File: ufl.py

package info (click to toggle)
fenics-basix 0.10.0.post0-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 3,156 kB
  • sloc: cpp: 23,435; python: 10,829; makefile: 43; sh: 26
file content (1922 lines) | stat: -rw-r--r-- 62,058 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
# Copyright (C) 2023-2024 Matthew Scroggs and Garth N. Wells
#
# This file is part of Basix (https://www.fenicsproject.org)
#
# SPDX-License-Identifier:    MIT
"""Functions to directly wrap Basix elements in UFL."""

import hashlib as _hashlib
import itertools as _itertools
import typing as _typing
from abc import abstractmethod as _abstractmethod
from warnings import warn as _warn

import numpy as np
import numpy.typing as _npt
import ufl as _ufl
from ufl.finiteelement import AbstractFiniteElement as _AbstractFiniteElement
from ufl.pullback import AbstractPullback as _AbstractPullback
from ufl.pullback import IdentityPullback as _IdentityPullback
from ufl.pullback import MixedPullback as _MixedPullback
from ufl.pullback import SymmetricPullback as _SymmetricPullback
from ufl.pullback import UndefinedPullback as _UndefinedPullback

import basix as _basix

__all__ = [
    "element",
    "enriched_element",
    "custom_element",
    "mixed_element",
    "quadrature_element",
    "real_element",
    "blocked_element",
    "wrap_element",
]

_spacemap = {
    _basix.SobolevSpace.L2: _ufl.sobolevspace.L2,
    _basix.SobolevSpace.H1: _ufl.sobolevspace.H1,
    _basix.SobolevSpace.H2: _ufl.sobolevspace.H2,
    _basix.SobolevSpace.HInf: _ufl.sobolevspace.HInf,
    _basix.SobolevSpace.HDiv: _ufl.sobolevspace.HDiv,
    _basix.SobolevSpace.HCurl: _ufl.sobolevspace.HCurl,
    _basix.SobolevSpace.HEin: _ufl.sobolevspace.HEin,
    _basix.SobolevSpace.HDivDiv: _ufl.sobolevspace.HDivDiv,
}

_pullbackmap = {
    _basix.MapType.identity: _ufl.identity_pullback,
    _basix.MapType.L2Piola: _ufl.l2_piola,
    _basix.MapType.contravariantPiola: _ufl.contravariant_piola,
    _basix.MapType.covariantPiola: _ufl.covariant_piola,
    _basix.MapType.doubleContravariantPiola: _ufl.double_contravariant_piola,
    _basix.MapType.doubleCovariantPiola: _ufl.double_covariant_piola,
}


def _ufl_sobolev_space_from_enum(s: _basix.SobolevSpace):
    """Convert a Basix Sobolev space enum to a UFL Sobolev space.

    Args:
        s: The Basix Sobolev space

    Returns:
        UFL Sobolev space
    """
    if s not in _spacemap:
        raise ValueError(f"Could not convert to UFL Sobolev space: {s.name}")
    return _spacemap[s]


def _ufl_pullback_from_enum(m: _basix.MapType) -> _AbstractPullback:
    """Convert an enum to a UFL pull back.

    Args:
        m: A map type.

    Returns:
        UFL pull back.

    """
    if m not in _pullbackmap:
        raise ValueError(f"Could not convert to UFL pull back: {m.name}")
    return _pullbackmap[m]


class _ElementBase(_AbstractFiniteElement):
    """A base wrapper to allow elements to be used with UFL.

    This class includes methods and properties needed by UFL and FFCx.
    This is a base class containing functions common to all the element
    types defined in this file.
    """

    def __init__(
        self,
        repr: str,
        cellname: str,
        reference_value_shape: tuple[int, ...],
        degree: int = -1,
        pullback: _AbstractPullback = _UndefinedPullback(),
    ):
        """Initialise the element."""
        self._repr = repr
        if cellname == "point":
            cellname = "vertex"
        self._cellname = cellname
        self._reference_value_shape = reference_value_shape
        self._degree = degree
        self._pullback = pullback

    # Implementation of methods for UFL AbstractFiniteElement
    def __repr__(self):
        """Format as string for evaluation as Python object."""
        return self._repr

    def __str__(self):
        """Format as string for nice printing."""
        return self._repr

    def __hash__(self) -> int:
        """Return a hash."""
        return hash("basix" + self._repr)

    def basix_hash(self) -> _typing.Optional[int]:
        """Hash of the Basix element (if this is a standard Basix element).

        Returns:
            Hash of the Basix element if this is a Basix element,
            otherwise `None`.
        """
        return None

    @_abstractmethod
    def __eq__(self, other) -> bool:
        """Check if two elements are equal."""

    @property
    def sobolev_space(self):
        """Underlying Sobolev space."""
        return _ufl_sobolev_space_from_enum(self.basix_sobolev_space)

    @property
    def pullback(self) -> _AbstractPullback:
        """Pullback for this element."""
        return self._pullback

    @property
    @_abstractmethod
    def embedded_superdegree(self) -> int:
        """Degree of the minimum degree Lagrange space that spans this element.

        This returns the degree of the lowest degree Lagrange space such
        that the polynomial space of the Lagrange space is a superspace
        of this element's polynomial space. If this element contains
        basis functions that are not in any Lagrange space, this
        function should return None.

        Note that on a simplex cells, the polynomial space of Lagrange
        space is a complete polynomial space, but on other cells this is
        not true. For example, on quadrilateral cells, the degree 1
        Lagrange space includes the degree 2 polynomial xy.
        """

    @property
    @_abstractmethod
    def embedded_subdegree(self) -> int:
        """Degree of the maximum degree Lagrange space that is spanned by this element.

        This returns the degree of the highest degree Lagrange space
        such that the polynomial space of the Lagrange space is a
        subspace of this element's polynomial space. If this element's
        polynomial space does not include the constant function, this
        function should return -1.

        Note that on a simplex cells, the polynomial space of Lagrange
        space is a complete polynomial space, but on other cells this is
        not true. For example, on quadrilateral cells, the degree 1
        Lagrange space includes the degree 2 polynomial xy.
        """

    @property
    def cell(self) -> _ufl.Cell:
        """Cell of the finite element."""
        return _ufl.cell.Cell(self._cellname)

    @property
    def reference_value_shape(self) -> tuple[int, ...]:
        """Shape of the value space on the reference cell."""
        return self._reference_value_shape

    @property
    def sub_elements(self) -> _typing.Sequence[_AbstractFiniteElement]:
        """List of sub elements.

        This function does not recurse: i.e. it does not extract the
        sub-elements of sub-elements.
        """
        return []

    # Basix specific functions
    @_abstractmethod
    def tabulate(self, nderivs: int, points: _npt.NDArray[np.floating]) -> _npt.ArrayLike:
        """Tabulate the basis functions of the element.

        Args:
            nderivs: Number of derivatives to tabulate.
            points: Points to tabulate at

        Returns:
            Tabulated basis functions
        """

    @_abstractmethod
    def get_component_element(self, flat_component: int) -> tuple[_typing.Any, int, int]:
        """Get element that represents a component, and the offset and stride of the component.

        For example, for a mixed element, this will return the
        sub-element that represents the given component, the offset of
        that sub-element, and a stride of 1. For a blocked element, this
        will return the sub-element, an offset equal to the component
        number, and a stride equal to the block size. For vector-valued
        element (eg H(curl) and H(div) elements), this returns a
        component element (and as offset of 0 and a stride of 1). When
        tabulate is called on the component element, only the part of the
        table for the given component is returned.

        Args:
            flat_component: The component

        Returns:
            component element, offset of the component, stride of the component
        """

    @property
    @_abstractmethod
    def dim(self) -> int:
        """Number of DOFs the element has."""

    @property
    @_abstractmethod
    def num_entity_dofs(self) -> list[list[int]]:
        """Number of DOFs associated with each entity."""

    @property
    @_abstractmethod
    def entity_dofs(self) -> list[list[list[int]]]:
        """DOF numbers associated with each entity."""

    @property
    @_abstractmethod
    def num_entity_closure_dofs(self) -> list[list[int]]:
        """Number of DOFs associated with the closure of each entity."""

    @property
    @_abstractmethod
    def entity_closure_dofs(self) -> list[list[list[int]]]:
        """DOF numbers associated with the closure of each entity."""

    @property
    @_abstractmethod
    def num_global_support_dofs(self) -> int:
        """Get the number of global support DOFs."""

    @property
    @_abstractmethod
    def reference_topology(self) -> list[list[list[int]]]:
        """Topology of the reference element."""

    @property
    @_abstractmethod
    def reference_geometry(self) -> _npt.ArrayLike:
        """Geometry of the reference element."""

    @property
    @_abstractmethod
    def family_name(self) -> str:
        """Family name of the element."""

    @property
    @_abstractmethod
    def element_family(self) -> _typing.Union[_basix.ElementFamily, None]:
        """Basix element family used to initialise the element."""

    @property
    @_abstractmethod
    def lagrange_variant(self) -> _typing.Union[_basix.LagrangeVariant, None]:
        """Basix Lagrange variant used to initialise the element."""

    @property
    @_abstractmethod
    def dpc_variant(self) -> _typing.Union[_basix.DPCVariant, None]:
        """Basix DPC variant used to initialise the element."""

    @property
    @_abstractmethod
    def cell_type(self) -> _basix.CellType:
        """Basix cell type used to initialise the element."""

    @property
    @_abstractmethod
    def discontinuous(self) -> bool:
        """True if the discontinuous version of the element is used."""

    @property
    @_abstractmethod
    def map_type(self) -> _basix.MapType:
        """The Basix map type."""

    @property
    @_abstractmethod
    def polyset_type(self) -> _basix.PolysetType:
        """The polyset type of the element."""

    @property
    @_abstractmethod
    def basix_sobolev_space(self) -> _basix.SobolevSpace:
        """Return a Basix enum representing the underlying Sobolev space."""

    @property
    @_abstractmethod
    def dtype(self) -> _npt.DTypeLike:
        """Element float type."""

    def get_tensor_product_representation(self):
        """Get the element's tensor product factorisation."""
        return None

    @property
    def degree(self) -> int:
        """The degree of the element."""
        return self._degree

    def custom_quadrature(
        self,
    ) -> tuple[_npt.NDArray[np.floating], _npt.NDArray[np.floating]]:
        """Return custom quadrature rule or raise a ValueError."""
        raise ValueError("Element does not have a custom quadrature rule.")

    @property
    def has_tensor_product_factorisation(self) -> bool:
        """Indicates whether or not this element has a tensor product factorisation.

        If this value is true, this element's basis functions can be
        computed as a tensor product of the basis elements of the
        elements in the factorisation.
        """
        return False

    @property
    def block_size(self) -> int:
        """The block size of the element."""
        return 1

    @property
    def _wcoeffs(self) -> _npt.ArrayLike:
        """The coefficients used to define the polynomial set."""
        raise NotImplementedError()

    @property
    def _x(self) -> list[list[_npt.NDArray]]:
        """The points used to define interpolation."""
        raise NotImplementedError()

    @property
    def _M(self) -> list[list[_npt.NDArray]]:
        """The matrices used to define interpolation."""
        raise NotImplementedError()

    @property
    def interpolation_nderivs(self) -> int:
        """The number of derivatives needed when interpolating."""
        raise NotImplementedError()

    @property
    def is_custom_element(self) -> bool:
        """True if the element is a custom Basix element."""
        return False

    @property
    def has_custom_quadrature(self) -> bool:
        """True if the element has a custom quadrature rule."""
        return False

    @property
    def basix_element(self):
        """Underlying Basix element."""
        raise NotImplementedError()

    @property
    def is_quadrature(self) -> bool:
        """Is this a quadrature element?"""
        return False

    @property
    def is_mixed(self) -> bool:
        """Is this a mixed element?"""
        return False

    @property
    def is_symmetric(self) -> bool:
        """Is the element a symmetric 2-tensor?"""
        return False


class _BasixElement(_ElementBase):
    """A wrapper allowing Basix elements to be used directly with UFL.

    This class allows elements created with `basix.create_element` to be
    wrapped as UFL compatible elements. Users should not directly call
    this class's initialiser, but should use the `element` function
    instead.
    """

    _element: _basix.finite_element.FiniteElement

    def __init__(self, element: _basix.finite_element.FiniteElement):
        """Create a Basix element."""
        if element.family == _basix.ElementFamily.custom:
            self._is_custom = True
            repr = f"custom Basix element ({_compute_signature(element)})"
        else:
            self._is_custom = False
            repr = (
                f"Basix element ({element.family.name}, {element.cell_type.name}, "
                f"{element.degree}, "
                f"{element.lagrange_variant.name}, {element.dpc_variant.name}, "
                f"{element.discontinuous}, "
                f"{element.dtype}, {element.dof_ordering})"
            )

        super().__init__(
            repr,
            element.cell_type.name,
            tuple(element.value_shape),
            element.degree,
            _ufl_pullback_from_enum(element.map_type),
        )

        self._element = element

    def __eq__(self, other) -> bool:
        return isinstance(other, _BasixElement) and self._element == other._element

    def __hash__(self) -> int:
        return super().__hash__()

    def basix_hash(self) -> _typing.Optional[int]:
        return self._element.hash()

    def tabulate(self, nderivs: int, points: _npt.NDArray[np.floating]) -> _npt.ArrayLike:
        tab = self._element.tabulate(nderivs, points)
        # TODO: update FFCx to remove the need for transposing here
        return tab.transpose((0, 1, 3, 2)).reshape((tab.shape[0], tab.shape[1], -1))  # type: ignore

    def get_component_element(self, flat_component: int) -> tuple[_ElementBase, int, int]:
        assert flat_component < self.reference_value_size
        return _ComponentElement(self, flat_component), 0, 1

    def get_tensor_product_representation(self):
        if not self.has_tensor_product_factorisation:
            return None
        return self._element.get_tensor_product_representation()

    @property
    def dtype(self) -> _npt.DTypeLike:
        return self._element.dtype

    @property
    def basix_sobolev_space(self) -> _basix.SobolevSpace:
        return self._element.sobolev_space

    @property
    def dim(self) -> int:
        return self._element.dim

    @property
    def num_entity_dofs(self) -> list[list[int]]:
        return self._element.num_entity_dofs

    @property
    def entity_dofs(self) -> list[list[list[int]]]:
        return self._element.entity_dofs

    @property
    def num_entity_closure_dofs(self) -> list[list[int]]:
        return self._element.num_entity_closure_dofs

    @property
    def entity_closure_dofs(self) -> list[list[list[int]]]:
        return self._element.entity_closure_dofs

    @property
    def num_global_support_dofs(self) -> int:
        return 0

    @property
    def reference_topology(self) -> list[list[list[int]]]:
        return _basix.topology(self._element.cell_type)

    @property
    def reference_geometry(self) -> _npt.ArrayLike:
        return _basix.geometry(self._element.cell_type)

    @property
    def family_name(self) -> str:
        return self._element.family.name

    @property
    def element_family(self) -> _typing.Union[_basix.ElementFamily, None]:
        return self._element.family

    @property
    def lagrange_variant(self) -> _typing.Union[_basix.LagrangeVariant, None]:
        return self._element.lagrange_variant

    @property
    def dpc_variant(self) -> _typing.Union[_basix.DPCVariant, None]:
        return self._element.dpc_variant

    @property
    def cell_type(self) -> _basix.CellType:
        return self._element.cell_type

    @property
    def discontinuous(self) -> bool:
        return self._element.discontinuous

    @property
    def interpolation_nderivs(self) -> int:
        return self._element.interpolation_nderivs

    @property
    def is_custom_element(self) -> bool:
        return self._is_custom

    @property
    def map_type(self) -> _basix.MapType:
        return self._element.map_type

    @property
    def embedded_superdegree(self) -> int:
        return self._element.embedded_superdegree

    @property
    def embedded_subdegree(self) -> int:
        return self._element.embedded_subdegree

    @property
    def polyset_type(self) -> _basix.PolysetType:
        return self._element.polyset_type

    @property
    def _wcoeffs(self) -> _npt.ArrayLike:
        return self._element.wcoeffs

    @property
    def _x(self) -> list[list[_npt.NDArray]]:
        return self._element.x

    @property
    def _M(self) -> list[list[_npt.NDArray]]:
        return self._element.M

    @property
    def has_tensor_product_factorisation(self) -> bool:
        return self._element.has_tensor_product_factorisation

    @property
    def basix_element(self):
        return self._element


class _ComponentElement(_ElementBase):
    """An element representing one component of a _BasixElement.

    This element type is used when UFL's ``get_component_element``
    function is called.

    """

    _element: _ElementBase
    _component: int

    def __init__(self, element: _ElementBase, component: int):
        """Initialise the element."""
        self._element = element
        self._component = component
        repr = f"component element ({element!r}, {component}"
        repr += ")"
        super().__init__(repr, element.cell_type.name, (1,), element._degree)

    def __eq__(self, other) -> bool:
        return (
            isinstance(other, _ComponentElement)
            and self._element == other._element
            and self._component == other._component
        )

    def __hash__(self) -> int:
        return super().__hash__()

    def tabulate(self, nderivs: int, points: _npt.NDArray[np.floating]) -> _npt.ArrayLike:
        tables = self._element.tabulate(nderivs, points)
        output = []
        for tbl in tables:  # type: ignore
            shape = (points.shape[0], *self._element._reference_value_shape, -1)
            tbl = tbl.reshape(shape)  # type: ignore
            if len(self._element._reference_value_shape) == 0:
                output.append(tbl)
            elif len(self._element._reference_value_shape) == 1:
                output.append(tbl[:, self._component, :])
            elif len(self._element._reference_value_shape) == 2:
                if isinstance(self._element, _BlockedElement) and self._element._has_symmetry:
                    # FIXME: check that this behaves as expected
                    output.append(tbl[:, self._component, :])
                else:
                    vs0 = self._element._reference_value_shape[0]
                    output.append(tbl[:, self._component // vs0, self._component % vs0, :])
            else:
                raise NotImplementedError()
        return np.asarray(output, dtype=np.float64)

    def get_component_element(self, flat_component: int) -> tuple[_ElementBase, int, int]:
        if flat_component == 0:
            return self, 0, 1
        else:
            raise NotImplementedError()

    @property
    def dtype(self) -> _npt.DTypeLike:
        return self._element.dtype

    @property
    def basix_sobolev_space(self) -> _basix.SobolevSpace:
        return self._element.basix_sobolev_space

    @property
    def dim(self) -> int:
        raise NotImplementedError()

    @property
    def num_entity_dofs(self) -> list[list[int]]:
        raise NotImplementedError()

    @property
    def entity_dofs(self) -> list[list[list[int]]]:
        raise NotImplementedError()

    @property
    def num_entity_closure_dofs(self) -> list[list[int]]:
        raise NotImplementedError()

    @property
    def entity_closure_dofs(self) -> list[list[list[int]]]:
        raise NotImplementedError()

    @property
    def num_global_support_dofs(self) -> int:
        raise NotImplementedError()

    @property
    def family_name(self) -> str:
        raise NotImplementedError()

    @property
    def reference_topology(self) -> list[list[list[int]]]:
        raise NotImplementedError()

    @property
    def reference_geometry(self) -> _npt.ArrayLike:
        raise NotImplementedError()

    @property
    def element_family(self) -> _typing.Union[_basix.ElementFamily, None]:
        return self._element.element_family

    @property
    def lagrange_variant(self) -> _typing.Union[_basix.LagrangeVariant, None]:
        return self._element.lagrange_variant

    @property
    def dpc_variant(self) -> _typing.Union[_basix.DPCVariant, None]:
        return self._element.dpc_variant

    @property
    def cell_type(self) -> _basix.CellType:
        return self._element.cell_type

    @property
    def polyset_type(self) -> _basix.PolysetType:
        return self._element.polyset_type

    @property
    def discontinuous(self) -> bool:
        return self._element.discontinuous

    @property
    def interpolation_nderivs(self) -> int:
        return self._element.interpolation_nderivs

    @property
    def map_type(self) -> _basix.MapType:
        raise NotImplementedError()

    @property
    def embedded_superdegree(self) -> int:
        return self._element.embedded_superdegree

    @property
    def embedded_subdegree(self) -> int:
        return self._element.embedded_subdegree

    @property
    def basix_element(self):
        return self._element


class _MixedElement(_ElementBase):
    """A mixed element that combines two or more elements.

    This can be used when multiple different elements appear in a form.
    Users should not directly call this class's initilizer, but should
    use the :func:`mixed_element` function instead.
    """

    _sub_elements: list[_ElementBase]

    def __init__(self, sub_elements: list[_ElementBase]):
        """Initialise the element."""
        assert len(sub_elements) > 0
        self._sub_elements = sub_elements
        pullback = (
            _ufl.identity_pullback
            if all(isinstance(e.pullback, _IdentityPullback) for e in sub_elements)
            else _MixedPullback(self)
        )

        repr = "mixed element (" + ", ".join(i._repr for i in sub_elements) + ")"
        super().__init__(
            repr,
            sub_elements[0].cell_type.name,
            (sum(i.reference_value_size for i in sub_elements),),
            pullback=pullback,
        )

    def __eq__(self, other) -> bool:
        if isinstance(other, _MixedElement) and len(self._sub_elements) == len(other._sub_elements):
            for i, j in zip(self._sub_elements, other._sub_elements):
                if i != j:
                    return False
            return True
        return False

    def __hash__(self) -> int:
        return super().__hash__()

    @property
    def dtype(self) -> _npt.DTypeLike:
        return self._sub_elements[0].dtype

    @property
    def is_mixed(self) -> bool:
        return True

    @property
    def degree(self) -> int:
        return max((e.degree for e in self._sub_elements), default=-1)

    def tabulate(self, nderivs: int, points: _npt.NDArray[np.floating]) -> _npt.ArrayLike:
        tables = []
        results = [e.tabulate(nderivs, points) for e in self._sub_elements]
        for deriv_tables in zip(*results):
            new_table = np.zeros((len(points), self.reference_value_size * self.dim))
            start = 0
            for e, t in zip(self._sub_elements, deriv_tables):
                for i in range(0, e.dim, e.reference_value_size):
                    new_table[:, start : start + e.reference_value_size] = t[
                        :, i : i + e.reference_value_size
                    ]
                    start += self.reference_value_size
            tables.append(new_table)
        return np.asarray(tables, dtype=np.float64)

    def get_component_element(self, flat_component: int) -> tuple[_ElementBase, int, int]:
        sub_dims = [0] + [e.dim for e in self._sub_elements]
        sub_cmps = [0] + [e.reference_value_size for e in self._sub_elements]

        irange = np.cumsum(sub_dims)
        crange = np.cumsum(sub_cmps)

        # Find index of sub element which corresponds to the current
        # flat component
        component_element_index = np.where(crange <= flat_component)[0].shape[0] - 1

        sub_e = self._sub_elements[component_element_index]

        e, offset, stride = sub_e.get_component_element(
            flat_component - crange[component_element_index]
        )
        # TODO: is this offset correct?
        return e, irange[component_element_index] + offset, stride

    @property
    def embedded_superdegree(self) -> int:
        return max(e.embedded_superdegree for e in self._sub_elements)

    @property
    def embedded_subdegree(self) -> int:
        raise NotImplementedError()

    @property
    def map_type(self) -> _basix.MapType:
        raise NotImplementedError()

    @property
    def basix_sobolev_space(self) -> _basix.SobolevSpace:
        return _basix.sobolev_spaces.intersection(
            [e.basix_sobolev_space for e in self._sub_elements]
        )

    @property
    def sub_elements(self) -> _typing.Sequence[_ElementBase]:
        return self._sub_elements

    @property
    def dim(self) -> int:
        return sum(e.dim for e in self._sub_elements)

    @property
    def num_entity_dofs(self) -> list[list[int]]:
        data = [e.num_entity_dofs for e in self._sub_elements]
        return [
            [sum(d[tdim][entity_n] for d in data) for entity_n, _ in enumerate(entities)]
            for tdim, entities in enumerate(data[0])
        ]

    @property
    def entity_dofs(self) -> list[list[list[int]]]:
        dofs: list[list[list[int]]] = [
            [[] for i in entities] for entities in self._sub_elements[0].entity_dofs
        ]
        start_dof = 0
        for e in self._sub_elements:
            for tdim, entities in enumerate(e.entity_dofs):
                for entity_n, entity_dofs in enumerate(entities):
                    dofs[tdim][entity_n] += [start_dof + i for i in entity_dofs]
            start_dof += e.dim
        return dofs

    @property
    def num_entity_closure_dofs(self) -> list[list[int]]:
        data = [e.num_entity_closure_dofs for e in self._sub_elements]
        return [
            [sum(d[tdim][entity_n] for d in data) for entity_n, _ in enumerate(entities)]
            for tdim, entities in enumerate(data[0])
        ]

    @property
    def entity_closure_dofs(self) -> list[list[list[int]]]:
        dofs: list[list[list[int]]] = [
            [[] for i in entities] for entities in self._sub_elements[0].entity_closure_dofs
        ]
        start_dof = 0
        for e in self._sub_elements:
            for tdim, entities in enumerate(e.entity_closure_dofs):
                for entity_n, entity_dofs in enumerate(entities):
                    dofs[tdim][entity_n] += [start_dof + i for i in entity_dofs]
            start_dof += e.dim
        return dofs

    @property
    def num_global_support_dofs(self) -> int:
        return sum(e.num_global_support_dofs for e in self._sub_elements)

    @property
    def family_name(self) -> str:
        return "mixed element"

    @property
    def reference_topology(self) -> list[list[list[int]]]:
        return self._sub_elements[0].reference_topology

    @property
    def reference_geometry(self) -> _npt.ArrayLike:
        return self._sub_elements[0].reference_geometry

    @property
    def lagrange_variant(self) -> _typing.Union[_basix.LagrangeVariant, None]:
        return None

    @property
    def dpc_variant(self) -> _typing.Union[_basix.DPCVariant, None]:
        return None

    @property
    def element_family(self) -> _typing.Union[_basix.ElementFamily, None]:
        return None

    @property
    def cell_type(self) -> _basix.CellType:
        return self._sub_elements[0].cell_type

    @property
    def discontinuous(self) -> bool:
        return False

    @property
    def interpolation_nderivs(self) -> int:
        return max([e.interpolation_nderivs for e in self._sub_elements])

    @property
    def polyset_type(self) -> _basix.PolysetType:
        pt = _basix.PolysetType.standard
        for e in self._sub_elements:
            pt = _basix.polyset_superset(self.cell_type, pt, e.polyset_type)
        return pt

    def custom_quadrature(
        self,
    ) -> tuple[_npt.NDArray[np.floating], _npt.NDArray[np.floating]]:
        custom_q = None
        for e in self._sub_elements:
            if e.has_custom_quadrature:
                if custom_q is None:
                    custom_q = e.custom_quadrature()
                else:
                    p, w = e.custom_quadrature()
                    if not np.allclose(p, custom_q[0]) or not np.allclose(w, custom_q[1]):
                        raise ValueError(
                            "Subelements of mixed element use different quadrature rules"
                        )
        if custom_q is not None:
            return custom_q
        raise ValueError("Element does not have custom quadrature")

    @property
    def has_custom_quadrature(self) -> bool:
        for e in self._sub_elements:
            if e.has_custom_quadrature:
                return True
        return False


class _BlockedElement(_ElementBase):
    """Element with a block size that contains multiple copies of a sub element.

    This can be used to (for example) create vector and tensor Lagrange
    elements. Users should not directly call this classes initilizer,
    but should use the `blocked_element` function instead.

    """

    _block_shape: tuple[int, ...]
    _sub_element: _ElementBase
    _block_size: int
    _has_symmetry: bool

    def __init__(
        self,
        sub_element: _ElementBase,
        shape: tuple[int, ...],
        symmetry: _typing.Optional[bool] = None,
    ):
        """Initialise the element."""
        if sub_element.reference_value_size != 1:
            raise ValueError(
                "Blocked elements of non-scalar elements are not supported. "
                "Try using _MixedElement instead."
            )
        if symmetry is not None:
            if len(shape) != 2:
                raise ValueError("symmetry argument can only be passed to elements of rank 2.")
            if shape[0] != shape[1]:
                raise ValueError("symmetry argument can only be passed to square shaped elements.")

        if symmetry:
            block_size = shape[0] * (shape[0] + 1) // 2
            self._has_symmetry = True
        else:
            block_size = 1
            for i in shape:
                block_size *= i
            self._has_symmetry = False
        assert block_size > 0

        self._sub_element = sub_element
        self._block_size = block_size
        self._block_shape = shape

        repr = f"blocked element ({sub_element!r}, {shape}"
        if symmetry is not None:
            repr += f", symmetry={symmetry}"
        repr += ")"

        super().__init__(
            repr,
            sub_element.cell_type.name,
            shape,
            sub_element._degree,
            sub_element._pullback,
        )

        if symmetry:
            n = 0
            symmetry_mapping: dict[tuple[int, ...], int] = {}
            for i in range(shape[0]):
                for j in range(i + 1):
                    symmetry_mapping[(i, j)] = n
                    symmetry_mapping[(j, i)] = n
                    n += 1

            self._pullback = _SymmetricPullback(self, symmetry_mapping)

    def __eq__(self, other) -> bool:
        return (
            isinstance(other, _BlockedElement)
            and self._block_size == other._block_size
            and self._block_shape == other._block_shape
            and self._sub_element == other._sub_element
        )

    def __hash__(self) -> int:
        return super().__hash__()

    def basix_hash(self) -> _typing.Optional[int]:
        return self._sub_element.basix_hash()

    @property
    def dtype(self) -> _npt.DTypeLike:
        return self._sub_element.dtype

    @property
    def is_symmetric(self) -> bool:
        return self._has_symmetry

    @property
    def is_quadrature(self) -> bool:
        return self._sub_element.is_quadrature

    def tabulate(self, nderivs: int, points: _npt.NDArray[np.floating]) -> _npt.ArrayLike:
        assert len(self._block_shape) == 1  # TODO: block shape
        assert self.reference_value_size == self._block_size  # TODO: remove this assumption
        output = []
        for table in self._sub_element.tabulate(nderivs, points):  # type: ignore
            # Repeat sub element horizontally
            assert len(table.shape) == 2  # type: ignore
            new_table = np.zeros(
                (table.shape[0], *self._block_shape, self._block_size * table.shape[1])  # type: ignore
            )
            for i, j in enumerate(_itertools.product(*[range(s) for s in self._block_shape])):
                if len(j) == 1:
                    new_table[:, j[0], i :: self._block_size] = table
                elif len(j) == 2:
                    new_table[:, j[0], j[1], i :: self._block_size] = table
                else:
                    raise NotImplementedError()
            output.append(new_table)
        return np.asarray(output, dtype=np.float64)

    def get_component_element(self, flat_component: int) -> tuple[_ElementBase, int, int]:
        return self._sub_element, flat_component, self._block_size

    def get_tensor_product_representation(self):
        if not self.has_tensor_product_factorisation:
            return None
        return self._sub_element.get_tensor_product_representation()

    @property
    def block_size(self) -> int:
        return self._block_size

    @property
    def reference_value_shape(self) -> tuple[int, ...]:
        return self._reference_value_shape

    @property
    def basix_sobolev_space(self) -> _basix.SobolevSpace:
        return self._sub_element.basix_sobolev_space

    @property
    def sub_elements(self) -> list[_AbstractFiniteElement]:
        return [self._sub_element for _ in range(self._block_size)]

    @property
    def dim(self) -> int:
        return self._sub_element.dim * self._block_size

    @property
    def num_entity_dofs(self) -> list[list[int]]:
        return [[j * self._block_size for j in i] for i in self._sub_element.num_entity_dofs]

    @property
    def entity_dofs(self) -> list[list[list[int]]]:
        # TODO: should this return this, or should it take blocks into
        # account?
        return [
            [[k * self._block_size + b for k in j for b in range(self._block_size)] for j in i]
            for i in self._sub_element.entity_dofs
        ]

    @property
    def num_entity_closure_dofs(self) -> list[list[int]]:
        return [
            [j * self._block_size for j in i] for i in self._sub_element.num_entity_closure_dofs
        ]

    @property
    def entity_closure_dofs(self) -> list[list[list[int]]]:
        # TODO: should this return this, or should it take blocks into
        # account?
        return [
            [[k * self._block_size + b for k in j for b in range(self._block_size)] for j in i]
            for i in self._sub_element.entity_closure_dofs
        ]

    @property
    def num_global_support_dofs(self) -> int:
        return self._sub_element.num_global_support_dofs * self._block_size

    @property
    def family_name(self) -> str:
        return self._sub_element.family_name

    @property
    def reference_topology(self) -> list[list[list[int]]]:
        return self._sub_element.reference_topology

    @property
    def reference_geometry(self) -> _npt.ArrayLike:
        return self._sub_element.reference_geometry

    @property
    def lagrange_variant(self) -> _typing.Union[_basix.LagrangeVariant, None]:
        return self._sub_element.lagrange_variant

    @property
    def dpc_variant(self) -> _typing.Union[_basix.DPCVariant, None]:
        return self._sub_element.dpc_variant

    @property
    def element_family(self) -> _typing.Union[_basix.ElementFamily, None]:
        return self._sub_element.element_family

    @property
    def cell_type(self) -> _basix.CellType:
        return self._sub_element.cell_type

    @property
    def discontinuous(self) -> bool:
        return self._sub_element.discontinuous

    @property
    def interpolation_nderivs(self) -> int:
        return self._sub_element.interpolation_nderivs

    @property
    def map_type(self) -> _basix.MapType:
        return self._sub_element.map_type

    @property
    def embedded_superdegree(self) -> int:
        return self._sub_element.embedded_superdegree

    @property
    def embedded_subdegree(self) -> int:
        return self._sub_element.embedded_subdegree

    @property
    def polyset_type(self) -> _basix.PolysetType:
        return self._sub_element.polyset_type

    @property
    def _wcoeffs(self) -> _npt.ArrayLike:
        sub_wc = self._sub_element._wcoeffs
        wcoeffs = np.zeros((sub_wc.shape[0] * self._block_size, sub_wc.shape[1] * self._block_size))  # type: ignore
        for i in range(self._block_size):
            wcoeffs[
                sub_wc.shape[0] * i : sub_wc.shape[0] * (i + 1),  # type: ignore
                sub_wc.shape[1] * i : sub_wc.shape[1] * (i + 1),  # type: ignore
            ] = sub_wc
        return wcoeffs

    @property
    def _x(self) -> list[list[_npt.NDArray]]:
        return self._sub_element._x

    @property
    def _M(self) -> list[list[_npt.NDArray]]:
        M = []
        for M_list in self._sub_element._M:
            M_row = []
            for mat in M_list:
                new_mat = np.zeros(
                    (
                        mat.shape[0] * self._block_size,  # type: ignore
                        mat.shape[1] * self._block_size,  # type: ignore
                        mat.shape[2],  # type: ignore
                        mat.shape[3],  # type: ignore
                    )
                )
                for i in range(self._block_size):
                    new_mat[
                        i * mat.shape[0] : (i + 1) * mat.shape[0],  # type: ignore
                        i * mat.shape[1] : (i + 1) * mat.shape[1],  # type: ignore
                        :,
                        :,
                    ] = mat
                M_row.append(new_mat)
            M.append(M_row)
        return M  # type: ignore

    @property
    def has_tensor_product_factorisation(self) -> bool:
        return self._sub_element.has_tensor_product_factorisation

    def custom_quadrature(
        self,
    ) -> tuple[_npt.NDArray[np.floating], _npt.NDArray[np.floating]]:
        return self._sub_element.custom_quadrature()

    @property
    def has_custom_quadrature(self) -> bool:
        return self._sub_element.has_custom_quadrature

    @property
    def basix_element(self):
        return self._sub_element.basix_element


class _QuadratureElement(_ElementBase):
    """A quadrature element."""

    def __init__(
        self,
        cell: _basix.CellType,
        points: _npt.NDArray[np.floating],
        weights: _npt.NDArray[np.floating],
        pullback: _AbstractPullback,
        degree: _typing.Optional[int] = None,
        dtype: _typing.Optional[_npt.DTypeLike] = np.float64,
    ):
        """Initialise the element."""
        self._points = points.astype(dtype)
        self._weights = weights.astype(dtype)
        repr = f"QuadratureElement({cell.name}, {points!r}, {weights!r}, {pullback})".replace(
            "\n", ""
        )
        self._cell_type = cell
        self._entity_counts = [len(i) for i in _basix.topology(cell)]

        if degree is None:
            degree = len(points)

        super().__init__(repr, cell.name, (), degree, pullback=pullback)

    @property
    def dtype(self) -> _npt.DTypeLike:
        return self._points.dtype

    @property
    def basix_sobolev_space(self) -> _basix.SobolevSpace:
        return _basix.SobolevSpace.L2

    def __eq__(self, other) -> bool:
        return isinstance(other, _QuadratureElement) and (
            self._cell_type == other._cell_type
            and self._pullback == other._pullback
            and self._points.shape == other._points.shape
            and self._weights.shape == other._weights.shape
            and np.allclose(self._points, other._points)
            and np.allclose(self._weights, other._weights)
        )

    def __hash__(self) -> int:
        return super().__hash__()

    def tabulate(self, nderivs: int, points: _npt.NDArray[np.floating]) -> _npt.ArrayLike:
        if nderivs > 0:
            raise ValueError("Cannot take derivatives of Quadrature element.")

        if points.shape != self._points.shape:
            raise ValueError("Mismatch of tabulation points and element points.")
        tables = np.asarray([np.eye(points.shape[0], points.shape[0])], dtype=points.dtype)
        return tables

    def get_component_element(self, flat_component: int) -> tuple[_ElementBase, int, int]:
        return self, 0, 1

    def custom_quadrature(
        self,
    ) -> tuple[_npt.NDArray[np.floating], _npt.NDArray[np.floating]]:
        return self._points, self._weights

    @property
    def is_quadrature(self) -> bool:
        return True

    @property
    def dim(self) -> int:
        return self._points.shape[0]

    @property
    def num_entity_dofs(self) -> list[list[int]]:
        dofs = []
        for d in self._entity_counts[:-1]:
            dofs += [[0] * d]

        dofs += [[self.dim]]
        return dofs

    @property
    def entity_dofs(self) -> list[list[list[int]]]:
        start_dof = 0
        entity_dofs = []
        for i in self.num_entity_dofs:
            dofs_list = []
            for j in i:
                dofs_list.append([start_dof + k for k in range(j)])
                start_dof += j
            entity_dofs.append(dofs_list)
        return entity_dofs

    @property
    def num_entity_closure_dofs(self) -> list[list[int]]:
        return self.num_entity_dofs

    @property
    def entity_closure_dofs(self) -> list[list[list[int]]]:
        return self.entity_dofs

    @property
    def num_global_support_dofs(self) -> int:
        return 0

    @property
    def reference_topology(self) -> list[list[list[int]]]:
        raise NotImplementedError()

    @property
    def reference_geometry(self) -> _npt.ArrayLike:
        raise NotImplementedError()

    @property
    def family_name(self) -> str:
        return "quadrature"

    @property
    def lagrange_variant(self) -> _typing.Union[_basix.LagrangeVariant, None]:
        return None

    @property
    def dpc_variant(self) -> _typing.Union[_basix.DPCVariant, None]:
        return None

    @property
    def element_family(self) -> _typing.Union[_basix.ElementFamily, None]:
        return None

    @property
    def cell_type(self) -> _basix.CellType:
        return self._cell_type

    @property
    def discontinuous(self) -> bool:
        return False

    @property
    def map_type(self) -> _basix.MapType:
        return _basix.MapType.identity

    @property
    def polyset_type(self) -> _basix.PolysetType:
        raise NotImplementedError()

    @property
    def has_custom_quadrature(self) -> bool:
        return True

    @property
    def embedded_superdegree(self) -> int:
        return self.degree

    @property
    def embedded_subdegree(self) -> int:
        return -1


class _RealElement(_ElementBase):
    """A real element."""

    def __init__(self, cell: _basix.CellType, value_shape: tuple[int, ...]):
        """Initialise the element."""
        self._cell_type = cell
        tdim = len(_basix.topology(cell)) - 1

        super().__init__(f"RealElement({cell.name}, {value_shape})", cell.name, value_shape, 0)

        self._entity_counts = []
        if tdim >= 1:
            self._entity_counts.append(self.cell.num_vertices())
        if tdim >= 2:
            self._entity_counts.append(self.cell.num_edges())
        if tdim >= 3:
            self._entity_counts.append(self.cell.num_facets())
        self._entity_counts.append(1)

    def __eq__(self, other) -> bool:
        return (
            isinstance(other, _RealElement)
            and self._cell_type == other._cell_type
            and self._reference_value_shape == other._reference_value_shape
        )

    def __hash__(self) -> int:
        return super().__hash__()

    @property
    def dtype(self) -> _npt.DTypeLike:
        raise NotImplementedError()

    def tabulate(self, nderivs: int, points: _npt.NDArray[np.floating]) -> _npt.ArrayLike:
        out = np.zeros((nderivs + 1, len(points), self.reference_value_size**2))
        for v in range(self.reference_value_size):
            out[0, :, self.reference_value_size * v + v] = 1.0
        return out

    def get_component_element(self, flat_component: int) -> tuple[_ElementBase, int, int]:
        assert flat_component < self.reference_value_size
        return self, 0, 1

    @property
    def dim(self) -> int:
        return 0

    @property
    def embedded_superdegree(self) -> int:
        return 0

    @property
    def embedded_subdegree(self) -> int:
        return 0

    @property
    def num_entity_dofs(self) -> list[list[int]]:
        dofs = []
        for d in self._entity_counts[:-1]:
            dofs += [[0] * d]

        dofs += [[self.dim]]
        return dofs

    @property
    def entity_dofs(self) -> list[list[list[int]]]:
        start_dof = 0
        entity_dofs = []
        for i in self.num_entity_dofs:
            dofs_list = []
            for j in i:
                dofs_list.append([start_dof + k for k in range(j)])
                start_dof += j
            entity_dofs.append(dofs_list)
        return entity_dofs

    @property
    def num_entity_closure_dofs(self) -> list[list[int]]:
        return self.num_entity_dofs

    @property
    def entity_closure_dofs(self) -> list[list[list[int]]]:
        return self.entity_dofs

    @property
    def num_global_support_dofs(self) -> int:
        return 1

    @property
    def reference_topology(self) -> list[list[list[int]]]:
        raise NotImplementedError()

    @property
    def reference_geometry(self) -> _npt.ArrayLike:
        raise NotImplementedError()

    @property
    def family_name(self) -> str:
        return "real"

    @property
    def lagrange_variant(self) -> _typing.Union[_basix.LagrangeVariant, None]:
        return None

    @property
    def dpc_variant(self) -> _typing.Union[_basix.DPCVariant, None]:
        return None

    @property
    def element_family(self) -> _typing.Union[_basix.ElementFamily, None]:
        return None

    @property
    def cell_type(self) -> _basix.CellType:
        return self._cell_type

    @property
    def discontinuous(self) -> bool:
        return False

    @property
    def basix_sobolev_space(self) -> _basix.SobolevSpace:
        return _basix.SobolevSpace.HInf

    @property
    def map_type(self) -> _basix.MapType:
        return _basix.MapType.identity

    @property
    def polyset_type(self) -> _basix.PolysetType:
        raise NotImplementedError()


def _compute_signature(element: _basix.finite_element.FiniteElement) -> str:
    """Compute a signature of a custom element.

    Args:
        element: A Basix custom element.

    Returns:
        A hash identifying this element.
    """
    assert element.family == _basix.ElementFamily.custom
    signature = (
        f"{element.cell_type.name}, {element.value_shape}, {element.map_type.name}, "
        f"{element.discontinuous}, {element.embedded_subdegree}, {element.embedded_superdegree}, "
        f"{element.dtype}, {element.dof_ordering}"
    )
    data = ",".join([f"{i}" for row in element.wcoeffs for i in row])  # type: ignore
    data += "__"
    for entity in element.x:
        for points in entity:
            data += ",".join([f"{i}" for p in points for i in p])  # type: ignore
            data += "_"
    data += "__"

    for entity in element.M:
        for matrices in entity:
            data += ",".join([f"{i}" for mat in matrices for row in mat for i in row])  # type: ignore
            data += "_"
    data += "__"

    for mat in element.entity_transformations().values():
        data += ",".join([f"{i}" for row in mat for i in row])
        data += "__"
    signature += _hashlib.sha1(data.encode("utf-8")).hexdigest()

    return signature


def element(
    family: _typing.Union[_basix.ElementFamily, str],
    cell: _typing.Union[_basix.CellType, str],
    degree: int,
    lagrange_variant: _basix.LagrangeVariant = _basix.LagrangeVariant.unset,
    dpc_variant: _basix.DPCVariant = _basix.DPCVariant.unset,
    discontinuous: bool = False,
    shape: _typing.Optional[tuple[int, ...]] = None,
    symmetry: _typing.Optional[bool] = None,
    dof_ordering: _typing.Optional[list[int]] = None,
    dtype: _typing.Optional[_npt.DTypeLike] = None,
) -> _ElementBase:
    """Create a UFL compatible element using Basix.

    Args:
        family: Element family/type.
        cell: Element cell type.
        degree: Degree of the finite element.
        lagrange_variant: Variant of Lagrange to be used.
        dpc_variant: Variant of DPC to be used.
        discontinuous: If ``True``, the discontinuous version of the
            element is created.
        shape: Value shape of the element. For scalar-valued families,
            this can be used to create vector and tensor elements.
        symmetry: Set to ``True`` if the tensor is symmetric. Valid for
            rank 2 elements only.
        dof_ordering: Ordering of dofs for ``ElementDofLayout``.
        dtype: Floating point data type.

    Returns:
        A finite element.

    """
    # Conversion of string arguments to types
    if isinstance(cell, str):
        cell = _basix.CellType[cell]
    if isinstance(family, str):
        if family.startswith("Discontinuous "):
            family = family[14:]
            discontinuous = True
        if family in ["DP", "DG", "DQ"]:
            family = "P"
            discontinuous = True
        if family == "CG":
            _warn(
                '"CG" element name is deprecated. Consider using "Lagrange" or "P" instead',
                DeprecationWarning,
                stacklevel=2,
            )
            family = "P"
            discontinuous = False
        if family == "DPC":
            discontinuous = True

        family = _basix.finite_element.string_to_family(family, cell.name)

    # Default variant choices
    EF = _basix.ElementFamily
    if lagrange_variant == _basix.LagrangeVariant.unset:
        if family == EF.P:
            lagrange_variant = _basix.LagrangeVariant.gll_warped
        elif family in [EF.RT, EF.N1E]:
            lagrange_variant = _basix.LagrangeVariant.legendre
        elif family in [EF.serendipity, EF.BDM, EF.N2E]:
            lagrange_variant = _basix.LagrangeVariant.legendre

    if dpc_variant == _basix.DPCVariant.unset:
        if family in [EF.serendipity, EF.BDM, EF.N2E]:
            dpc_variant = _basix.DPCVariant.legendre
        elif family == EF.DPC:
            dpc_variant = _basix.DPCVariant.diagonal_gll

    e = _basix.create_element(
        family,
        cell,
        degree,
        lagrange_variant,
        dpc_variant,
        discontinuous,
        dof_ordering=dof_ordering,
        dtype=dtype,
    )
    ufl_e = _BasixElement(e)

    if shape is None or shape == tuple(e.value_shape):
        if symmetry is not None:
            raise ValueError("Cannot pass a symmetry argument to this element.")
        return ufl_e
    else:
        return blocked_element(ufl_e, shape=shape, symmetry=symmetry)


def enriched_element(
    elements: list[_ElementBase],
    map_type: _typing.Optional[_basix.MapType] = None,
) -> _ElementBase:
    """Create an UFL compatible enriched element from a list of elements.

    Args:
        elements: The list of elements
        map_type: The map type for the enriched element.

    Returns:
        An enriched finite element.

    """
    ct = elements[0].cell_type
    ptype = elements[0].polyset_type
    vshape = elements[0].reference_value_shape
    vsize = elements[0].reference_value_size
    if map_type is None:
        map_type = elements[0].map_type
        for e in elements:
            if e.map_type != map_type:
                raise ValueError("Enriched elements on different map types not supported.")

    dtype = e.dtype
    hcd = min(e.embedded_subdegree for e in elements)
    hd = max(e.embedded_superdegree for e in elements)
    ss = _basix.sobolev_spaces.intersection([e.basix_sobolev_space for e in elements])
    discontinuous = True
    for e in elements:
        if not e.discontinuous:
            discontinuous = False
        if e.cell_type != ct:
            raise ValueError("Enriched elements on different cell types not supported.")
        if e.polyset_type != ptype:
            raise ValueError("Enriched elements on different polyset types not supported.")
        if e.reference_value_shape != vshape or e.reference_value_size != vsize:
            raise ValueError("Enriched elements on different value shapes not supported.")
        if e.dtype != dtype:
            raise ValueError("Enriched elements with different dtypes no supported.")
    nderivs = max(e.interpolation_nderivs for e in elements)

    x = []
    for pts_lists in zip(*[e._x for e in elements]):
        x.append([np.concatenate(pts) for pts in zip(*pts_lists)])
    M = []
    for M_lists in zip(*[e._M for e in elements]):
        M_row = []
        for M_parts in zip(*M_lists):
            ndofs = sum(mat.shape[0] for mat in M_parts)
            npts = sum(mat.shape[2] for mat in M_parts)
            deriv_dim = max(mat.shape[3] for mat in M_parts)
            new_M = np.zeros((ndofs, vsize, npts, deriv_dim))
            pt = 0
            dof = 0
            for mat in M_parts:
                new_M[dof : dof + mat.shape[0], :, pt : pt + mat.shape[2], : mat.shape[3]] = mat
                dof += mat.shape[0]
                pt += mat.shape[2]
            M_row.append(new_M)
        M.append(M_row)

    dim = sum(e.dim for e in elements)
    wcoeffs = np.zeros(
        (dim, _basix.polynomials.dim(_basix.PolynomialType.legendre, ct, hd) * vsize)
    )
    row = 0
    for e in elements:
        wcoeffs[row : row + e.dim, :] = _basix.polynomials.reshape_coefficients(
            _basix.PolynomialType.legendre,
            ct,
            e._wcoeffs,  # type: ignore
            vsize,
            e.embedded_superdegree,
            hd,
        )
        row += e.dim

    return custom_element(
        ct,
        list(vshape),
        wcoeffs,
        x,
        M,
        nderivs,
        map_type,
        ss,
        discontinuous,
        hcd,
        hd,
        ptype,
        dtype=dtype,
    )


def custom_element(
    cell_type: _basix.CellType,
    reference_value_shape: _typing.Union[list[int], tuple[int, ...]],
    wcoeffs: _npt.NDArray[np.floating],
    x: list[list[_npt.NDArray[np.floating]]],
    M: list[list[_npt.NDArray[np.floating]]],
    interpolation_nderivs: int,
    map_type: _basix.MapType,
    sobolev_space: _basix.SobolevSpace,
    discontinuous: bool,
    embedded_subdegree: int,
    embedded_superdegree: int,
    polyset_type: _basix.PolysetType = _basix.PolysetType.standard,
    dtype: _typing.Optional[_npt.DTypeLike] = None,
) -> _ElementBase:
    """Create a UFL compatible custom Basix element.

    Args:
        cell_type: The cell type
        reference_value_shape: The reference value shape of the element
        wcoeffs: Matrices for the kth value index containing the
            expansion coefficients defining a polynomial basis spanning
            the polynomial space for this element. Shape is
            ``(dim(finite element polyset), dim(Legenre polynomials))``.
        x: Interpolation points. Indices are ``(tdim, entity index,
            point index, dim)``.
        M: The interpolation matrices. Indices are ``(tdim, entity
            index, dof, vs, point_index, derivative)``.
        interpolation_nderivs: The number of derivatives that need to be
            used during interpolation.
        map_type: The type of map to be used to map values from the
            reference to a cell.
        sobolev_space: Underlying Sobolev space for the element.
        discontinuous: Indicates whether or not this is the
            discontinuous version of the element.
        embedded_subdegree: The highest degree ``n`` such that a
            Lagrange (or vector Lagrange) element of degree ``n`` is a
            subspace of this element.
        embedded_superdegree: The highest degree of a polynomial in this
            element's polyset.
        polyset_type: Polyset type for the element.
        dtype: Floating point data type.

    Returns:
        A custom finite element.
    """
    e = _basix.create_custom_element(
        cell_type,
        tuple(reference_value_shape),
        wcoeffs,
        x,
        M,
        interpolation_nderivs,
        map_type,
        sobolev_space,
        discontinuous,
        embedded_subdegree,
        embedded_superdegree,
        polyset_type,
        dtype=dtype,
    )
    return _BasixElement(e)


def mixed_element(elements: list[_ElementBase]) -> _ElementBase:
    """Create a UFL compatible mixed element from a list of elements.

    Args:
        elements: The list of elements

    Returns:
        A mixed finite element.
    """
    return _MixedElement(elements)


def quadrature_element(
    cell: _typing.Union[str, _basix.CellType],
    value_shape: tuple[int, ...] = (),
    scheme: _typing.Optional[str] = None,
    degree: _typing.Optional[int] = None,
    points: _typing.Optional[_npt.NDArray[np.floating]] = None,
    weights: _typing.Optional[_npt.NDArray[np.floating]] = None,
    pullback: _AbstractPullback = _ufl.identity_pullback,
    symmetry: _typing.Optional[bool] = None,
    dtype: _typing.Optional[_npt.DTypeLike] = None,
) -> _ElementBase:
    """Create a quadrature element.

    When creating this element, either the quadrature scheme and degree
    must be input or the quadrature points and weights must be.

    Args:
        cell: Cell to create the element on.
        value_shape: Value shape of the element.
        scheme: Quadrature scheme.
        degree: Quadrature degree.
        points: Quadrature points.
        weights: Quadrature weights.
        pullback: Map name.
        symmetry: Set to ``True`` if the tensor is symmetric. Valid for
            rank 2 elements only.
        dtype: Data type of quadrature points and weights

    Returns:
        A 'quadrature' finite element.
    """
    if isinstance(cell, str):
        cell = _basix.CellType[cell]

    if points is None:
        assert weights is None
        assert degree is not None
        if scheme is None:
            points, weights = _basix.make_quadrature(cell, degree)  # type: ignore
        else:
            points, weights = _basix.make_quadrature(  # type: ignore
                cell, degree, rule=_basix.quadrature.string_to_type(scheme)
            )

    assert points is not None
    assert weights is not None

    e = _QuadratureElement(cell, points, weights, pullback, degree, dtype=dtype)
    if value_shape == ():
        if symmetry is not None:
            raise ValueError("Cannot pass a symmetry argument to this element.")
        return e
    else:
        return blocked_element(e, shape=value_shape, symmetry=symmetry)


def real_element(
    cell: _typing.Union[_basix.CellType, str], value_shape: tuple[int, ...]
) -> _ElementBase:
    """Create a real element.

    Args:
        cell: Cell to create the element on.
        value_shape: Value shape of the element.

    Returns:
        A 'real' finite element.

    """
    if isinstance(cell, str):
        cell = _basix.CellType[cell]

    return _RealElement(cell, value_shape)


def blocked_element(
    sub_element: _ElementBase,
    shape: tuple[int, ...],
    symmetry: _typing.Optional[bool] = None,
) -> _ElementBase:
    """Create a UFL compatible blocked element.

    Args:
        sub_element: Element used for each block.
        shape: Value shape of the element. For scalar-valued families,
            this can be used to create vector and tensor elements.
        symmetry: Set to ``True`` if the tensor is symmetric. Valid for
            rank 2 elements only.

    Returns:
        A blocked finite element.
    """
    if len(sub_element.reference_value_shape) != 0:
        raise ValueError("Cannot create a blocked element containing a non-scalar element.")

    return _BlockedElement(sub_element, shape=shape, symmetry=symmetry)


def wrap_element(element: _basix.finite_element.FiniteElement) -> _ElementBase:
    """Wrap a Basix element as a Basix UFL element."""
    return _BasixElement(element)