snp
                                        if  self.upper_path.nucleo<self.lower_path.nucleo:              #Checks the lexicographical order
                                                self.lower_path.boolRef=False
                                                self.upper_path.boolRef=True
                                                self.lower_path.nucleoRef = self.upper_path.nucleoRef
                                                self.mappingPosition = self.upper_path.mappingPosition
                                        elif  self.upper_path.nucleo> self.lower_path.nucleo:           #Checks the lexicographical order
                                                self.lower_path.boolRef=True
                                                self.upper_path.boolRef=False
                                                self.upper_path.nucleoRef = self.lower_path.nucleoRef
                                        else :                                                          #If none of the alleles is lexicographically less : checks the mapping position and keeps the lefmost position
                                                if self.upper_path.mappingPosition<self.lower_path.mappingPosition:
                                                        self.lower_path.boolRef=False
                                                        self.upper_path.boolRef=True
                                                        self.lower_path.nucleoRef = self.upper_path.nucleoRef
                                                else:
                                                        self.lower_path.boolRef=True
                                                        self.upper_path.boolRef=False
                                                        self.upper_path.nucleoRef = self.lower_path.nucleoRef
                                else:                                                                   #In case of indel
                                        if self.upper_path.mappingPosition<self.lower_path.mappingPosition: #Checks the mapping position and keeps the lefmost position
                                                self.lower_path.boolRef=False
                                                self.upper_path.boolRef=True
                                        else:
                                                self.lower_path.boolRef=True
                                                self.upper_path.boolRef=False
#---------------------------------------------------------------------------------------------------------------------------
#---------------------------------------------------------------------------------------------------------------------------
        def RetrieveGenotypes(self,nbGeno,VCFObject):
                """Gets the phred quality Q, the genotype, the coverage and the likelihood by sample and prints it in the corresponding fields. The genotype is determined by DiscoSnp++ (which considered the upper path as reference). If the “REF” corresponds the upper path, the genotype in the VCF is identical to the genotype in DiscoSnp++, else  it's the opposite ( 1/1 becomes 0/0 and so on)."""
                j=0
                genotypes=""
                key=None
                current_genotype=None
                likelihood=None
                coverage=None
                listcovUp = self.upper_path.listCoverage
                listcovLow = self.lower_path.listCoverage
                listfqUp = self.upper_path.listFQQuality
                listfqLow = self.lower_path.listFQQuality
                if int(nbGeno)==0:
                        VCFObject.formatField=""
                        VCFObject.genotypes=""
                        return
                else:
                        for i in range(0,nbGeno): #for each genotype
                                coverage=f"{listcovUp[i]},{listcovLow[i]}"#defines allele depth 
                                key=f"G{i+1}" # Creates the dictionary key
                                current_genotype = self.dicoGeno[key]#Gets the genotypes associated to the key
                                likelihood=current_genotype[1]#Gets the likelihood associated to the key
                                if listfqUp!="" and listfqLow!="":
                                        fq_quality=f":{listfqUp[i]},{listfqLow[i]}"
                                else :
                                        fq_quality=""
                                if self.lower_path.boolRef==True: #Checks if the mapped path is the lower (in this case exchange 0/0 to 1/1 and 1/1 to 0/0 ; exchanges the likelihood to have the good one for each genotypes)
                                        if listfqUp!="":
                                                fq_quality=f":{listfqLow[i]},{listfqUp[i]}"
                                        else :
                                                fq_quality=""
                                        coverage=f"{listcovLow[i]},{listcovUp[i]}"#Inverts the coverage
                                        #Inverts the first and the last likelihood
                                        likelihoodStart=likelihood[2]
                                        likelihoodEnd=likelihood[0]
                                        likelihood[0]=likelihoodStart
                                        likelihood[2]=likelihoodEnd
                                        #Inverts the genotype
                                        if current_genotype[0] == "0/0": current_genotype[0] = "1/1" 
                                        elif current_genotype[0] == "1/1": current_genotype[0] = "0/0" 
                                        # if "1/1" in current_genotype[0]:
                                        #         current_genotype[0]=current_genotype[0].replace("1/1","0/0")
                                        # elif "0/0" in current_genotype[0]:
                                        #         current_genotype[0]=current_genotype[0].replace("0/0","1/1")
                                if VCFObject.phased==True: #In case of phasing we change the "/" symbol
                                        current_genotype[0]=current_genotype[0].replace("/","|")
                                if isinstance(likelihood,list):
                                        likelihood=str(','.join(current_genotype[1]))
                                else:
                                        likelihood=str(likelihood)
                                genotypes+=str(current_genotype[0])+":"+str(int(listcovUp[i])+int(listcovLow[i]))+":"+likelihood+":"+str(coverage)+str(fq_quality)

                                if i<nbGeno-1 :
                                        genotypes+="\t" #Adds a \t except if this is the last genotype
                #Write results in VCF object
                        VCFObject.formatField="GT:DP:PL:AD"
                        if listfqUp!="":
                                VCFObject.formatField="GT:DP:PL:AD:HQ"  
                        VCFObject.genotypes=genotypes                                                                                                               
    
#---------------------------------------------------------------------------------------------------------------------------
#---------------------------------------------------------------------------------------------------------------------------
                                
        def FillVCF(self,VCFfile,nbGeno,table,VCFObject):
                """Take all necessary input variables to fill the vcf;  Fills the fields of the table which will be printed in the vcf ; return the table"""          
                if VCFObject.chrom=="*":
                        table[0]="."
                else:
                        table[0]=VCFObject.chrom
                table[1] = self.mappingPositionCouple
                table[2] = self.variantID
                table[3]=VCFObject.ref

                table[5]="."
                table[6]=VCFObject.filterField
                table[7]=f"Ty={VCFObject.variantType};Rk={self.rank};UL={self.len_unitig_left};UR={self.len_unitig_right};CL={self.len_contig_left};CR={self.len_contig_right};Genome={VCFObject.nucleoRef};Sd={VCFObject.reverse}"
                if VCFObject.filterField=="MULTIPLE" and VCFObject.XA:
                        table[7]+=f";XA={VCFObject.XA}"
                #TODO: eviter ces replace.
                #TODO global: pourquoi stocker les valeurs quand on peut les simplement afficher ?
                # table[7]=table[7].replace("None",".") # Done during VCFObject.PrintOneLine
                table[7]=table[7].replace("none",".") # todo: verifier que ca peut encore arriver
                table[7]=table[7].replace("=;","=.;") # todo: verifier que ca peut encore arriver
                table[8]=VCFObject.formatField
                table[9]=VCFObject.genotypes
                error=VCFObject.CheckOutputConsistency(table,self)
                if error == 0: 
                        VCFObject.PrintOneLine(table,VCFfile) #Print the line into the VCF
#---------------------------------------------------------------------------------------------------------------------------
#---------------------------------------------------------------------------------------------------------------------------
                                
        def WhichPathIsTheRef(self,VCFObject):
                """Finds which path is identical to the reference genome (with boolRef) and defines it as the ref : specific method for each type of variant"""       
                #Checks the exception : different mapping position or both paths identical to the reference 
                if ((self.upper_path.mappingPosition>0 and \
                        self.lower_path.mappingPosition>0) \
                        and self.upper_path.mappingPosition != self.lower_path.mappingPosition):
                        self.MismatchChecker()
                        return
                if self.upper_path.boolRef == self.lower_path.boolRef:
                        self.MismatchChecker()
                        return 
                
#---------------------------------------------------------------------------------------------------------------------------
#---------------------------------------------------------------------------------------------------------------------------
        def RetrieveMappingPositionCouple(self): #Validation SNP second part (specific method for close snps)
                """Defines the mapping position for the couple of variant by checking boolRef"""
                #for INDEL and simple snp
                if self.upper_path.boolRef==True:
                        self.mappingPositionCouple = self.upper_path.mappingPosition+int(self.upper_path.correctedPos[0])+int(self.mappingPositionCouple)-1                       
                else:
                        self.mappingPositionCouple = self.lower_path.mappingPosition+int(self.lower_path.correctedPos[0])+int(self.mappingPositionCouple)-1
#---------------------------------------------------------------------------------------------------------------------------
#---------------------------------------------------------------------------------------------------------------------------
        # def CheckStrandAndReverseNucleotideNONOPTIMIZED(self,nucleo):
        #         """Reverse the alt nucleotide if it is needed"""
        #         if self.upper_path.boolRef==True:#Checks if the upper path is the reference
        #                 if self.upper_path.boolReverse= = self.lower_path.boolReverse :#if the mapping strand is the same on both path => returns the nucleotide
        #                         return(nucleo)
        #                 if self.upper_path.boolReverse=="1" and self.lower_path.boolReverse==".":
        #                         return (nucleo)
        #                 if self.upper_path.boolReverse! = self.lower_path.boolReverse:#if the mapping strand is different on both path => returns the reverse nuclotide
        #                         return (ReverseComplement(nucleo))
        #         elif self.lower_path.boolRef==True:#Checks if the lower path is the reference
        #                 if self.upper_path.boolReverse= = self.lower_path.boolReverse or (self.lower_path.boolReverse==1 and self.upper_path.boolReverse=="."):#if the mapping strand is the same on both path => returns the nucleotide
        #                         return (nucleo)
        #                 if self.lower_path.boolReverse=="1" and self.upper_path.boolReverse==".":
        #                         return (nucleo)
        #                 if self.upper_path.boolReverse! = self.lower_path.boolReverse:#if the mapping strand is different on both path => returns the reverse nucleotide
        #                         return (ReverseComplement(nucleo))
        #         else :
        #                 return (nucleo)
        #
#---------------------------------------------------------------------------------------------------------------------------
#---------------------------------------------------------------------------------------------------------------------------
        def CheckStrandAndReverseNucleotide(self,nucleo):
                """Reverse the alt nucleotide if it is needed"""
                if self.upper_path.boolReverse != self.lower_path.boolReverse:# if the mapping strand is different on both path => returns the reverse nuclotide
                        if (str(self.upper_path.boolReverse) == "1" and self.lower_path.boolReverse==".") or (self.upper_path.boolReverse=="." and str(self.lower_path.boolReverse)=="1"):
                                return nucleo # Case in which one of the two variants matched with a 2 or more indel, thus considered as non mapped. June 3017
                        return ReverseComplement(nucleo)
                else :
                        return nucleo 
#---------------------------------------------------------------------------------------------------------------------------
#Example of supplementary alignment
#INDEL_higher_path_17964|P_1:30_10_8|low|nb_pol_1|left_unitig_length_346|right_unitig_length_815|C1_12|C2_1|G1_0/1:321,17,162|G2_1/1:848,120,10|rank_0.46189	0	gi|224384768|gb|CM000663.1|	191102952	60	52M	*	0	0	AAGAAAAAAGAAATAAAAAAAGAAAAAAAAACGAAATAGCCAGAAGGAATGA	*	NM:i:2	MD:Z:1G9C40	AS:i:45	XS:i:23
#INDEL_lower_path_17964|P_1:30_10_8|low|nb_pol_1|left_unitig_length_346|right_unitig_length_815|C1_20|C2_43|G1_0/1:321,17,162|G2_1/1:848,120,10|rank_0.46189	0	gi|224384768|gb|CM000663.1|	191102966	123S8M1I30M	*	0	0	AAGAAAAAAGAAATAAAAAAAGAAAAAAAAGAAAAAAAAAACGAAATAGCCAGAAGGAATGA	*	NM:i:1	MD:Z:38	AS:i:31	XS:i:29	SA:Z:gi|224384768|gb|CM000663.1|,3668552,-,24S29M1D9M,1,2;
#INDEL_lower_path_17964|P_1:30_10_8|low|nb_pol_1|left_unitig_length_346|right_unitig_length_815|C1_20|C2_43|G1_0/1:321,17,162|G2_1/1:848,120,10|rank_0.46189	2064	gi|224384768|gb|CM000663.1|	3668552	1	24H29M1D9M	*	0	0	TTTTTTTCTTTTTTTTCTTTTTTTATTTCTTTTTTCTT	*	NM:i:2	MD:Z:12C16^T9	AS:i:30	XS:i:26	SA:Z:gi|224384768|gb|CM000663.1|,191102966,+,23S8M1I30M,1,1;	XA:Z:gi|224384768|gb|CM000663.1|,-197957308,27S26M9S,0;
#---------------------------------------------------------------------------------------------------------------------------
        def  CheckCoupleVariantID(self):
                """Test if the couple of paths has the same ID"""                
                IDVariantUp = self.upper_path.listSam[0].split("_")[3]
                IDVariantLow= self.lower_path.listSam[0].split("_")[3]
                bitwiseFlag=int(self.upper_path.listSam[1])                
                if IDVariantUp != IDVariantLow:
                        if bitwiseFlag >0: #& 2048 : #Checks if it's a supplementary alignment
                                print("Supplementary alignment:")
                                print(self.upper_path.listSam)
                                return (2) 
                        else :
                                print("WARNING two consecutive lines do not store the same variant id: ")
                                print(self.upper_path.listSam)
                                print(self.upper_path.listSam[1])
                                print(self.lower_path.listSam)
                                return (2)
                
                else:
                        return (0)                                                                           
#############################################################################################
#############################################################################################
class PATH():
        """corresponds to one path of a discoSnp prediction"""
        def __init__(self,line):
                self.listCoverage=[]                                    #list of all the coverage by sample for the path
                self.dicoMappingPos={}                                  #dictionnary with all the mapping positions associated with their number of mismatches with the reference
                self.listNucleotideReverse=[]                           #list of all the variant (snp) of the path on the reverse strand
                self.listNucleotideForward=[]                           #list of all the variant (snp) of the path on the forward strand                
                self.boolReverse=None                                   #Boolean to know if the strand is reverse(-1) or forward(1)
                self.posMut=None                                        #MD tag of the samfile "MD:Z:5A10A0A25G17" =>  5A10A0A25G17
                self.cigarcode=None                                     #cigarcode of the samfile "61M"
                self.boolRef=None                                       #Boolean to know if the path is identical to the reference
                self.nucleoRef=None                                     #Nucleotide corresponding to the variant on the reference
                self.nucleo=None                                        #nucleotide corresponding of the variant on the path
                self.listPosVariantOnPathToKeep=[]                      #list of the positions of all the variant on the in case of Reverse or Forward mapped path
                self.listPosReverse=[]                                  #mapping position(s) of the variant on the path (if it is mapped on the reverse strand)
                self.listPosForward=[]                                  #mapping position(s) of the variant on the path (if it is mapped on the forward strand)
                self.correctedPos=0                                     #list or position of the mapping variant by taking into account the shift with the reference
                self.listFQQuality=[]                                   #string of all the quality scores of every variant
                if ">" not in line:                                     # Case of samfile
                        self.listSam=line.rstrip('\r').rstrip('\n').split('\t')
                        self.discoName = self.listSam[0]
                        self.seq = self.listSam[9]                        #gets the sequence of the path
                        self.mappingPosition=abs(int(self.listSam[3]))  #mapping position of the path
                        self.RetrieveDicoMappingPosition()
                        self.CheckBitwiseFlag()
                else:                                                   #Mode ghost fastafile
                        line=line.strip('>').split("\n")
                        line.pop()
                        self.listSam=line                                #gets the sequence of the path
                        self.discoName = self.listSam[0]
                        self.seq=""
                        self.mappingPosition=0                           #mapping position of the path 
                        self.boolReverse="."                             #We need to define the absence of strand           

        def RetrieveXA(self,VCFObject):
                localXA=""
                for position,(_,cigarcode) in self.dicoMappingPos.items():
                        if cigarcode!="":
                                chromosome = '_'.join(position.split('_')[:-1])
                                mapping_position = int(position.split('_')[-1])
                                shifted_mapping_position = shift_from_cigar_code(cigarcode,abs(mapping_position)+self.listPosVariantOnPathToKeep[0]-1)
                                localXA+=chromosome+'_'+str(shifted_mapping_position)+","
                
                localXA=localXA.rstrip(',')
                VCFObject.XA = localXA

                
                            
#---------------------------------------------------------------------------------------------------------------------------
#---------------------------------------------------------------------------------------------------------------------------                     
        def RetrieveSeq(self,seq):
                """Getter for sequence: fills path object"""
                self.seq=seq        
                
                
        def RetrieveDicoMappingPosition(self):
                """Retrieves for each path alignment information in a list ; retrieves a dictionary with all the positions of a path and the number of associated mismatch"""
                variant = self.listSam
                listXA = None
                strXA = None
                alternative_positions = None
                nbMismatch = None
                variant_position = abs(int(variant[3]))
                variant_chromosome = variant[2]
                #Error list with mapping positions very close to the first position given by bwa
                # listerreur=set([(int(variant[3])-1),(int(variant[3])+1),(int(variant[3])+2),(int(variant[3])+3),(int(variant[3])-3),(int(variant[3])-2),int(variant[3])])
                #Creation of a dict with mapping position associated with number of mismatch
                
                # XA cannot occur in the 11 mandatory fields: QNAME	FLAG	RNAM	POS	MAPQ	CIGAR	RNEXT	PNEXT	TLEN	SEQ	QUAL
                
                if 'XA:Z' in ''.join(variant[11:]): # XA: tag for multiple mapping : Checks if the upper path is multiple mapped : XA Alternative hits; format: (chr,pos,CIGAR,NM;)*
                        for item in variant[11:]: 
                                if "XA:Z" in item:
                                        #Parsing XA tag
                                        listXA=item.split(":")[2].split(';')
                                        strXA = ','.join(listXA)        # TODO: useless (?)
                                        listXA = strXA.split(',')       # TODO: useless (?)
                                        listXA.pop()
                                        alternative_positions = listXA     #position=[chrom1,pos1,cigarcode1,number of mismatch1 , chrom2,pos2,cigarcode2,number of mismatch2,...]. pos_i may be negative, in case of revcomp mapping.
                                        self.XA = item
                                        break                #no need to search for XA in other fields
                        i=1
                        while i < len(alternative_positions): #Runs through the list 4 by 4 to get all the positions 
                                
                                if alternative_positions[i-1]==variant_chromosome and\
                                        abs(int(alternative_positions[i])) > variant_position-4 and\
                                        abs(int(alternative_positions[i])) < variant_position+4: 
                                        i+=4
                                        continue #Checks if the position is not too close to the main one
                                
                                self.dicoMappingPos[alternative_positions[i-1]+"_"+alternative_positions[i]]=[int(alternative_positions[i+2]), alternative_positions[i+1]]#the position is associated to the number of mismatch in a dictionary
                                
                                i+=4
                                

                if variant_position>0:#adds the main mapping position to the dictionary of all mapping positions
                        posMut,nbMismatch = self.GetTag()
                        #In case of mapped variant without MD TAG :
                        self.dicoMappingPos[abs(int(variant[3]))]=[nbMismatch,""]
#---------------------------------------------------------------------------------------------------------------------------
#
#FLAG = field to test
#1   read paired
#2   read mapped in proper pair

#4   read unmapped
#8   mate unmapped
#16   read reverse strand
#32   mate reverse strand
#64   first in pair
#128   second in pair
#256   not primary alignment
#512   read fails platform/vendor quality checks
#1024  read is PCR or optical duplicate
#2048  supplementary alignment
#
#---------------------------------------------------------------------------------------------------------------------------                                                                   
        def CheckBitwiseFlag(self):
                """Checks if the BitwiseFlag contains the tested value such as : read reverse strand, read unmmaped and so on."""
                if int(self.listSam[1]) & 16:#Reverse strand
                        self.boolReverse="-1" 
                        self.listPosVariantOnPathToKeep = self.listPosReverse
                        return
                if int(self.listSam[1]) & 4: #Unmapped
                        self.listPosVariantOnPathToKeep = self.listPosForward
                        self.boolReverse="."  
                        return
                #else:  #Forward strand                   
                self.listPosVariantOnPathToKeep = self.listPosForward
                self.boolReverse="1"        

#---------------------------------------------------------------------------------------------------------------------------
#---------------------------------------------------------------------------------------------------------------------------          
        def CigarcodeChecker(self):
                """Checks in the cigarcode of the samfile if there is a shift in the alignment between the path and the reference"""
                cigarcode = self.listSam[5]               
                parsingCigarCode=re.findall(r'(\d+|[A-Za-z])',cigarcode) #ParsingCigarCode=['2', 'S', '3', 'M', '1', 'I', '25', 'M']
                listPosRef=[]
                listShift=[]
                somme=0
                shift=0
                pos=0
                i=1
                j=0
                listpol = self.listPosVariantOnPathToKeep
                while i<len(parsingCigarCode):#Goes through the list by twos to get all the letters and to take them into account
                        local_cigar_code = parsingCigarCode[i]
                        previous_local_cigar_code = parsingCigarCode[i-1]
                        if local_cigar_code=="S":
                                shift-=int(previous_local_cigar_code)
                                pos+=int(previous_local_cigar_code)
                        elif local_cigar_code=="M":
                                pos+=int(previous_local_cigar_code)
                        elif local_cigar_code=="D":
                                shift+=int(previous_local_cigar_code)
                        elif local_cigar_code=="I":
                                shift-=int(previous_local_cigar_code)#There is a nucleotide of shift compared to the reference
                                pos+=int(previous_local_cigar_code) #We advance in the query SEQ
                        #Hard clipping (clipped sequences NOT present in SEQ)
                        elif local_cigar_code=="H":
                                shift-=int(previous_local_cigar_code) # It's the shift in the alignment between the reference and the sequence of the variant 
                                pos+=int(previous_local_cigar_code)
                        #Padding (silent deletion from padded reference)
                        elif local_cigar_code=="P":
                                shift+=int(previous_local_cigar_code)
                                pos+=int(previous_local_cigar_code)
                        elif local_cigar_code=="=":
                                pos+=int(previous_local_cigar_code)
                        elif local_cigar_code=="X":
                                pos+=int(previous_local_cigar_code)
                        if len(listpol)==1:#Simple SNP and INDEL
                                if pos>=int(listpol[0]):
                                        posRef=int(listpol[0])+shift#takes into account the shift to add the after the mapping position and the variant position in the sequence                                
                                        listShift.append(shift)
                                        listPosRef.append(posRef)
                                        return(listPosRef,listShift)
                        elif len(listpol)>1:#Close SNPs
                                while int(pos)>=int(listpol[j]):#Goes through the list of position (close snps) and see if the position is affected by the shift (means shift before the position)self.listNucleotideForward
                                        posRef=int(listpol[j])+shift #Add the shift to the position (to get the real position of the snp on the reference)
                                        listPosRef.append(posRef) #Add the position to the list by taking into account the shift only if the current position 
                                        listShift.append(shift)
                                        if j<(len(listpol)-1):
                                                j+=1
                                        else:
                                                return(listPosRef,listShift)
                        i+=2                
#---------------------------------------------------------------------------------------------------------------------------
#Example of unmmaped variant : soft clipping of the variant
#['SNP_higher_path_146392|P_1:30_A/G,P_2:45_C/T,P_3:48_T/G|high|nb_pol_3|left_unitig_length_157|right_unitig_length_564|C1_13|C2_1|G1_0/1:389,20,170|G2_1/1:828,117,10|rank_0.43053', '0', 'gi|224384768|gb|CM000663.1|', '229146041', '52', '79M', '*', '0', '0', 'CTTTCTATCTCAAAAGCAGCCACAGACCACATGTAAACAAATAAGCGGTGCCATGTTCCAATAAAACTTTATTTACAGA', '*', 'NM:i:5', 'MD:Z:15T23G1G4T23G8', 'AS:i:54', 'XS:i:30']
#['SNP_lower_path_146392|P_1:30_A/G,P_2:45_C/T,P_3:48_T/G|high|nb_pol_3|left_unitig_length_157|right_unitig_length_564|C1_24|C2_42|G1_0/1:389,20,170|G2_1/1:828,117,10|rank_0.43053', '16', 'gi|224384768|gb|CM000663.1|', '15779841', '25', '30M49S', '*', '0', '0', 'TCTGTAAATAAAGTTTTATTGGAACATGGCCCCACTTATTTGTTTACACGTGGTCTGTGGCTGCTTTTGAGATAGAAAG', '*', 'NM:i:0', 'MD:Z:30', 'AS:i:30', 'XS:i:25', 'XA:Z:gi|224384768|gb|CM000663.1|,+7370519,52S27M,1;gi|224384768|gb|CM000663.1|,-95561814,27M52S,1;']


#SNP_higher_path_215581|P_1:30_C/G|low|nb_pol_1|left_unitig_length_8|right_unitig_length_1|C1_7|C2_17|G1_0/1:554,48,75|G2_0/1:268,13,248|rank_0.32064	0	gi|224384768|gb|CM000663.1|	232979913	7	31S30M	*	0	0	TCAAGACCAGCCTAGGCAACATAGAGATACCATGTCTCTACAAAAAATTAAAAAAAAAAAA	*	NM:i:0	MD:Z:30	AS:i:30	XS:i:28	XA:Z:gi|224384768|gb|CM000663.1|,-241321283,29M32S,1;gi|224384768|gb|CM000663.1|,-114672467,28M33S,0;
#SNP_lower_path_215581|P_1:30_C/G|low|nb_pol_1|left_unitig_length_8|right_unitig_length_1|C1_31|C2_18|G1_0/1:554,48,75|G2_0/1:268,13,248|rank_0.32064	16	gi|224384768|gb|CM000663.1|	65214684	37	59M2S	*	0	0	TTTTTTTTTTTTAATTTTTTGTAGAGACATCGTATCTCTATGTTGCCTAGGCTGGTCTTGA	*	NM:i:3	MD:Z:16A23A5A12	AS:i:44	XS:i:30
#---------------------------------------------------------------------------------------------------------------------------                               
        def ReferenceChecker(self,shift,posCentraleRef,VCFObject,PosVariant):
                """Function which allows to get the MD tag parsing; checks if path nucleotide is identical to the reference nucleotide"""
                i=0
                posMut,nbMismatch = self.GetTag()
                boolDel=True
                pos=shift
                #Allows or disallows soft clip in BWA
                #if int(shift)<=-(int(PosVariant)):#Test if the variant is really mapped (soft clipping > variant position => unmmaped variant)
                if int(shift)<=-2:#we allow 2 soft clip (for bwa mem)
                        self.boolRef=False
                        self.mappingPosition=0#It is considered that the path is unmapped
                        return()  
                nucleoRef=None
                matchInt=None
                parsingPosMut=re.findall(r'(\d+|[A-Za-z]|\^)',posMut)
                while i<len(parsingPosMut):#Converts the number into integer 
                        matchInt=re.match(r'\d+',parsingPosMut[i]) #Integer motif
                        if matchInt:
                                parsingPosMut[i]=int(parsingPosMut[i])
                        i+=1
                i=0
                while i<len(parsingPosMut): #Goes through the list to know if the variant is identical to the reference
                        if isinstance(parsingPosMut[i],int): #Checks if it's a number of nucleotide or a letter
                                pos+=parsingPosMut[i] #Adds to pos the current number of the list
                        elif parsingPosMut[i]=="^":#In case of deletion from the reference we have to substract the deletion from the current position  
                                i+=1
                                while boolDel: #Checks if it is still a letter in the deletion to substract it from the current position
                                        if isinstance(parsingPosMut[i],int): #If it is an integer we achieved to take into account the deletion : adds the integer to the current position
                                                boolDel=False
                                                pos+=parsingPosMut[i]
                                        else:
                                                pos-=1 #Substracts the nucleotide from the current position
                                                i+=1
                                boolDel=True
                        else:
                                pos+=1
                        if pos==posCentraleRef: # Checks if the current position pos is identical to the position of the variant 
                                if isinstance(parsingPosMut[i],str): #=> it means that the nucleotide is different in the variant and in the reference
                                        self.boolRef=False
                                        self.nucleoRef=parsingPosMut[i]
                                        break
                                else: #If the last item of the list of the MD tag is an integer => it means that the nucleotide of the allele is identical to the reference
                                        self.boolRef=True
                                        break
                        if pos>posCentraleRef: #If the current position is bigger than the variant position it means that the nucleotide of the variant is identical to the reference
                                self.boolRef=True
                                break
                        i+=1
                if pos<posCentraleRef:#Case of large soft clip
                        self.boolRef=False
                        self.nucleoRef="." 
                VCFObject.nucleoRef=nucleoRef  
# nucleoRef : if the nucleotide is different from the reference return the nucleotide of reference
#---------------------------------------------------------------------------------------------------------------------------
#---------------------------------------------------------------------------------------------------------------------------                                         
        def RetrieveCoverage(self,dicoIndex):
                """Gets the coverage by path in the discosnp++ header"""
                if "C" in dicoIndex:
                        spitted_input = self.discoName.split("|")
                        for i in dicoIndex["C"]:
                                # matchC=re.match(r'^C',spitted_input[i])
                                if spitted_input[i][0]=='C':
                                        self.listCoverage.append(spitted_input[i].split('_')[1])

#---------------------------------------------------------------------------------------------------------------------------
#---------------------------------------------------------------------------------------------------------------------------                                         
        def RetrieveQualityFQ(self,dicoIndex):
                """Gets the coverage by path in the discosnp++ header"""
                if "Q" in dicoIndex:
                        spitted_input = self.discoName.split("|")
                        for i in dicoIndex["Q"]:   
                                # matchQ=re.match(r'^Q',self.discoName.split("|")[i])
                                if spitted_input[i][0]=="Q":
                                        self.listFQQuality.append(spitted_input[i].split('_')[1])
                else : self.listFQQuality = ""                              
#---------------------------------------------------------------------------------------------------------------------------
#---------------------------------------------------------------------------------------------------------------------------                                             
        def GetTag(self):
                """Gets the number of mismatch in the samline"""
                variant = self.listSam


                #Defines NM tag:
                for field in self.listSam[11:]: # TODO : avoid this loop
                        if "NM:" in field:
                                nbMismatch=int(field.split(":")[-1])#Gets the number of mismatch for the first position given by the mapper       
                                break    
                if abs(int(variant[3]))>0:#Check if the variant is really mapped
                        if "MD:" not in str(variant):#Not MD Tag in the variant we deduce the value from the cigarcode
                                print ("!!! No MD tag in your sam file : Could you try with the last version of bwa (upper than 0.7.8) ?")
                                sys.exit()
                        else:                                              
                                for field in self.listSam[11:]:
                                        if "MD:" in field:
                                                posMut = field.split(":")[2] #MD tag parsing
                                                break
                return (posMut,nbMismatch)               
#---------------------------------------------------------------------------------------------------------------------------
#---------------------------------------------------------------------------------------------------------------------------                                             
                        
        def CheckPosVariantFromRef(self,VCFObject): #Validation snp first part
                """Checks if the variant is identical to the reference or not ; defines the nucleotide on the reference"""
                dicoClose={}
                nucleo=None
                boolRef=None
                nucleoRef=None
                if int(self.mappingPosition)>0:
                        #Gets the shift by positions (insertion,deletion,sofclipping) and update of the position on the path
                        listCorrectedPos,listShift = self.CigarcodeChecker()
                        self.correctedPos=listCorrectedPos
                        #Defines if the path is identical to the reference and what is the nucleotide on the reference
                        i=0
                        for i in range(len(listCorrectedPos)):#Loops on the list of corrected positions
                                self.ReferenceChecker(listShift[i],listCorrectedPos[i],VCFObject,self.listPosVariantOnPathToKeep[i])#Checks if the path is identical to the reference genome
                                if int(self.mappingPosition)<=0:# Case => variant considered as unmapped because of soft clipping so we have to check again if the mapping position
                                        break
                                if self.boolReverse=="1" and self.listNucleotideForward!=[]:#If we are on the forward strand => defines the nucleotide for the current snp or indel.
                                        self.nucleo = self.listNucleotideForward[i]
                                        if self.nucleoRef==None:#If there is no reference nucleotide given by ReferenceChecker, it means that the variant is equal to the reference so we defined it !
                                                self.nucleoRef = self.listNucleotideForward[i]
                                elif self.boolReverse=="-1" and self.listNucleotideReverse!=[]:#If we are on the reverse strand => defines the nucleotide for the current snp or indel.
                                        self.nucleo = self.listNucleotideReverse[i]
                                        if self.nucleoRef==None:#If there is no reference nucleotide given by ReferenceChecker, it means that the variant is equal to the reference so we defined it !
                                                self.nucleoRef = self.listNucleotideReverse[i]
                                dicoClose[self.listPosVariantOnPathToKeep[i]]=[(self.boolRef),(self.nucleoRef),(listCorrectedPos[i]),(self.nucleo),(self.boolReverse),(int(listCorrectedPos[i])+int(self.mappingPosition))]#Fills the dictionary to keep all informations for close snps
                                if i==0: #Keeps the information of the first snp/indel to fill the attributs of the path object
                                        boolRef = self.boolRef
                                        nucleoRef = self.nucleoRef
                                        nucleo = self.nucleo
                                self.nucleoRef=None#Resets the reference nucleotide for the next snp (case of close snps)
                                                                                                                                                                                                    
                if int(self.mappingPosition)<=0:#Case of unmapped path
                        listCorrectedPos = self.listPosForward#We keep the forward position for every snps/indel on the path
                        self.listPosVariantOnPathToKeep = self.listPosForward
                        shift=0#There is no shift with the reference
                        self.boolReverse="."
                        self.nucleoRef="."
                        self.boolRef=False
                        boolRef=False
                        nucleoRef='.'
                        self.correctedPos=listCorrectedPos
                        if self.listNucleotideForward!=[]:
                                self.nucleo = self.listNucleotideForward[0]
                                i=0
                                for i in range(len(self.listNucleotideForward)):#Loops on the list of position to fill the dictionary for close snps
                                        dicoClose[self.listPosForward[i]]=[(False),(self.nucleoRef),(listCorrectedPos[i]),(self.listNucleotideForward[i]),self.boolReverse,(int(listCorrectedPos[i])+int(self.mappingPosition))]
                                        if i==0:
                                                boolRef=False
                                                nucleoRef = self.nucleoRef
                                                nucleo = self.nucleo
                
                #Fills the attribut of the path with the information of the first snp/indel        
                self.boolRef=boolRef
                self.nucleoRef=nucleoRef
                self.nucleo=nucleo
                return(dicoClose)                                                                           
#############################################################################################
#############################################################################################
class SNP(VARIANT):
        def __init__(self,line1,line2):
                VARIANT.__init__(self,line1,line2)
#---------------------------------------------------------------------------------------------------------------------------
#---------------------------------------------------------------------------------------------------------------------------                     
        def WhichPathIsTheRef(self,VCFObject):
                """Finds which path is identical to the reference genome (with boolRef) and defines it as the ref : specific method for each type of variant"""  
                VARIANT.WhichPathIsTheRef(self,VCFObject)                
                posUnmapped = max(self.len_unitig_left,self.len_contig_left) #Takes into account the length of the unitig/contig for the position of unmapped allele (position of the allele on the lower path)
                # self.CheckContigUnitig(self.len_unitig_left,self.len_contig_left) #Takes into account the length of the unitig/contig for the position of unmapped allele (position of the allele on the lower path)
#---------------------------------------------------------------------------------------------------------------------------
##Case : two mapped paths
                if self.upper_path.mappingPosition>0 and self.lower_path.mappingPosition>0:
                        ##The path identical to the reference is the lower path 
                        if self.lower_path.boolRef == True and self.upper_path.boolRef==False:
                                VCFObject.chrom = self.lower_path.listSam[2]
                                VCFObject.ref = self.lower_path.nucleo
                                VCFObject.alt = self.upper_path.nucleo
                                VCFObject.reverse = self.lower_path.boolReverse
                                VCFObject.nucleoRef = self.lower_path.nucleoRef
                        ##The path identical to the reference is the upper path 
                        elif self.upper_path.boolRef == True and self.lower_path.boolRef==False:
                                VCFObject.chrom = self.upper_path.listSam[2]
                                VCFObject.ref = self.upper_path.nucleo
                                VCFObject.alt = self.lower_path.nucleo
                                VCFObject.reverse = self.upper_path.boolReverse
                                VCFObject.nucleoRef = self.upper_path.nucleoRef
                        ##No path is identical to the reference => lexicographique choice
                        elif self.upper_path.boolRef == False and self.lower_path.boolRef==False:
                                if  self.upper_path.nucleo < self.lower_path.nucleo:
                                        VCFObject.chrom = self.upper_path.listSam[2]
                                        VCFObject.ref = self.upper_path.nucleo
                                        VCFObject.alt = self.lower_path.nucleo
                                        VCFObject.reverse = self.upper_path.boolReverse
                                        VCFObject.nucleoRef = self.upper_path.nucleoRef
                                elif  self.upper_path.nucleo > self.lower_path.nucleo:
                                        VCFObject.chrom = self.lower_path.listSam[2]
                                        VCFObject.ref = self.lower_path.nucleo
                                        VCFObject.alt = self.upper_path.nucleo
                                        VCFObject.reverse = self.lower_path.boolReverse
                                        VCFObject.nucleoRef = self.lower_path.nucleoRef

#---------------------------------------------------------------------------------------------------------------------------
##Case : Lower path mapped and upper path unmapped      
                elif self.upper_path.mappingPosition<=0 and self.lower_path.mappingPosition>0:
                        VCFObject.chrom = self.lower_path.listSam[2]
                        VCFObject.ref = self.lower_path.nucleo
                        VCFObject.alt = self.upper_path.nucleo
                        VCFObject.reverse = self.lower_path.boolReverse
                        VCFObject.nucleoRef = self.lower_path.nucleoRef
#---------------------------------------------------------------------------------------------------------------------------
##Case : Upper path mapped and lower path unmapped        
                elif self.upper_path.mappingPosition>0 and self.lower_path.mappingPosition<=0:
                        VCFObject.chrom = self.upper_path.listSam[2]
                        VCFObject.ref = self.upper_path.nucleo
                        VCFObject.alt = self.lower_path.nucleo
                        VCFObject.reverse = self.upper_path.boolReverse
                        VCFObject.nucleoRef = self.upper_path.nucleoRef
#---------------------------------------------------------------------------------------------------------------------------
##Case : Both paths are unmapped       
                elif self.upper_path.mappingPosition<=0 and self.lower_path.mappingPosition<=0:
                        self.mappingPositionCouple=int(posUnmapped)
                        if  self.lower_path.nucleo<self.upper_path.nucleo:
                                VCFObject.chrom = self.lower_path.discoName.split("|")[0]
                                VCFObject.ref = self.lower_path.nucleo
                                VCFObject.alt = self.upper_path.nucleo
                                VCFObject.reverse = self.lower_path.boolReverse
                                VCFObject.nucleoRef = self.lower_path.nucleoRef
                        else:
                                VCFObject.chrom = self.upper_path.discoName.split("|")[0]
                                VCFObject.ref = self.upper_path.nucleo
                                VCFObject.alt = self.lower_path.nucleo
                                VCFObject.reverse = self.upper_path.boolReverse
                                VCFObject.nucleoRef = self.upper_path.nucleoRef
                                
#---------------------------------------------------------------------------------------------------------------------------
#---------------------------------------------------------------------------------------------------------------------------                                     
                                
        def FillVCF(self,VCFfile,nbGeno,table,VCFObject):
                table[4] = self.CheckStrandAndReverseNucleotide(str(VCFObject.alt)) 
                VARIANT.FillVCF(self,VCFfile,nbGeno,table,VCFObject)
                                     
#############################################################################################
#############################################################################################
class INDEL(VARIANT):
        def __init__(self,line1,line2):
                VARIANT.__init__(self,line1,line2)
                self.insertForward=None
                self.insertReverse=None
                self.ntStartForward=None
                self.ntStartReverse=None   
                self.smallestSequence=None
                self.longestSequenceForward=None
                self.longestSequenceReverse=None
#---------------------------------------------------------------------------------------------------------------------------
#---------------------------------------------------------------------------------------------------------------------------                     
        def RetrievePolymorphismFromHeader(self):
                #Test which is the samllest sequence
                if len(self.upper_path.seq)<len(self.lower_path.seq):
                        self.smallestSequence = self.upper_path.seq
                        if self.lower_path.boolReverse=="1" or self.lower_path.boolReverse==".":
                                self.longestSequenceForward = self.lower_path.seq
                                self.longestSequenceReverse=ReverseComplement(self.lower_path.seq)
                        else:
                                self.longestSequenceForward=ReverseComplement(self.lower_path.seq)
                                self.longestSequenceReverse = self.lower_path.seq
                else:
                        self.smallestSequence = self.lower_path.seq
                        if self.lower_path.boolReverse=="1" or self.lower_path.boolReverse==".":
                                self.longestSequenceForward = self.upper_path.seq
                                self.longestSequenceReverse=ReverseComplement(self.upper_path.seq)
                        else:
                                self.longestSequenceForward=ReverseComplement(self.upper_path.seq)
                                self.longestSequenceReverse = self.upper_path.seq
                for key,(posD,ind,amb) in list(self.dicoAllele.items()):#Goes through the dictionary of parsed header
                        #In case of forward strand mapped
                        #we return the disco indel + the lefmost nucleotide before the indel (by taking into account the ambiguity
                        self.upper_path.listPosForward.append(int(posD)-int(amb))
                        self.lower_path.listPosForward.append(int(posD)-int(amb))
                        self.lower_path.listPosReverse.append(len(self.smallestSequence)-int(posD))
                        self.upper_path.listPosReverse.append(len(self.smallestSequence)-int(posD))
                        
                        # 29 oc 2021, Pierre (bored by this ugly code) : simplified this. This was bugged when used on unmapped INDELs with unitig or contig extensions.
                        self.insertForward = self.longestSequenceForward.strip("acgt")[(int(posD)-1-int(amb)):(int(posD)-int(amb)+int(ind))]
                        self.insertReverse = ReverseComplement(self.longestSequenceForward.strip("acgt")[(int(posD)-int(amb)):(int(posD)-int(amb)+int(ind))+1])
                        # self.insertReverse = self.longestSequenceReverse.strip("acgt")[len(self.smallestSequence)-int(posD)-1:(len(self.smallestSequence)-int(posD)+int(ind))]
                        self.ntStartForward = self.insertForward[0] #We get the nucleotide just before the insertion by taking into account the possible ambiguity for the position of the indel
                        self.ntStartReverse = self.insertReverse[0]
                        self.lower_path.nucleo="."
                        self.upper_path.nucleo="."
#---------------------------------------------------------------------------------------------------------------------------
#---------------------------------------------------------------------------------------------------------------------------                                                          
        def WhichPathIsTheRef(self,VCFObject):
                #Finds the path identical to the reference
                VARIANT.WhichPathIsTheRef(self,VCFObject)
                posUnmapped = max(self.len_unitig_left,self.len_contig_left) #Takes into account the lenght of the unitig/contig for the position of unmapped allele (position of the allele on the lower path)
                old_boolRef_Up=None
                old_boolRef_Low=None
                #In case of unmapped variant : we have to define a reference
                if self.upper_path.boolRef==False and self.lower_path.boolRef==False: # case of unmapped variant
                        old_boolRef_Up=False
                        old_boolRef_Low=False
                        if self.smallestSequence == self.lower_path.seq:
                                self.upper_path.boolRef=False
                                self.lower_path.boolRef=True
                        else:
                                self.upper_path.boolRef=True
                                self.lower_path.boolRef=False         
                #Checks if the insert corresponds to the upper path or to the lower path and the strand of mapping
                # if the lower path or the upper path is the ref and if it is a reverse mapping : 
                if (self.lower_path.boolRef==True and self.lower_path.boolReverse=="-1") or  (self.upper_path.boolRef==True and self.upper_path.boolReverse=="-1"): 
                        if len(self.lower_path.seq)>len(self.upper_path.seq): #if the sequence of the upper path is the smallest 
                                self.lower_path.nucleo = self.insertReverse
                                self.upper_path.nucleo = self.ntStartReverse
                        else:
                                self.upper_path.nucleo = self.insertReverse
                                self.lower_path.nucleo = self.ntStartReverse 
                #If the upper path or the lower path is the ref and if it is a reference mappind
                # 7/6/2016: CL and PP: changed this elif for the else. Avoids an issue with self.upper_path.nucleo not initialized. Large tests results are the same. 
                else:#if (self.lower_path.boolRef==True and (self.lower_path.boolReverse=="1" or self.lower_path.boolReverse==".")) or (self.upper_path.boolRef==True and (self.upper_path.boolReverse=="1" or self.lower_path.boolReverse==".")):
                        if len(self.lower_path.seq)>len(self.upper_path.seq): #if the sequence of the upper path is the smallest :
                                self.lower_path.nucleo = self.insertForward
                                self.upper_path.nucleo = self.ntStartForward
                        else:
                                self.upper_path.nucleo = self.insertForward
                                self.lower_path.nucleo = self.ntStartForward                                      
                #In case of mapped variant
                if old_boolRef_Low==None and old_boolRef_Up==None: #In case of unmapped variant or too much soft clip we have an other way to fill vcf
                        ##Fills the VCF if the upper path is considered as the reference
                        if self.upper_path.boolRef==True:
                                if len(self.upper_path.nucleo) == len(self.insertForward):
                                        self.upper_path.nucleoRef="."
                                        VCFObject.variantType="DEL"
                                else:
                                        self.upper_path.nucleoRef="."
                                        VCFObject.variantType="INS"
                                if self.upper_path.mappingPosition>0:
                                        VCFObject.chrom = self.upper_path.listSam[2]
                                else:
                                        VCFObject.chrom = self.upper_path.listSam[0].split("|")[0]    
                                VCFObject.ref = self.upper_path.nucleo
                                VCFObject.alt = self.lower_path.nucleo
                                VCFObject.reverse = self.upper_path.boolReverse
                                VCFObject.nucleoRef = self.lower_path.nucleoRef
                        ##Fills the VCF if the lower path is considered as the reference
                        elif self.lower_path.boolRef==True:
                                if len(self.lower_path.nucleo)==len(self.insertForward):
                                        self.lower_path.nucleoRef="."
                                        VCFObject.variantType="DEL"
                                else:
                                        self.lower_path.nucleoRef="."
                                        VCFObject.variantType="INS"
                                if self.lower_path.mappingPosition>0:
                                        VCFObject.chrom = self.lower_path.listSam[2]
                                else:
                                        VCFObject.chrom = self.lower_path.listSam[0].split("|")[0]  
                                VCFObject.ref = self.lower_path.nucleo
                                VCFObject.alt = self.upper_path.nucleo
                                VCFObject.reverse = self.lower_path.boolReverse
                                VCFObject.nucleoRef = self.lower_path.nucleoRef
                # Unmapped variants or too much soft clipped (=> the variant will be considered as unmapped)
                if (self.upper_path.mappingPosition<=0 and self.lower_path.mappingPosition<=0) or (old_boolRef_Low==False and old_boolRef_Up==False):
                        if self.lower_path.boolRef==True:
                                self.mappingPositionCouple=int(posUnmapped)
                        else:
                                self.mappingPositionCouple = int(posUnmapped)
                        if len(self.upper_path.nucleo) == len(self.insertForward):
                                VCFObject.chrom = self.upper_path.discoName.split("|")[0]
                                self.upper_path.boolRef = True
                                self.upper_path.nucleoRef = "."
                                VCFObject.variantType = "DEL"
                                VCFObject.ref = self.upper_path.nucleo
                                VCFObject.alt = self.lower_path.nucleo
                                VCFObject.reverse = self.upper_path.boolReverse
                                VCFObject.nucleoRef = self.lower_path.nucleoRef
                        else:
                                VCFObject.chrom = self.lower_path.discoName.split("|")[0]
                                self.upper_path.boolRef = False
                                self.upper_path.nucleoRef = "."
                                VCFObject.variantType = "INS"
                                VCFObject.ref = self.lower_path.nucleo
                                VCFObject.alt = self.upper_path.nucleo
                                VCFObject.reverse = self.lower_path.boolReverse
                                VCFObject.nucleoRef = self.lower_path.nucleoRef
    
        def FillVCF(self,VCFfile,nbGeno,table,VCFObject):
                   table[4]=str(VCFObject.alt) 
                   VARIANT.FillVCF(self,VCFfile,nbGeno,table,VCFObject)                                                                          
#---------------------------------------------------------------------------------------------------------------------------
#---------------------------------------------------------------------------------------------------------------------------                          
        def RetrieveMappingPositionCouple(self):
                VARIANT.RetrieveMappingPositionCouple(self)
                self.mappingPositionCouple=int(self.mappingPositionCouple)                                            
#############################################################################################
#############################################################################################
class SNPSCLOSE(VARIANT):
        def __init__(self,line1,line2):
                VARIANT.__init__(self,line1,line2)        
                self.dicoCloseSNPUp={} #dictionnary with all the informations for close snps : boolean to know if the allele is identical to the reference,position on the variant, reverse nucleotide for the allele, if the path is reverse or not, mapping position
                self.dicoCloseSNPLow={}
                
#---------------------------------------------------------------------------------------------------------------------------
#---------------------------------------------------------------------------------------------------------------------------                   
        def RetrieveDicoClose(self,dicoCloseUp,dicoCloseLow):# Gets the outputs of the method CheckPosVariantFromRef (PATH CLASS)
                self.dicoCloseSNPUp=dicoCloseUp
                self.dicoCloseSNPLow=dicoCloseLow               
#---------------------------------------------------------------------------------------------------------------------------
#---------------------------------------------------------------------------------------------------------------------------                                                                        
                       
        def WhichPathIsTheRef(self,VCFObject):
                VARIANT.WhichPathIsTheRef(self,VCFObject)
                VCFObject.phased=True 
                table = [0] * 10 #Create a 10 cols array
                tablebis=[]
                posUnmapped = max(self.len_unitig_left,self.len_contig_left)
                listPositionPolymorphismeOnPathUp = self.upper_path.listPosVariantOnPathToKeep
                listPositionPolymorphismeOnPathLow = self.lower_path.listPosVariantOnPathToKeep
                VCFObject.nucleoRef=[]
                listPolymorphismPos=[]
##Case : two mapped paths
                if self.upper_path.mappingPosition>0 and self.lower_path.mappingPosition>0:
                        
                        ##Sorts the list of position to get the smallest one and its position in the list unsorted!
                        ##Keeps the close snps to sort them : indeed all the lists and dictionnaries :listnucleoUp,listPositionPolymorphismeOnPathUp,listPositionPolymorphismeOnPathLow,listnucleoLow self.dicoCloseSNPUp,self.dicoCloseSNPLow are classified according to dicoHeader so if we start by sorting we lose the correspondence between data
                        listSortedPosUp=list(listPositionPolymorphismeOnPathUp)
                        listSortedPosUp.sort()
                        indexSmallestPosUp=listPositionPolymorphismeOnPathUp.index(listSortedPosUp[0])
                        listSortedPosLow=list(listPositionPolymorphismeOnPathLow)
                        listSortedPosLow.sort()
                        indexSmallestPosLow=listPositionPolymorphismeOnPathLow.index(listSortedPosLow[0])
                        self.upper_path.boolRef = self.dicoCloseSNPUp[listPositionPolymorphismeOnPathUp[indexSmallestPosUp]][0]
                        self.lower_path.boolRef = self.dicoCloseSNPLow[listPositionPolymorphismeOnPathLow[indexSmallestPosLow]][0]
                        
                        #self.upper_path.boolRef = self.dicoCloseSNPUp[listPositionPolymorphismeOnPathUp[indexSmallestPosUp]][0]
                        #self.lower_path.boolRef = self.dicoCloseSNPLow[listPositionPolymorphismeOnPathLow[indexSmallestPosLow]][0]
                        #Decides what is the smallest position according to the reference path (useful if the paths are not aligned on the same strand)
                        if (self.upper_path.boolRef==False and self.lower_path.boolRef==False) or (self.upper_path.boolRef==True and self.lower_path.boolRef==True):
                                VARIANT.MismatchChecker(self)
                        if self.upper_path.boolRef==True and self.lower_path.boolRef==False: #The smallest position identical to the reference is on the upper path
                                listPolymorphismPos=listPositionPolymorphismeOnPathUp
                        elif self.lower_path.boolRef==True and self.upper_path.boolRef==False:#The smallest position identical to the reference is on the lower path
                                listPolymorphismPos=listPositionPolymorphismeOnPathLow
                        elif self.upper_path.boolRef==False and self.lower_path.boolRef==False: #Both paths are different from the reference => choice with the lexicographical order
                                if self.upper_path.nucleo<self.lower_path.nucleo:
                                        listPolymorphismPos=listPositionPolymorphismeOnPathUp
                                else:
                                        listPolymorphismPos=listPositionPolymorphismeOnPathLow
                        #dicoClose[self.listPosVariantOnPathToKeep[i]]=[self.boolRef,self.nucleoRef,correctedPos[i],nucleo,self.boolReverse,(int(correctedPos[i])+int(self.mappingPosition))]
                        for comptPol in range(len(listPolymorphismPos)): #Goes through the list of the variant position starting with the smallest
                                
                                positionSnpUp = self.dicoCloseSNPUp[listPositionPolymorphismeOnPathUp[comptPol]][5]
                                positionSnpLow = self.dicoCloseSNPLow[listPositionPolymorphismeOnPathLow[comptPol]][5]
                                nucleoUp = self.dicoCloseSNPUp[listPositionPolymorphismeOnPathUp[comptPol]][3]
                                nucleoRefUp = self.dicoCloseSNPUp[listPositionPolymorphismeOnPathUp[comptPol]][1]
                                nucleoLow = self.dicoCloseSNPLow[listPositionPolymorphismeOnPathLow[comptPol]][3]
                                nucleoRefLow = self.dicoCloseSNPLow[listPositionPolymorphismeOnPathLow[comptPol]][1]
                                #Fills the variable table with the vcf fields ; Checks the "REF" path to fill the vcf
                                if self.lower_path.boolRef==True and self.upper_path.boolRef==False: #The lower path is defined as REF
                                
                                        VCFObject.chrom = self.lower_path.listSam[2]
                                        table[1]=int(positionSnpLow)-1
                                        table[3]=nucleoLow
                                        table[4] = self.CheckStrandAndReverseNucleotide(nucleoUp)
                                        VCFObject.nucleoRef.append([nucleoRefLow,positionSnpLow])
                                        VCFObject.reverse = self.lower_path.boolReverse   
                                elif self.upper_path.boolRef==True and self.lower_path.boolRef==False:#The upper path is defined as REF
                                        table[1]=int(positionSnpUp)-1
                                        table[3]=nucleoUp
                                        table[4] = self.CheckStrandAndReverseNucleotide(nucleoLow)
                                        VCFObject.nucleoRef.append([nucleoRefUp,positionSnpUp])
                                        VCFObject.chrom = self.upper_path.listSam[2]
                                        VCFObject.reverse = self.upper_path.boolReverse                             
                                tablebis.append(list(table))#Stocks the variable with all the vcf fields for each close snp to sort it and print it in the vcf
                        tablebis=sorted(tablebis, key=lambda colonnes: colonnes[1])
                        return (tablebis)
#---------------------------------------------------------------------------------------------------------------------------
##Case : Both paths are unmapped     
                elif self.upper_path.mappingPosition <= 0 and self.lower_path.mappingPosition<= 0:
                        self.upper_path.boolReverse="."
                        i=0
                        for i in range(len(listPositionPolymorphismeOnPathUp)):
                                VCFObject.chrom = self.upper_path.discoName.split("|")[0]
                                positionSnpUp=int(listPositionPolymorphismeOnPathUp[i])+int(posUnmapped) - 1
                                positionSnpLow=int(listPositionPolymorphismeOnPathUp[i])+int(posUnmapped) - 1 
                                nucleoUp = self.upper_path.listNucleotideForward[i]
                                nucleoRefUp="."
                                nucleoLow = self.lower_path.listNucleotideForward[i]
                                nucleoRefLow="."
                                VCFObject.reverse="."
                                table[1]=positionSnpUp
                                table[3]=nucleoUp
                                table[4]=nucleoLow
                                VCFObject.nucleoRef.append([nucleoRefUp,positionSnpUp])
                                tablebis.append(list(table))
                        tablebis=sorted(tablebis, key=lambda colonnes: colonnes[1])
                        return (tablebis)
#---------------------------------------------------------------------------------------------------------------------------
##Case : Upper path mapped and lower path unmapped  
                elif self.upper_path.mappingPosition>0 and self.lower_path.mappingPosition<=0:
                        comptPol=0
                        VCFObject.chrom = self.upper_path.listSam[2]
                        VCFObject.reverse = self.upper_path.boolReverse
                        for comptPol in range(len(listPositionPolymorphismeOnPathUp)):
                                if (int(self.upper_path.boolReverse)==-1):
                                        nucleoLow=ReverseComplement(self.lower_path.listNucleotideForward[comptPol])
                                        nucleoUp = self.upper_path.listNucleotideReverse[comptPol]
                                elif int(self.upper_path.boolReverse)==1:
                                        nucleoLow = self.lower_path.listNucleotideForward[comptPol]
                                        nucleoUp = self.upper_path.listNucleotideForward[comptPol]
                                nucleoRefLow="."
                                positionSnpUp=int(self.dicoCloseSNPUp[listPositionPolymorphismeOnPathUp[comptPol]][5])-1
                                nucleoRefUp = self.dicoCloseSNPUp[listPositionPolymorphismeOnPathUp[comptPol]][1]
                                table[1]=positionSnpUp
                                table[3]=nucleoUp
                                table[4]=nucleoLow
                                VCFObject.nucleoRef.append([nucleoRefUp,positionSnpUp])
                                tablebis.append(list(table))
                        tablebis=sorted(tablebis, key=lambda colonnes: colonnes[1])
                        return (tablebis)
#---------------------------------------------------------------------------------------------------------------------------
##Case : Lower path mapped and upper path unmapped            
                elif self.upper_path.mappingPosition<=0 and self.lower_path.mappingPosition>0:
                        VCFObject.chrom = self.lower_path.listSam[2]
                        VCFObject.reverse = self.lower_path.boolReverse
                        for comptPol in range(len(listPositionPolymorphismeOnPathLow)):
                                if (int(self.lower_path.boolReverse)==-1):
                                        nucleoUp=ReverseComplement(self.upper_path.listNucleotideForward[comptPol])
                                        nucleoLow = self.lower_path.listNucleotideReverse[comptPol]
                                elif int(self.lower_path.boolReverse)==1:
                                        nucleoUp = self.upper_path.listNucleotideForward[comptPol]
                                        nucleoLow = self.lower_path.listNucleotideForward[comptPol]
                                nucleoRefUp="."
                                positionSnpLow=int(self.dicoCloseSNPLow[listPositionPolymorphismeOnPathLow[comptPol]][5])-1
                                nucleoRefLow = self.dicoCloseSNPLow[listPositionPolymorphismeOnPathLow[comptPol]][1]
                                table[1] = positionSnpLow
                                table[3] = nucleoLow
                                table[4] = nucleoUp
                                VCFObject.nucleoRef.append([nucleoRefLow,positionSnpLow])
                                tablebis.append(list(table))
                        tablebis=sorted(tablebis, key=lambda colonnes: colonnes[1])
                        return (tablebis)
                                    
#---------------------------------------------------------------------------------------------------------------------------
#---------------------------------------------------------------------------------------------------------------------------                        
         
        def FillVCF(self,VCFfile,nbGeno,table,VCFObject):
                """print the VCFFile for each line of close snps"""
                #ID=1
                subIDs = range(1,len(table)+1,1) #subIDs for the different SNPs of a given close bubble : ex: 454_1, 454_2 and 454_3 for 3 SNPs inside the bubble of ID 454
                if VCFObject.reverse == "-1":
                        # if the bubble of close SNPs is mapped on reverse strand, their subIDs are reversed, this way the subID always correspond to the order of apparition of the SNP in the bubble path
                        subIDs = range(len(table),0,-1)
                i=0
                nucleoRef=None
                if VCFObject.chrom=="*":
                        table[line][0] = self.listSam[0].split("_")[0]
                for line in range(len(table)):
                        for i in range(len(VCFObject.nucleoRef)):
                                if table[line][1] in VCFObject.nucleoRef[i]:
                                        nucleoRef=VCFObject.nucleoRef[i][0]   
                        table[line][0]=VCFObject.chrom
                        table[line][2]=str(self.variantID)+"_"+str(subIDs[line])
                        table[line][5]="."
                        table[line][6]=VCFObject.filterField
                        table[line][7]=f"Ty={VCFObject.variantType};Rk={self.rank};UL={self.len_unitig_left};UR={self.len_unitig_right};CL={self.len_contig_left};CR={self.len_contig_right};Genome={nucleoRef};Sd={VCFObject.reverse}"
                        if VCFObject.filterField=="MULTIPLE" and VCFObject.XA:
                                table[line][7]+=f";XA={VCFObject.XA}"
                        #TODO: eviter ces "replace"
                        # table[line][7]=table[line][7].replace("None",".") # done during PrintOneLine
                        table[line][7]=table[line][7].replace("none",".")
                        table[line][7]=table[line][7].replace("=;","=.;")
                        table[line][8]=VCFObject.formatField
                        table[line][9]=VCFObject.genotypes
                        #ID+=1
                        i+=1
                error=VCFObject.CheckOutputConsistency(table,self)
                if error == 0: 
                        for l in range(len(table)):
                                VCFObject.PrintOneLine(table[l],VCFfile)        
        
        
#############################################################################################
#############################################################################################        
class VCFFIELD():
        def __init__(self):
                ##VCF Fields
                self.filterField=None
                self.variantType=None
                self.phased=None #phased genotype
                self.formatField=None 
                self.genotypes="" #genotype field =>put it in the vcf
                self.chrom=""
                self.ref=""
                self.alt=""
                self.qual=""
                self.nucleoRef=None
                self.reverse=""
                self.XA=None
           
#---------------------------------------------------------------------------------------------------------------------------
#---------------------------------------------------------------------------------------------------------------------------    
        
        def PrintOneLine(self,table,VCF):
                """Prints the line of the current SNP in the VCF file."""
                if table==[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]:
                        return()
                for i in range(len(table)):
                        element=table[i]
                        element=str(element).replace("None",".") # TODO: peut on éviter ce nouveau 'replace'... ?
                        VCF.write((str(element)).strip())
                        if i<len(table)-1 and table[i+1]!="": VCF.write("\t")
                VCF.write('\n')
#---------------------------------------------------------------------------------------------------------------------------
#---------------------------------------------------------------------------------------------------------------------------    
                
        def CheckOutputConsistency(self,table,VARIANT):
                """Checks if an error occured during variant treatement"""
                current_position=None
                previous_position=None
                error=0
                try:#Case of SNPs CLOSE
                        for line in len(table): # ATTENTION BUG ICI: CE 'FOR' NE FAIT RIEN (for line in range(len(table)) fait qq chose. J'ai essaye (pierre 22 juin 2016) mais ça leve une des erreurs.
                                # Test if positions follow each other
                                current_position=int(table[line][1])
                                if previous_position:
                                        if previous_position<current_position:
                                                error+=0
                                        else:
                                                sys.stderr.write("!!! an error occurred in determining the position of close snps !!!\n")
                                                error+=1
                                previous_position=current_position
                        if "SNP" in table[0][1] and table[0][6]=="PASS":
                                        sys.stderr.write("!!! an error occurred in determining the filter of close snps (an unmapped SNP is \"PASS\")!!!\n")
                                        error+=1
                        if VARIANT.upper_path.boolRef==None or VARIANT.lower_path.boolRef==None:
                                sys.stderr.write("!!! Impossible to determine if path are identical to the reference or not (check cigarcode or ReferenceChecker) !!!\n")
                                error+=1
                except(TypeError,IndexError): # Case of SNP and INDEL
                        if "SNP" in table[0] and table[6]=="PASS":
                                sys.stderr.write("!!! an error occurred in determining the filter of close snps (an unmapped SNP is \"PASS\")!!!\n")
                                error+=1
                        if "INDEL" in table[0] and table[6]=="PASS":
                                sys.stderr.write("!!! an error occurred in determining the filter of indel (an unmapped INDEL is \"PASS\")!!!\n")
                                error+=1
                        if VARIANT.upper_path.boolRef==None or VARIANT.lower_path.boolRef==None:
                                sys.stderr.write("!!! Impossible to determine if path are identical to the reference or not (check cigarcode or ReferenceChecker) !!!\n")
                                error+=1
                if error>0:
                        sys.stderr.write(" !!! Line where the error occurred !!!\n")
                        sys.stderr.write(str(VARIANT.upper_path.listSam)+"\n")
                        sys.stderr.write(str(VARIANT.lower_path.listSam)+"\n")
                else : return (error)