1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
|
# Copyright (C) 2023-2024 Matthew Scroggs and Garth N. Wells
#
# This file is part of Basix (https://www.fenicsproject.org)
#
# SPDX-License-Identifier: MIT
"""Functions to directly wrap Basix elements in UFL."""
import hashlib as _hashlib
import itertools as _itertools
import typing as _typing
from abc import abstractmethod as _abstractmethod
from warnings import warn as _warn
import numpy as np
import numpy.typing as _npt
import ufl as _ufl
from ufl.finiteelement import AbstractFiniteElement as _AbstractFiniteElement
from ufl.pullback import AbstractPullback as _AbstractPullback
from ufl.pullback import IdentityPullback as _IdentityPullback
from ufl.pullback import MixedPullback as _MixedPullback
from ufl.pullback import SymmetricPullback as _SymmetricPullback
from ufl.pullback import UndefinedPullback as _UndefinedPullback
import basix as _basix
__all__ = [
"element",
"enriched_element",
"custom_element",
"mixed_element",
"quadrature_element",
"real_element",
"blocked_element",
"wrap_element",
]
_spacemap = {
_basix.SobolevSpace.L2: _ufl.sobolevspace.L2,
_basix.SobolevSpace.H1: _ufl.sobolevspace.H1,
_basix.SobolevSpace.H2: _ufl.sobolevspace.H2,
_basix.SobolevSpace.HInf: _ufl.sobolevspace.HInf,
_basix.SobolevSpace.HDiv: _ufl.sobolevspace.HDiv,
_basix.SobolevSpace.HCurl: _ufl.sobolevspace.HCurl,
_basix.SobolevSpace.HEin: _ufl.sobolevspace.HEin,
_basix.SobolevSpace.HDivDiv: _ufl.sobolevspace.HDivDiv,
}
_pullbackmap = {
_basix.MapType.identity: _ufl.identity_pullback,
_basix.MapType.L2Piola: _ufl.l2_piola,
_basix.MapType.contravariantPiola: _ufl.contravariant_piola,
_basix.MapType.covariantPiola: _ufl.covariant_piola,
_basix.MapType.doubleContravariantPiola: _ufl.double_contravariant_piola,
_basix.MapType.doubleCovariantPiola: _ufl.double_covariant_piola,
}
def _ufl_sobolev_space_from_enum(s: _basix.SobolevSpace):
"""Convert a Basix Sobolev space enum to a UFL Sobolev space.
Args:
s: The Basix Sobolev space
Returns:
UFL Sobolev space
"""
if s not in _spacemap:
raise ValueError(f"Could not convert to UFL Sobolev space: {s.name}")
return _spacemap[s]
def _ufl_pullback_from_enum(m: _basix.MapType) -> _AbstractPullback:
"""Convert an enum to a UFL pull back.
Args:
m: A map type.
Returns:
UFL pull back.
"""
if m not in _pullbackmap:
raise ValueError(f"Could not convert to UFL pull back: {m.name}")
return _pullbackmap[m]
class _ElementBase(_AbstractFiniteElement):
"""A base wrapper to allow elements to be used with UFL.
This class includes methods and properties needed by UFL and FFCx.
This is a base class containing functions common to all the element
types defined in this file.
"""
def __init__(
self,
repr: str,
cellname: str,
reference_value_shape: tuple[int, ...],
degree: int = -1,
pullback: _AbstractPullback = _UndefinedPullback(),
):
"""Initialise the element."""
self._repr = repr
if cellname == "point":
cellname = "vertex"
self._cellname = cellname
self._reference_value_shape = reference_value_shape
self._degree = degree
self._pullback = pullback
# Implementation of methods for UFL AbstractFiniteElement
def __repr__(self):
"""Format as string for evaluation as Python object."""
return self._repr
def __str__(self):
"""Format as string for nice printing."""
return self._repr
def __hash__(self) -> int:
"""Return a hash."""
return hash("basix" + self._repr)
def basix_hash(self) -> _typing.Optional[int]:
"""Hash of the Basix element (if this is a standard Basix element).
Returns:
Hash of the Basix element if this is a Basix element,
otherwise `None`.
"""
return None
@_abstractmethod
def __eq__(self, other) -> bool:
"""Check if two elements are equal."""
@property
def sobolev_space(self):
"""Underlying Sobolev space."""
return _ufl_sobolev_space_from_enum(self.basix_sobolev_space)
@property
def pullback(self) -> _AbstractPullback:
"""Pullback for this element."""
return self._pullback
@property
@_abstractmethod
def embedded_superdegree(self) -> int:
"""Degree of the minimum degree Lagrange space that spans this element.
This returns the degree of the lowest degree Lagrange space such
that the polynomial space of the Lagrange space is a superspace
of this element's polynomial space. If this element contains
basis functions that are not in any Lagrange space, this
function should return None.
Note that on a simplex cells, the polynomial space of Lagrange
space is a complete polynomial space, but on other cells this is
not true. For example, on quadrilateral cells, the degree 1
Lagrange space includes the degree 2 polynomial xy.
"""
@property
@_abstractmethod
def embedded_subdegree(self) -> int:
"""Degree of the maximum degree Lagrange space that is spanned by this element.
This returns the degree of the highest degree Lagrange space
such that the polynomial space of the Lagrange space is a
subspace of this element's polynomial space. If this element's
polynomial space does not include the constant function, this
function should return -1.
Note that on a simplex cells, the polynomial space of Lagrange
space is a complete polynomial space, but on other cells this is
not true. For example, on quadrilateral cells, the degree 1
Lagrange space includes the degree 2 polynomial xy.
"""
@property
def cell(self) -> _ufl.Cell:
"""Cell of the finite element."""
return _ufl.cell.Cell(self._cellname)
@property
def reference_value_shape(self) -> tuple[int, ...]:
"""Shape of the value space on the reference cell."""
return self._reference_value_shape
@property
def sub_elements(self) -> _typing.Sequence[_AbstractFiniteElement]:
"""List of sub elements.
This function does not recurse: i.e. it does not extract the
sub-elements of sub-elements.
"""
return []
# Basix specific functions
@_abstractmethod
def tabulate(self, nderivs: int, points: _npt.NDArray[np.floating]) -> _npt.ArrayLike:
"""Tabulate the basis functions of the element.
Args:
nderivs: Number of derivatives to tabulate.
points: Points to tabulate at
Returns:
Tabulated basis functions
"""
@_abstractmethod
def get_component_element(self, flat_component: int) -> tuple[_typing.Any, int, int]:
"""Get element that represents a component, and the offset and stride of the component.
For example, for a mixed element, this will return the
sub-element that represents the given component, the offset of
that sub-element, and a stride of 1. For a blocked element, this
will return the sub-element, an offset equal to the component
number, and a stride equal to the block size. For vector-valued
element (eg H(curl) and H(div) elements), this returns a
component element (and as offset of 0 and a stride of 1). When
tabulate is called on the component element, only the part of the
table for the given component is returned.
Args:
flat_component: The component
Returns:
component element, offset of the component, stride of the component
"""
@property
@_abstractmethod
def dim(self) -> int:
"""Number of DOFs the element has."""
@property
@_abstractmethod
def num_entity_dofs(self) -> list[list[int]]:
"""Number of DOFs associated with each entity."""
@property
@_abstractmethod
def entity_dofs(self) -> list[list[list[int]]]:
"""DOF numbers associated with each entity."""
@property
@_abstractmethod
def num_entity_closure_dofs(self) -> list[list[int]]:
"""Number of DOFs associated with the closure of each entity."""
@property
@_abstractmethod
def entity_closure_dofs(self) -> list[list[list[int]]]:
"""DOF numbers associated with the closure of each entity."""
@property
@_abstractmethod
def num_global_support_dofs(self) -> int:
"""Get the number of global support DOFs."""
@property
@_abstractmethod
def reference_topology(self) -> list[list[list[int]]]:
"""Topology of the reference element."""
@property
@_abstractmethod
def reference_geometry(self) -> _npt.ArrayLike:
"""Geometry of the reference element."""
@property
@_abstractmethod
def family_name(self) -> str:
"""Family name of the element."""
@property
@_abstractmethod
def element_family(self) -> _typing.Union[_basix.ElementFamily, None]:
"""Basix element family used to initialise the element."""
@property
@_abstractmethod
def lagrange_variant(self) -> _typing.Union[_basix.LagrangeVariant, None]:
"""Basix Lagrange variant used to initialise the element."""
@property
@_abstractmethod
def dpc_variant(self) -> _typing.Union[_basix.DPCVariant, None]:
"""Basix DPC variant used to initialise the element."""
@property
@_abstractmethod
def cell_type(self) -> _basix.CellType:
"""Basix cell type used to initialise the element."""
@property
@_abstractmethod
def discontinuous(self) -> bool:
"""True if the discontinuous version of the element is used."""
@property
@_abstractmethod
def map_type(self) -> _basix.MapType:
"""The Basix map type."""
@property
@_abstractmethod
def polyset_type(self) -> _basix.PolysetType:
"""The polyset type of the element."""
@property
@_abstractmethod
def basix_sobolev_space(self) -> _basix.SobolevSpace:
"""Return a Basix enum representing the underlying Sobolev space."""
@property
@_abstractmethod
def dtype(self) -> _npt.DTypeLike:
"""Element float type."""
def get_tensor_product_representation(self):
"""Get the element's tensor product factorisation."""
return None
@property
def degree(self) -> int:
"""The degree of the element."""
return self._degree
def custom_quadrature(
self,
) -> tuple[_npt.NDArray[np.floating], _npt.NDArray[np.floating]]:
"""Return custom quadrature rule or raise a ValueError."""
raise ValueError("Element does not have a custom quadrature rule.")
@property
def has_tensor_product_factorisation(self) -> bool:
"""Indicates whether or not this element has a tensor product factorisation.
If this value is true, this element's basis functions can be
computed as a tensor product of the basis elements of the
elements in the factorisation.
"""
return False
@property
def block_size(self) -> int:
"""The block size of the element."""
return 1
@property
def _wcoeffs(self) -> _npt.ArrayLike:
"""The coefficients used to define the polynomial set."""
raise NotImplementedError()
@property
def _x(self) -> list[list[_npt.NDArray]]:
"""The points used to define interpolation."""
raise NotImplementedError()
@property
def _M(self) -> list[list[_npt.NDArray]]:
"""The matrices used to define interpolation."""
raise NotImplementedError()
@property
def interpolation_nderivs(self) -> int:
"""The number of derivatives needed when interpolating."""
raise NotImplementedError()
@property
def is_custom_element(self) -> bool:
"""True if the element is a custom Basix element."""
return False
@property
def has_custom_quadrature(self) -> bool:
"""True if the element has a custom quadrature rule."""
return False
@property
def basix_element(self):
"""Underlying Basix element."""
raise NotImplementedError()
@property
def is_quadrature(self) -> bool:
"""Is this a quadrature element?"""
return False
@property
def is_mixed(self) -> bool:
"""Is this a mixed element?"""
return False
@property
def is_symmetric(self) -> bool:
"""Is the element a symmetric 2-tensor?"""
return False
class _BasixElement(_ElementBase):
"""A wrapper allowing Basix elements to be used directly with UFL.
This class allows elements created with `basix.create_element` to be
wrapped as UFL compatible elements. Users should not directly call
this class's initialiser, but should use the `element` function
instead.
"""
_element: _basix.finite_element.FiniteElement
def __init__(self, element: _basix.finite_element.FiniteElement):
"""Create a Basix element."""
if element.family == _basix.ElementFamily.custom:
self._is_custom = True
repr = f"custom Basix element ({_compute_signature(element)})"
else:
self._is_custom = False
repr = (
f"Basix element ({element.family.name}, {element.cell_type.name}, "
f"{element.degree}, "
f"{element.lagrange_variant.name}, {element.dpc_variant.name}, "
f"{element.discontinuous}, "
f"{element.dtype}, {element.dof_ordering})"
)
super().__init__(
repr,
element.cell_type.name,
tuple(element.value_shape),
element.degree,
_ufl_pullback_from_enum(element.map_type),
)
self._element = element
def __eq__(self, other) -> bool:
return isinstance(other, _BasixElement) and self._element == other._element
def __hash__(self) -> int:
return super().__hash__()
def basix_hash(self) -> _typing.Optional[int]:
return self._element.hash()
def tabulate(self, nderivs: int, points: _npt.NDArray[np.floating]) -> _npt.ArrayLike:
tab = self._element.tabulate(nderivs, points)
# TODO: update FFCx to remove the need for transposing here
return tab.transpose((0, 1, 3, 2)).reshape((tab.shape[0], tab.shape[1], -1)) # type: ignore
def get_component_element(self, flat_component: int) -> tuple[_ElementBase, int, int]:
assert flat_component < self.reference_value_size
return _ComponentElement(self, flat_component), 0, 1
def get_tensor_product_representation(self):
if not self.has_tensor_product_factorisation:
return None
return self._element.get_tensor_product_representation()
@property
def dtype(self) -> _npt.DTypeLike:
return self._element.dtype
@property
def basix_sobolev_space(self) -> _basix.SobolevSpace:
return self._element.sobolev_space
@property
def dim(self) -> int:
return self._element.dim
@property
def num_entity_dofs(self) -> list[list[int]]:
return self._element.num_entity_dofs
@property
def entity_dofs(self) -> list[list[list[int]]]:
return self._element.entity_dofs
@property
def num_entity_closure_dofs(self) -> list[list[int]]:
return self._element.num_entity_closure_dofs
@property
def entity_closure_dofs(self) -> list[list[list[int]]]:
return self._element.entity_closure_dofs
@property
def num_global_support_dofs(self) -> int:
return 0
@property
def reference_topology(self) -> list[list[list[int]]]:
return _basix.topology(self._element.cell_type)
@property
def reference_geometry(self) -> _npt.ArrayLike:
return _basix.geometry(self._element.cell_type)
@property
def family_name(self) -> str:
return self._element.family.name
@property
def element_family(self) -> _typing.Union[_basix.ElementFamily, None]:
return self._element.family
@property
def lagrange_variant(self) -> _typing.Union[_basix.LagrangeVariant, None]:
return self._element.lagrange_variant
@property
def dpc_variant(self) -> _typing.Union[_basix.DPCVariant, None]:
return self._element.dpc_variant
@property
def cell_type(self) -> _basix.CellType:
return self._element.cell_type
@property
def discontinuous(self) -> bool:
return self._element.discontinuous
@property
def interpolation_nderivs(self) -> int:
return self._element.interpolation_nderivs
@property
def is_custom_element(self) -> bool:
return self._is_custom
@property
def map_type(self) -> _basix.MapType:
return self._element.map_type
@property
def embedded_superdegree(self) -> int:
return self._element.embedded_superdegree
@property
def embedded_subdegree(self) -> int:
return self._element.embedded_subdegree
@property
def polyset_type(self) -> _basix.PolysetType:
return self._element.polyset_type
@property
def _wcoeffs(self) -> _npt.ArrayLike:
return self._element.wcoeffs
@property
def _x(self) -> list[list[_npt.NDArray]]:
return self._element.x
@property
def _M(self) -> list[list[_npt.NDArray]]:
return self._element.M
@property
def has_tensor_product_factorisation(self) -> bool:
return self._element.has_tensor_product_factorisation
@property
def basix_element(self):
return self._element
class _ComponentElement(_ElementBase):
"""An element representing one component of a _BasixElement.
This element type is used when UFL's ``get_component_element``
function is called.
"""
_element: _ElementBase
_component: int
def __init__(self, element: _ElementBase, component: int):
"""Initialise the element."""
self._element = element
self._component = component
repr = f"component element ({element!r}, {component}"
repr += ")"
super().__init__(repr, element.cell_type.name, (1,), element._degree)
def __eq__(self, other) -> bool:
return (
isinstance(other, _ComponentElement)
and self._element == other._element
and self._component == other._component
)
def __hash__(self) -> int:
return super().__hash__()
def tabulate(self, nderivs: int, points: _npt.NDArray[np.floating]) -> _npt.ArrayLike:
tables = self._element.tabulate(nderivs, points)
output = []
for tbl in tables: # type: ignore
shape = (points.shape[0], *self._element._reference_value_shape, -1)
tbl = tbl.reshape(shape) # type: ignore
if len(self._element._reference_value_shape) == 0:
output.append(tbl)
elif len(self._element._reference_value_shape) == 1:
output.append(tbl[:, self._component, :])
elif len(self._element._reference_value_shape) == 2:
if isinstance(self._element, _BlockedElement) and self._element._has_symmetry:
# FIXME: check that this behaves as expected
output.append(tbl[:, self._component, :])
else:
vs0 = self._element._reference_value_shape[0]
output.append(tbl[:, self._component // vs0, self._component % vs0, :])
else:
raise NotImplementedError()
return np.asarray(output, dtype=np.float64)
def get_component_element(self, flat_component: int) -> tuple[_ElementBase, int, int]:
if flat_component == 0:
return self, 0, 1
else:
raise NotImplementedError()
@property
def dtype(self) -> _npt.DTypeLike:
return self._element.dtype
@property
def basix_sobolev_space(self) -> _basix.SobolevSpace:
return self._element.basix_sobolev_space
@property
def dim(self) -> int:
raise NotImplementedError()
@property
def num_entity_dofs(self) -> list[list[int]]:
raise NotImplementedError()
@property
def entity_dofs(self) -> list[list[list[int]]]:
raise NotImplementedError()
@property
def num_entity_closure_dofs(self) -> list[list[int]]:
raise NotImplementedError()
@property
def entity_closure_dofs(self) -> list[list[list[int]]]:
raise NotImplementedError()
@property
def num_global_support_dofs(self) -> int:
raise NotImplementedError()
@property
def family_name(self) -> str:
raise NotImplementedError()
@property
def reference_topology(self) -> list[list[list[int]]]:
raise NotImplementedError()
@property
def reference_geometry(self) -> _npt.ArrayLike:
raise NotImplementedError()
@property
def element_family(self) -> _typing.Union[_basix.ElementFamily, None]:
return self._element.element_family
@property
def lagrange_variant(self) -> _typing.Union[_basix.LagrangeVariant, None]:
return self._element.lagrange_variant
@property
def dpc_variant(self) -> _typing.Union[_basix.DPCVariant, None]:
return self._element.dpc_variant
@property
def cell_type(self) -> _basix.CellType:
return self._element.cell_type
@property
def polyset_type(self) -> _basix.PolysetType:
return self._element.polyset_type
@property
def discontinuous(self) -> bool:
return self._element.discontinuous
@property
def interpolation_nderivs(self) -> int:
return self._element.interpolation_nderivs
@property
def map_type(self) -> _basix.MapType:
raise NotImplementedError()
@property
def embedded_superdegree(self) -> int:
return self._element.embedded_superdegree
@property
def embedded_subdegree(self) -> int:
return self._element.embedded_subdegree
@property
def basix_element(self):
return self._element
class _MixedElement(_ElementBase):
"""A mixed element that combines two or more elements.
This can be used when multiple different elements appear in a form.
Users should not directly call this class's initilizer, but should
use the :func:`mixed_element` function instead.
"""
_sub_elements: list[_ElementBase]
def __init__(self, sub_elements: list[_ElementBase]):
"""Initialise the element."""
assert len(sub_elements) > 0
self._sub_elements = sub_elements
pullback = (
_ufl.identity_pullback
if all(isinstance(e.pullback, _IdentityPullback) for e in sub_elements)
else _MixedPullback(self)
)
repr = "mixed element (" + ", ".join(i._repr for i in sub_elements) + ")"
super().__init__(
repr,
sub_elements[0].cell_type.name,
(sum(i.reference_value_size for i in sub_elements),),
pullback=pullback,
)
def __eq__(self, other) -> bool:
if isinstance(other, _MixedElement) and len(self._sub_elements) == len(other._sub_elements):
for i, j in zip(self._sub_elements, other._sub_elements):
if i != j:
return False
return True
return False
def __hash__(self) -> int:
return super().__hash__()
@property
def dtype(self) -> _npt.DTypeLike:
return self._sub_elements[0].dtype
@property
def is_mixed(self) -> bool:
return True
@property
def degree(self) -> int:
return max((e.degree for e in self._sub_elements), default=-1)
def tabulate(self, nderivs: int, points: _npt.NDArray[np.floating]) -> _npt.ArrayLike:
tables = []
results = [e.tabulate(nderivs, points) for e in self._sub_elements]
for deriv_tables in zip(*results):
new_table = np.zeros((len(points), self.reference_value_size * self.dim))
start = 0
for e, t in zip(self._sub_elements, deriv_tables):
for i in range(0, e.dim, e.reference_value_size):
new_table[:, start : start + e.reference_value_size] = t[
:, i : i + e.reference_value_size
]
start += self.reference_value_size
tables.append(new_table)
return np.asarray(tables, dtype=np.float64)
def get_component_element(self, flat_component: int) -> tuple[_ElementBase, int, int]:
sub_dims = [0] + [e.dim for e in self._sub_elements]
sub_cmps = [0] + [e.reference_value_size for e in self._sub_elements]
irange = np.cumsum(sub_dims)
crange = np.cumsum(sub_cmps)
# Find index of sub element which corresponds to the current
# flat component
component_element_index = np.where(crange <= flat_component)[0].shape[0] - 1
sub_e = self._sub_elements[component_element_index]
e, offset, stride = sub_e.get_component_element(
flat_component - crange[component_element_index]
)
# TODO: is this offset correct?
return e, irange[component_element_index] + offset, stride
@property
def embedded_superdegree(self) -> int:
return max(e.embedded_superdegree for e in self._sub_elements)
@property
def embedded_subdegree(self) -> int:
raise NotImplementedError()
@property
def map_type(self) -> _basix.MapType:
raise NotImplementedError()
@property
def basix_sobolev_space(self) -> _basix.SobolevSpace:
return _basix.sobolev_spaces.intersection(
[e.basix_sobolev_space for e in self._sub_elements]
)
@property
def sub_elements(self) -> _typing.Sequence[_ElementBase]:
return self._sub_elements
@property
def dim(self) -> int:
return sum(e.dim for e in self._sub_elements)
@property
def num_entity_dofs(self) -> list[list[int]]:
data = [e.num_entity_dofs for e in self._sub_elements]
return [
[sum(d[tdim][entity_n] for d in data) for entity_n, _ in enumerate(entities)]
for tdim, entities in enumerate(data[0])
]
@property
def entity_dofs(self) -> list[list[list[int]]]:
dofs: list[list[list[int]]] = [
[[] for i in entities] for entities in self._sub_elements[0].entity_dofs
]
start_dof = 0
for e in self._sub_elements:
for tdim, entities in enumerate(e.entity_dofs):
for entity_n, entity_dofs in enumerate(entities):
dofs[tdim][entity_n] += [start_dof + i for i in entity_dofs]
start_dof += e.dim
return dofs
@property
def num_entity_closure_dofs(self) -> list[list[int]]:
data = [e.num_entity_closure_dofs for e in self._sub_elements]
return [
[sum(d[tdim][entity_n] for d in data) for entity_n, _ in enumerate(entities)]
for tdim, entities in enumerate(data[0])
]
@property
def entity_closure_dofs(self) -> list[list[list[int]]]:
dofs: list[list[list[int]]] = [
[[] for i in entities] for entities in self._sub_elements[0].entity_closure_dofs
]
start_dof = 0
for e in self._sub_elements:
for tdim, entities in enumerate(e.entity_closure_dofs):
for entity_n, entity_dofs in enumerate(entities):
dofs[tdim][entity_n] += [start_dof + i for i in entity_dofs]
start_dof += e.dim
return dofs
@property
def num_global_support_dofs(self) -> int:
return sum(e.num_global_support_dofs for e in self._sub_elements)
@property
def family_name(self) -> str:
return "mixed element"
@property
def reference_topology(self) -> list[list[list[int]]]:
return self._sub_elements[0].reference_topology
@property
def reference_geometry(self) -> _npt.ArrayLike:
return self._sub_elements[0].reference_geometry
@property
def lagrange_variant(self) -> _typing.Union[_basix.LagrangeVariant, None]:
return None
@property
def dpc_variant(self) -> _typing.Union[_basix.DPCVariant, None]:
return None
@property
def element_family(self) -> _typing.Union[_basix.ElementFamily, None]:
return None
@property
def cell_type(self) -> _basix.CellType:
return self._sub_elements[0].cell_type
@property
def discontinuous(self) -> bool:
return False
@property
def interpolation_nderivs(self) -> int:
return max([e.interpolation_nderivs for e in self._sub_elements])
@property
def polyset_type(self) -> _basix.PolysetType:
pt = _basix.PolysetType.standard
for e in self._sub_elements:
pt = _basix.polyset_superset(self.cell_type, pt, e.polyset_type)
return pt
def custom_quadrature(
self,
) -> tuple[_npt.NDArray[np.floating], _npt.NDArray[np.floating]]:
custom_q = None
for e in self._sub_elements:
if e.has_custom_quadrature:
if custom_q is None:
custom_q = e.custom_quadrature()
else:
p, w = e.custom_quadrature()
if not np.allclose(p, custom_q[0]) or not np.allclose(w, custom_q[1]):
raise ValueError(
"Subelements of mixed element use different quadrature rules"
)
if custom_q is not None:
return custom_q
raise ValueError("Element does not have custom quadrature")
@property
def has_custom_quadrature(self) -> bool:
for e in self._sub_elements:
if e.has_custom_quadrature:
return True
return False
class _BlockedElement(_ElementBase):
"""Element with a block size that contains multiple copies of a sub element.
This can be used to (for example) create vector and tensor Lagrange
elements. Users should not directly call this classes initilizer,
but should use the `blocked_element` function instead.
"""
_block_shape: tuple[int, ...]
_sub_element: _ElementBase
_block_size: int
_has_symmetry: bool
def __init__(
self,
sub_element: _ElementBase,
shape: tuple[int, ...],
symmetry: _typing.Optional[bool] = None,
):
"""Initialise the element."""
if sub_element.reference_value_size != 1:
raise ValueError(
"Blocked elements of non-scalar elements are not supported. "
"Try using _MixedElement instead."
)
if symmetry is not None:
if len(shape) != 2:
raise ValueError("symmetry argument can only be passed to elements of rank 2.")
if shape[0] != shape[1]:
raise ValueError("symmetry argument can only be passed to square shaped elements.")
if symmetry:
block_size = shape[0] * (shape[0] + 1) // 2
self._has_symmetry = True
else:
block_size = 1
for i in shape:
block_size *= i
self._has_symmetry = False
assert block_size > 0
self._sub_element = sub_element
self._block_size = block_size
self._block_shape = shape
repr = f"blocked element ({sub_element!r}, {shape}"
if symmetry is not None:
repr += f", symmetry={symmetry}"
repr += ")"
super().__init__(
repr,
sub_element.cell_type.name,
shape,
sub_element._degree,
sub_element._pullback,
)
if symmetry:
n = 0
symmetry_mapping: dict[tuple[int, ...], int] = {}
for i in range(shape[0]):
for j in range(i + 1):
symmetry_mapping[(i, j)] = n
symmetry_mapping[(j, i)] = n
n += 1
self._pullback = _SymmetricPullback(self, symmetry_mapping)
def __eq__(self, other) -> bool:
return (
isinstance(other, _BlockedElement)
and self._block_size == other._block_size
and self._block_shape == other._block_shape
and self._sub_element == other._sub_element
)
def __hash__(self) -> int:
return super().__hash__()
def basix_hash(self) -> _typing.Optional[int]:
return self._sub_element.basix_hash()
@property
def dtype(self) -> _npt.DTypeLike:
return self._sub_element.dtype
@property
def is_symmetric(self) -> bool:
return self._has_symmetry
@property
def is_quadrature(self) -> bool:
return self._sub_element.is_quadrature
def tabulate(self, nderivs: int, points: _npt.NDArray[np.floating]) -> _npt.ArrayLike:
assert len(self._block_shape) == 1 # TODO: block shape
assert self.reference_value_size == self._block_size # TODO: remove this assumption
output = []
for table in self._sub_element.tabulate(nderivs, points): # type: ignore
# Repeat sub element horizontally
assert len(table.shape) == 2 # type: ignore
new_table = np.zeros(
(table.shape[0], *self._block_shape, self._block_size * table.shape[1]) # type: ignore
)
for i, j in enumerate(_itertools.product(*[range(s) for s in self._block_shape])):
if len(j) == 1:
new_table[:, j[0], i :: self._block_size] = table
elif len(j) == 2:
new_table[:, j[0], j[1], i :: self._block_size] = table
else:
raise NotImplementedError()
output.append(new_table)
return np.asarray(output, dtype=np.float64)
def get_component_element(self, flat_component: int) -> tuple[_ElementBase, int, int]:
return self._sub_element, flat_component, self._block_size
def get_tensor_product_representation(self):
if not self.has_tensor_product_factorisation:
return None
return self._sub_element.get_tensor_product_representation()
@property
def block_size(self) -> int:
return self._block_size
@property
def reference_value_shape(self) -> tuple[int, ...]:
return self._reference_value_shape
@property
def basix_sobolev_space(self) -> _basix.SobolevSpace:
return self._sub_element.basix_sobolev_space
@property
def sub_elements(self) -> list[_AbstractFiniteElement]:
return [self._sub_element for _ in range(self._block_size)]
@property
def dim(self) -> int:
return self._sub_element.dim * self._block_size
@property
def num_entity_dofs(self) -> list[list[int]]:
return [[j * self._block_size for j in i] for i in self._sub_element.num_entity_dofs]
@property
def entity_dofs(self) -> list[list[list[int]]]:
# TODO: should this return this, or should it take blocks into
# account?
return [
[[k * self._block_size + b for k in j for b in range(self._block_size)] for j in i]
for i in self._sub_element.entity_dofs
]
@property
def num_entity_closure_dofs(self) -> list[list[int]]:
return [
[j * self._block_size for j in i] for i in self._sub_element.num_entity_closure_dofs
]
@property
def entity_closure_dofs(self) -> list[list[list[int]]]:
# TODO: should this return this, or should it take blocks into
# account?
return [
[[k * self._block_size + b for k in j for b in range(self._block_size)] for j in i]
for i in self._sub_element.entity_closure_dofs
]
@property
def num_global_support_dofs(self) -> int:
return self._sub_element.num_global_support_dofs * self._block_size
@property
def family_name(self) -> str:
return self._sub_element.family_name
@property
def reference_topology(self) -> list[list[list[int]]]:
return self._sub_element.reference_topology
@property
def reference_geometry(self) -> _npt.ArrayLike:
return self._sub_element.reference_geometry
@property
def lagrange_variant(self) -> _typing.Union[_basix.LagrangeVariant, None]:
return self._sub_element.lagrange_variant
@property
def dpc_variant(self) -> _typing.Union[_basix.DPCVariant, None]:
return self._sub_element.dpc_variant
@property
def element_family(self) -> _typing.Union[_basix.ElementFamily, None]:
return self._sub_element.element_family
@property
def cell_type(self) -> _basix.CellType:
return self._sub_element.cell_type
@property
def discontinuous(self) -> bool:
return self._sub_element.discontinuous
@property
def interpolation_nderivs(self) -> int:
return self._sub_element.interpolation_nderivs
@property
def map_type(self) -> _basix.MapType:
return self._sub_element.map_type
@property
def embedded_superdegree(self) -> int:
return self._sub_element.embedded_superdegree
@property
def embedded_subdegree(self) -> int:
return self._sub_element.embedded_subdegree
@property
def polyset_type(self) -> _basix.PolysetType:
return self._sub_element.polyset_type
@property
def _wcoeffs(self) -> _npt.ArrayLike:
sub_wc = self._sub_element._wcoeffs
wcoeffs = np.zeros((sub_wc.shape[0] * self._block_size, sub_wc.shape[1] * self._block_size)) # type: ignore
for i in range(self._block_size):
wcoeffs[
sub_wc.shape[0] * i : sub_wc.shape[0] * (i + 1), # type: ignore
sub_wc.shape[1] * i : sub_wc.shape[1] * (i + 1), # type: ignore
] = sub_wc
return wcoeffs
@property
def _x(self) -> list[list[_npt.NDArray]]:
return self._sub_element._x
@property
def _M(self) -> list[list[_npt.NDArray]]:
M = []
for M_list in self._sub_element._M:
M_row = []
for mat in M_list:
new_mat = np.zeros(
(
mat.shape[0] * self._block_size, # type: ignore
mat.shape[1] * self._block_size, # type: ignore
mat.shape[2], # type: ignore
mat.shape[3], # type: ignore
)
)
for i in range(self._block_size):
new_mat[
i * mat.shape[0] : (i + 1) * mat.shape[0], # type: ignore
i * mat.shape[1] : (i + 1) * mat.shape[1], # type: ignore
:,
:,
] = mat
M_row.append(new_mat)
M.append(M_row)
return M # type: ignore
@property
def has_tensor_product_factorisation(self) -> bool:
return self._sub_element.has_tensor_product_factorisation
def custom_quadrature(
self,
) -> tuple[_npt.NDArray[np.floating], _npt.NDArray[np.floating]]:
return self._sub_element.custom_quadrature()
@property
def has_custom_quadrature(self) -> bool:
return self._sub_element.has_custom_quadrature
@property
def basix_element(self):
return self._sub_element.basix_element
class _QuadratureElement(_ElementBase):
"""A quadrature element."""
def __init__(
self,
cell: _basix.CellType,
points: _npt.NDArray[np.floating],
weights: _npt.NDArray[np.floating],
pullback: _AbstractPullback,
degree: _typing.Optional[int] = None,
dtype: _typing.Optional[_npt.DTypeLike] = np.float64,
):
"""Initialise the element."""
self._points = points.astype(dtype)
self._weights = weights.astype(dtype)
repr = f"QuadratureElement({cell.name}, {points!r}, {weights!r}, {pullback})".replace(
"\n", ""
)
self._cell_type = cell
self._entity_counts = [len(i) for i in _basix.topology(cell)]
if degree is None:
degree = len(points)
super().__init__(repr, cell.name, (), degree, pullback=pullback)
@property
def dtype(self) -> _npt.DTypeLike:
return self._points.dtype
@property
def basix_sobolev_space(self) -> _basix.SobolevSpace:
return _basix.SobolevSpace.L2
def __eq__(self, other) -> bool:
return isinstance(other, _QuadratureElement) and (
self._cell_type == other._cell_type
and self._pullback == other._pullback
and self._points.shape == other._points.shape
and self._weights.shape == other._weights.shape
and np.allclose(self._points, other._points)
and np.allclose(self._weights, other._weights)
)
def __hash__(self) -> int:
return super().__hash__()
def tabulate(self, nderivs: int, points: _npt.NDArray[np.floating]) -> _npt.ArrayLike:
if nderivs > 0:
raise ValueError("Cannot take derivatives of Quadrature element.")
if points.shape != self._points.shape:
raise ValueError("Mismatch of tabulation points and element points.")
tables = np.asarray([np.eye(points.shape[0], points.shape[0])], dtype=points.dtype)
return tables
def get_component_element(self, flat_component: int) -> tuple[_ElementBase, int, int]:
return self, 0, 1
def custom_quadrature(
self,
) -> tuple[_npt.NDArray[np.floating], _npt.NDArray[np.floating]]:
return self._points, self._weights
@property
def is_quadrature(self) -> bool:
return True
@property
def dim(self) -> int:
return self._points.shape[0]
@property
def num_entity_dofs(self) -> list[list[int]]:
dofs = []
for d in self._entity_counts[:-1]:
dofs += [[0] * d]
dofs += [[self.dim]]
return dofs
@property
def entity_dofs(self) -> list[list[list[int]]]:
start_dof = 0
entity_dofs = []
for i in self.num_entity_dofs:
dofs_list = []
for j in i:
dofs_list.append([start_dof + k for k in range(j)])
start_dof += j
entity_dofs.append(dofs_list)
return entity_dofs
@property
def num_entity_closure_dofs(self) -> list[list[int]]:
return self.num_entity_dofs
@property
def entity_closure_dofs(self) -> list[list[list[int]]]:
return self.entity_dofs
@property
def num_global_support_dofs(self) -> int:
return 0
@property
def reference_topology(self) -> list[list[list[int]]]:
raise NotImplementedError()
@property
def reference_geometry(self) -> _npt.ArrayLike:
raise NotImplementedError()
@property
def family_name(self) -> str:
return "quadrature"
@property
def lagrange_variant(self) -> _typing.Union[_basix.LagrangeVariant, None]:
return None
@property
def dpc_variant(self) -> _typing.Union[_basix.DPCVariant, None]:
return None
@property
def element_family(self) -> _typing.Union[_basix.ElementFamily, None]:
return None
@property
def cell_type(self) -> _basix.CellType:
return self._cell_type
@property
def discontinuous(self) -> bool:
return False
@property
def map_type(self) -> _basix.MapType:
return _basix.MapType.identity
@property
def polyset_type(self) -> _basix.PolysetType:
raise NotImplementedError()
@property
def has_custom_quadrature(self) -> bool:
return True
@property
def embedded_superdegree(self) -> int:
return self.degree
@property
def embedded_subdegree(self) -> int:
return -1
class _RealElement(_ElementBase):
"""A real element."""
def __init__(self, cell: _basix.CellType, value_shape: tuple[int, ...]):
"""Initialise the element."""
self._cell_type = cell
tdim = len(_basix.topology(cell)) - 1
super().__init__(f"RealElement({cell.name}, {value_shape})", cell.name, value_shape, 0)
self._entity_counts = []
if tdim >= 1:
self._entity_counts.append(self.cell.num_vertices())
if tdim >= 2:
self._entity_counts.append(self.cell.num_edges())
if tdim >= 3:
self._entity_counts.append(self.cell.num_facets())
self._entity_counts.append(1)
def __eq__(self, other) -> bool:
return (
isinstance(other, _RealElement)
and self._cell_type == other._cell_type
and self._reference_value_shape == other._reference_value_shape
)
def __hash__(self) -> int:
return super().__hash__()
@property
def dtype(self) -> _npt.DTypeLike:
raise NotImplementedError()
def tabulate(self, nderivs: int, points: _npt.NDArray[np.floating]) -> _npt.ArrayLike:
out = np.zeros((nderivs + 1, len(points), self.reference_value_size**2))
for v in range(self.reference_value_size):
out[0, :, self.reference_value_size * v + v] = 1.0
return out
def get_component_element(self, flat_component: int) -> tuple[_ElementBase, int, int]:
assert flat_component < self.reference_value_size
return self, 0, 1
@property
def dim(self) -> int:
return 0
@property
def embedded_superdegree(self) -> int:
return 0
@property
def embedded_subdegree(self) -> int:
return 0
@property
def num_entity_dofs(self) -> list[list[int]]:
dofs = []
for d in self._entity_counts[:-1]:
dofs += [[0] * d]
dofs += [[self.dim]]
return dofs
@property
def entity_dofs(self) -> list[list[list[int]]]:
start_dof = 0
entity_dofs = []
for i in self.num_entity_dofs:
dofs_list = []
for j in i:
dofs_list.append([start_dof + k for k in range(j)])
start_dof += j
entity_dofs.append(dofs_list)
return entity_dofs
@property
def num_entity_closure_dofs(self) -> list[list[int]]:
return self.num_entity_dofs
@property
def entity_closure_dofs(self) -> list[list[list[int]]]:
return self.entity_dofs
@property
def num_global_support_dofs(self) -> int:
return 1
@property
def reference_topology(self) -> list[list[list[int]]]:
raise NotImplementedError()
@property
def reference_geometry(self) -> _npt.ArrayLike:
raise NotImplementedError()
@property
def family_name(self) -> str:
return "real"
@property
def lagrange_variant(self) -> _typing.Union[_basix.LagrangeVariant, None]:
return None
@property
def dpc_variant(self) -> _typing.Union[_basix.DPCVariant, None]:
return None
@property
def element_family(self) -> _typing.Union[_basix.ElementFamily, None]:
return None
@property
def cell_type(self) -> _basix.CellType:
return self._cell_type
@property
def discontinuous(self) -> bool:
return False
@property
def basix_sobolev_space(self) -> _basix.SobolevSpace:
return _basix.SobolevSpace.HInf
@property
def map_type(self) -> _basix.MapType:
return _basix.MapType.identity
@property
def polyset_type(self) -> _basix.PolysetType:
raise NotImplementedError()
def _compute_signature(element: _basix.finite_element.FiniteElement) -> str:
"""Compute a signature of a custom element.
Args:
element: A Basix custom element.
Returns:
A hash identifying this element.
"""
assert element.family == _basix.ElementFamily.custom
signature = (
f"{element.cell_type.name}, {element.value_shape}, {element.map_type.name}, "
f"{element.discontinuous}, {element.embedded_subdegree}, {element.embedded_superdegree}, "
f"{element.dtype}, {element.dof_ordering}"
)
data = ",".join([f"{i}" for row in element.wcoeffs for i in row]) # type: ignore
data += "__"
for entity in element.x:
for points in entity:
data += ",".join([f"{i}" for p in points for i in p]) # type: ignore
data += "_"
data += "__"
for entity in element.M:
for matrices in entity:
data += ",".join([f"{i}" for mat in matrices for row in mat for i in row]) # type: ignore
data += "_"
data += "__"
for mat in element.entity_transformations().values():
data += ",".join([f"{i}" for row in mat for i in row])
data += "__"
signature += _hashlib.sha1(data.encode("utf-8")).hexdigest()
return signature
def element(
family: _typing.Union[_basix.ElementFamily, str],
cell: _typing.Union[_basix.CellType, str],
degree: int,
lagrange_variant: _basix.LagrangeVariant = _basix.LagrangeVariant.unset,
dpc_variant: _basix.DPCVariant = _basix.DPCVariant.unset,
discontinuous: bool = False,
shape: _typing.Optional[tuple[int, ...]] = None,
symmetry: _typing.Optional[bool] = None,
dof_ordering: _typing.Optional[list[int]] = None,
dtype: _typing.Optional[_npt.DTypeLike] = None,
) -> _ElementBase:
"""Create a UFL compatible element using Basix.
Args:
family: Element family/type.
cell: Element cell type.
degree: Degree of the finite element.
lagrange_variant: Variant of Lagrange to be used.
dpc_variant: Variant of DPC to be used.
discontinuous: If ``True``, the discontinuous version of the
element is created.
shape: Value shape of the element. For scalar-valued families,
this can be used to create vector and tensor elements.
symmetry: Set to ``True`` if the tensor is symmetric. Valid for
rank 2 elements only.
dof_ordering: Ordering of dofs for ``ElementDofLayout``.
dtype: Floating point data type.
Returns:
A finite element.
"""
# Conversion of string arguments to types
if isinstance(cell, str):
cell = _basix.CellType[cell]
if isinstance(family, str):
if family.startswith("Discontinuous "):
family = family[14:]
discontinuous = True
if family in ["DP", "DG", "DQ"]:
family = "P"
discontinuous = True
if family == "CG":
_warn(
'"CG" element name is deprecated. Consider using "Lagrange" or "P" instead',
DeprecationWarning,
stacklevel=2,
)
family = "P"
discontinuous = False
if family == "DPC":
discontinuous = True
family = _basix.finite_element.string_to_family(family, cell.name)
# Default variant choices
EF = _basix.ElementFamily
if lagrange_variant == _basix.LagrangeVariant.unset:
if family == EF.P:
lagrange_variant = _basix.LagrangeVariant.gll_warped
elif family in [EF.RT, EF.N1E]:
lagrange_variant = _basix.LagrangeVariant.legendre
elif family in [EF.serendipity, EF.BDM, EF.N2E]:
lagrange_variant = _basix.LagrangeVariant.legendre
if dpc_variant == _basix.DPCVariant.unset:
if family in [EF.serendipity, EF.BDM, EF.N2E]:
dpc_variant = _basix.DPCVariant.legendre
elif family == EF.DPC:
dpc_variant = _basix.DPCVariant.diagonal_gll
e = _basix.create_element(
family,
cell,
degree,
lagrange_variant,
dpc_variant,
discontinuous,
dof_ordering=dof_ordering,
dtype=dtype,
)
ufl_e = _BasixElement(e)
if shape is None or shape == tuple(e.value_shape):
if symmetry is not None:
raise ValueError("Cannot pass a symmetry argument to this element.")
return ufl_e
else:
return blocked_element(ufl_e, shape=shape, symmetry=symmetry)
def enriched_element(
elements: list[_ElementBase],
map_type: _typing.Optional[_basix.MapType] = None,
) -> _ElementBase:
"""Create an UFL compatible enriched element from a list of elements.
Args:
elements: The list of elements
map_type: The map type for the enriched element.
Returns:
An enriched finite element.
"""
ct = elements[0].cell_type
ptype = elements[0].polyset_type
vshape = elements[0].reference_value_shape
vsize = elements[0].reference_value_size
if map_type is None:
map_type = elements[0].map_type
for e in elements:
if e.map_type != map_type:
raise ValueError("Enriched elements on different map types not supported.")
dtype = e.dtype
hcd = min(e.embedded_subdegree for e in elements)
hd = max(e.embedded_superdegree for e in elements)
ss = _basix.sobolev_spaces.intersection([e.basix_sobolev_space for e in elements])
discontinuous = True
for e in elements:
if not e.discontinuous:
discontinuous = False
if e.cell_type != ct:
raise ValueError("Enriched elements on different cell types not supported.")
if e.polyset_type != ptype:
raise ValueError("Enriched elements on different polyset types not supported.")
if e.reference_value_shape != vshape or e.reference_value_size != vsize:
raise ValueError("Enriched elements on different value shapes not supported.")
if e.dtype != dtype:
raise ValueError("Enriched elements with different dtypes no supported.")
nderivs = max(e.interpolation_nderivs for e in elements)
x = []
for pts_lists in zip(*[e._x for e in elements]):
x.append([np.concatenate(pts) for pts in zip(*pts_lists)])
M = []
for M_lists in zip(*[e._M for e in elements]):
M_row = []
for M_parts in zip(*M_lists):
ndofs = sum(mat.shape[0] for mat in M_parts)
npts = sum(mat.shape[2] for mat in M_parts)
deriv_dim = max(mat.shape[3] for mat in M_parts)
new_M = np.zeros((ndofs, vsize, npts, deriv_dim))
pt = 0
dof = 0
for mat in M_parts:
new_M[dof : dof + mat.shape[0], :, pt : pt + mat.shape[2], : mat.shape[3]] = mat
dof += mat.shape[0]
pt += mat.shape[2]
M_row.append(new_M)
M.append(M_row)
dim = sum(e.dim for e in elements)
wcoeffs = np.zeros(
(dim, _basix.polynomials.dim(_basix.PolynomialType.legendre, ct, hd) * vsize)
)
row = 0
for e in elements:
wcoeffs[row : row + e.dim, :] = _basix.polynomials.reshape_coefficients(
_basix.PolynomialType.legendre,
ct,
e._wcoeffs, # type: ignore
vsize,
e.embedded_superdegree,
hd,
)
row += e.dim
return custom_element(
ct,
list(vshape),
wcoeffs,
x,
M,
nderivs,
map_type,
ss,
discontinuous,
hcd,
hd,
ptype,
dtype=dtype,
)
def custom_element(
cell_type: _basix.CellType,
reference_value_shape: _typing.Union[list[int], tuple[int, ...]],
wcoeffs: _npt.NDArray[np.floating],
x: list[list[_npt.NDArray[np.floating]]],
M: list[list[_npt.NDArray[np.floating]]],
interpolation_nderivs: int,
map_type: _basix.MapType,
sobolev_space: _basix.SobolevSpace,
discontinuous: bool,
embedded_subdegree: int,
embedded_superdegree: int,
polyset_type: _basix.PolysetType = _basix.PolysetType.standard,
dtype: _typing.Optional[_npt.DTypeLike] = None,
) -> _ElementBase:
"""Create a UFL compatible custom Basix element.
Args:
cell_type: The cell type
reference_value_shape: The reference value shape of the element
wcoeffs: Matrices for the kth value index containing the
expansion coefficients defining a polynomial basis spanning
the polynomial space for this element. Shape is
``(dim(finite element polyset), dim(Legenre polynomials))``.
x: Interpolation points. Indices are ``(tdim, entity index,
point index, dim)``.
M: The interpolation matrices. Indices are ``(tdim, entity
index, dof, vs, point_index, derivative)``.
interpolation_nderivs: The number of derivatives that need to be
used during interpolation.
map_type: The type of map to be used to map values from the
reference to a cell.
sobolev_space: Underlying Sobolev space for the element.
discontinuous: Indicates whether or not this is the
discontinuous version of the element.
embedded_subdegree: The highest degree ``n`` such that a
Lagrange (or vector Lagrange) element of degree ``n`` is a
subspace of this element.
embedded_superdegree: The highest degree of a polynomial in this
element's polyset.
polyset_type: Polyset type for the element.
dtype: Floating point data type.
Returns:
A custom finite element.
"""
e = _basix.create_custom_element(
cell_type,
tuple(reference_value_shape),
wcoeffs,
x,
M,
interpolation_nderivs,
map_type,
sobolev_space,
discontinuous,
embedded_subdegree,
embedded_superdegree,
polyset_type,
dtype=dtype,
)
return _BasixElement(e)
def mixed_element(elements: list[_ElementBase]) -> _ElementBase:
"""Create a UFL compatible mixed element from a list of elements.
Args:
elements: The list of elements
Returns:
A mixed finite element.
"""
return _MixedElement(elements)
def quadrature_element(
cell: _typing.Union[str, _basix.CellType],
value_shape: tuple[int, ...] = (),
scheme: _typing.Optional[str] = None,
degree: _typing.Optional[int] = None,
points: _typing.Optional[_npt.NDArray[np.floating]] = None,
weights: _typing.Optional[_npt.NDArray[np.floating]] = None,
pullback: _AbstractPullback = _ufl.identity_pullback,
symmetry: _typing.Optional[bool] = None,
dtype: _typing.Optional[_npt.DTypeLike] = None,
) -> _ElementBase:
"""Create a quadrature element.
When creating this element, either the quadrature scheme and degree
must be input or the quadrature points and weights must be.
Args:
cell: Cell to create the element on.
value_shape: Value shape of the element.
scheme: Quadrature scheme.
degree: Quadrature degree.
points: Quadrature points.
weights: Quadrature weights.
pullback: Map name.
symmetry: Set to ``True`` if the tensor is symmetric. Valid for
rank 2 elements only.
dtype: Data type of quadrature points and weights
Returns:
A 'quadrature' finite element.
"""
if isinstance(cell, str):
cell = _basix.CellType[cell]
if points is None:
assert weights is None
assert degree is not None
if scheme is None:
points, weights = _basix.make_quadrature(cell, degree) # type: ignore
else:
points, weights = _basix.make_quadrature( # type: ignore
cell, degree, rule=_basix.quadrature.string_to_type(scheme)
)
assert points is not None
assert weights is not None
e = _QuadratureElement(cell, points, weights, pullback, degree, dtype=dtype)
if value_shape == ():
if symmetry is not None:
raise ValueError("Cannot pass a symmetry argument to this element.")
return e
else:
return blocked_element(e, shape=value_shape, symmetry=symmetry)
def real_element(
cell: _typing.Union[_basix.CellType, str], value_shape: tuple[int, ...]
) -> _ElementBase:
"""Create a real element.
Args:
cell: Cell to create the element on.
value_shape: Value shape of the element.
Returns:
A 'real' finite element.
"""
if isinstance(cell, str):
cell = _basix.CellType[cell]
return _RealElement(cell, value_shape)
def blocked_element(
sub_element: _ElementBase,
shape: tuple[int, ...],
symmetry: _typing.Optional[bool] = None,
) -> _ElementBase:
"""Create a UFL compatible blocked element.
Args:
sub_element: Element used for each block.
shape: Value shape of the element. For scalar-valued families,
this can be used to create vector and tensor elements.
symmetry: Set to ``True`` if the tensor is symmetric. Valid for
rank 2 elements only.
Returns:
A blocked finite element.
"""
if len(sub_element.reference_value_shape) != 0:
raise ValueError("Cannot create a blocked element containing a non-scalar element.")
return _BlockedElement(sub_element, shape=shape, symmetry=symmetry)
def wrap_element(element: _basix.finite_element.FiniteElement) -> _ElementBase:
"""Wrap a Basix element as a Basix UFL element."""
return _BasixElement(element)
|