File: condense_graph.py

package info (click to toggle)
hinge 0.5.0-8
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 2,972 kB
  • sloc: cpp: 9,480; ansic: 8,826; python: 5,023; sh: 340; makefile: 10
file content (159 lines) | stat: -rwxr-xr-x 5,482 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
#!/usr/bin/python3

import networkx as nx
import sys
from collections import Counter

def merge_simple_path(g):
    for node in g.nodes():
        #print g.in_degree(node), g.out_degree(node)
        if g.in_degree(node) == 1 and g.out_degree(node) == 1:
            
            in_node = g.in_edges(node)[0][0]
            out_node = g.out_edges(node)[0][1]
            if g.out_degree(in_node) == 1 and g.in_degree(out_node) == 1:
                if in_node != node and out_node != node and in_node != out_node:
                    #print in_node, node, out_node
                    merge_path(g,in_node,node,out_node)
                    
                              
def merge_two_nodes(g):
    for node in g.nodes():
        if g.in_degree(node) == 1 and g.out_degree(node) == 0:
            in_node = g.in_edges(node)[0][0]
            if g.out_degree(in_node) == 1:
                if in_node != node:
                    node_id = g.graph['aval']
                    g.graph['aval'] += 1
                    g.add_node(str(node_id), 
                        count = g.node[in_node]['count'] + g.node[node]['count'],
                        read = g.node[in_node]['read'] + '_' + g.node[node]['read'],
                        #aln_chr = g.node[node]['aln_chr']
                        )
                    g.remove_node(in_node)
                    g.remove_node(node)
            

def merge_path(g,in_node,node,out_node):
    #ov1 = find_overlap(g.node[in_node]['bases'], g.node[node]['bases'])
    #ov2 = find_overlap(g.node[node]['bases'], g.node[out_node]['bases'])
    
    node_id = g.graph['aval']
    g.graph['aval'] += 1
    #length = g.node[node]['length'] + g.node[in_node]['length'] + g.node[out_node]['length'] - ov1 - ov2
    #cov = (g.node[in_node]['cov'] * g.node[in_node]['length'] + g.node[node]['cov'] * g.node[node]['length']  + \
    #g.node[out_node]['cov'] * g.node[out_node]['length'])/float(length)
    #bases = g.node[in_node]['bases'][:-ov1] + g.node[node]['bases'] + g.node[out_node]['bases'][ov2:]
    
    g.add_node(str(node_id), 
        count = g.node[in_node]['count'] + g.node[node]['count'] + g.node[out_node]['count'],
        read = g.node[in_node]['read'] + '_' +  g.node[node]['read'] + '_' +g.node[out_node]['read'],
        #aln_chr = g.node[node]['aln_chr']
    )
    #g.add_node(str(node_id)+'-', bases = reverse_comp_bases(bases), length = length, cov = cov)
    
    for edge in g.in_edges(in_node):
        g.add_edge(edge[0],str(node_id))
    
    for edge in g.out_edges(out_node):
        g.add_edge(str(node_id),edge[1])
    
        
    g.remove_node(in_node)
    g.remove_node(node)
    g.remove_node(out_node)
    
def input1(flname):
    g = nx.DiGraph()
    with open (flname) as f:
        for lines in f:
            lines1=lines.split()
            #print lines1
            if len(lines1) < 5:
                continue
            #print lines1
            g.add_edge(lines1[0] + "_" + lines1[3], lines1[1] + "_" + lines1[4], hinge_edge=int(lines1[5]))
            g.add_edge(lines1[1] + "_" + str(1-int(lines1[4])), lines1[0] + "_" + str(1-int(lines1[3])),hinge_edge=int(lines1[5]))
    return g
            
def input2(flname):
    g = nx.DiGraph()
    with open (flname) as f:
        for lines in f:
            lines1=lines.split()
            #print lines1
            g.add_edge(lines1[0], lines1[1])   
    return g

def run(filename, n_iter):
    
    
    f=open(filename)
    line1=f.readline()
    print(line1)
    f.close()
    if len(line1.split()) !=2:
	g=input1(filename)
    else:
	g=input2(filename)
    
    
    
    print(nx.info(g))
    
    
    for node in g.nodes():
        g.node[node]['count'] = 1
        g.node[node]['read'] = node
        
        
    degree_sequence=sorted(list(g.degree().values()),reverse=True)
    print(Counter(degree_sequence))
    for i in range(n_iter):
        for node in g.nodes():
            if g.in_degree(node) == 0:
                g.remove_node(node)
    
        print(nx.info(g))
        degree_sequence=sorted(list(nx.degree(g).values()),reverse=True)
        print(Counter(degree_sequence))
    
    degree_sequence=sorted(list(nx.degree(g).values()),reverse=True)
    print(Counter(degree_sequence))
    
    
    g.graph['aval'] = 1000000000
    
    for i in range(5):
        merge_simple_path(g)
        degree_sequence=sorted(list(nx.degree(g).values()),reverse=True)
        print(Counter(degree_sequence))
    
    try:
        import ujson
        mapping = ujson.load(open(filename.split('.')[0]+'.mapping.json'))
        
        print('get mapping')
        
        for node in g.nodes():
            #print node
            if node in mapping:
                g.node[node]['aln_start'] = mapping[node][0]
                g.node[node]['aln_end'] = mapping[node][1]
                g.node[node]['aln_strand'] = mapping[node][2]
            else:
                g.node[node]['aln_start'] = 0
                g.node[node]['aln_end'] = 0
                g.node[node]['aln_strand'] = 0
                
    except:
        pass        
    
    nx.write_graphml(g, filename.split('.')[0]+'_condensed.graphml')
    
    print(nx.number_weakly_connected_components(g))
    print(nx.number_strongly_connected_components(g))
    
    
filename = sys.argv[1]
run(filename, 5)