1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
|
#!/usr/bin/python3
import networkx as nx
import sys
from collections import Counter
import json
LENGTH_THRESHOLD=10 #Connected components with less than LENGTH_THRESHOLD reads are thrown away
def merge_simple_path(g):
for node in g.nodes():
#print g.in_degree(node), g.out_degree(node)
if g.in_degree(node) == 1 and g.out_degree(node) == 1:
in_node = g.in_edges(node)[0][0]
out_node = g.out_edges(node)[0][1]
if g.out_degree(in_node) == 1 and g.in_degree(out_node) == 1:
if in_node != node and out_node != node and in_node != out_node:
merge_path(g,in_node,node,out_node)
def merge_two_nodes(g):
for node in g.nodes():
if g.in_degree(node) == 1 and g.out_degree(node) == 0:
in_node = g.in_edges(node)[0][0]
if g.out_degree(in_node) == 1:
if in_node != node:
node_id = g.graph['aval']
g.graph['aval'] += 1
g.add_node(str(node_id),
count = g.node[in_node]['count'] + g.node[node]['count'],
read = g.node[in_node]['read'] + ':' + g.node[node]['read'],
#aln_chr = g.node[node]['aln_chr']
)
g.remove_node(in_node)
g.remove_node(node)
def merge_path(g,in_node,node,out_node):
#ov1 = find_overlap(g.node[in_node]['bases'], g.node[node]['bases'])
#ov2 = find_overlap(g.node[node]['bases'], g.node[out_node]['bases'])
node_id = g.graph['aval']
g.graph['aval'] += 1
#length = g.node[node]['length'] + g.node[in_node]['length'] + g.node[out_node]['length'] - ov1 - ov2
#cov = (g.node[in_node]['cov'] * g.node[in_node]['length'] + g.node[node]['cov'] * g.node[node]['length'] + \
#g.node[out_node]['cov'] * g.node[out_node]['length'])/float(length)
#bases = g.node[in_node]['bases'][:-ov1] + g.node[node]['bases'] + g.node[out_node]['bases'][ov2:]
g.add_node(str(node_id),
count = g.node[in_node]['count'] + g.node[node]['count'] + g.node[out_node]['count'],
read = g.node[in_node]['read'] + ':' + g.node[node]['read'] + ':' +g.node[out_node]['read'],
#aln_chr = g.node[node]['aln_chr']
)
#g.add_node(str(node_id)+'-', bases = reverse_comp_bases(bases), length = length, cov = cov)
#print g.node[str(node_id)]['chr']
for edge in g.in_edges(in_node):
g.add_edge(edge[0],str(node_id))
for edge in g.out_edges(out_node):
g.add_edge(str(node_id),edge[1])
g.remove_node(in_node)
g.remove_node(node)
g.remove_node(out_node)
def input1(flname):
g = nx.DiGraph()
with open (flname) as f:
for lines in f:
lines1=lines.split()
#print lines1
if len(lines1) < 5:
continue
#print lines1
g.add_edge(lines1[0] + "_" + lines1[3], lines1[1] + "_" + lines1[4], hinge_edge=int(lines1[5]))
g.add_edge(lines1[1] + "_" + str(1-int(lines1[4])), lines1[0] + "_" + str(1-int(lines1[3])),hinge_edge=int(lines1[5]))
return g
def input2(flname):
g = nx.DiGraph()
with open (flname) as f:
for lines in f:
lines1=lines.split()
#print lines1
g.add_edge(lines1[0], lines1[1])
return g
def run(filename, gt_file, n_iter):
f=open(filename)
line1=f.readline()
print(line1)
f.close()
if len(line1.split()) !=2:
g=input1(filename)
else:
g=input2(filename)
print(str(len(g.nodes())) + " vertices in graph to begin with.")
connected_components=[x for x in nx.weakly_connected_components(g)]
for component in connected_components:
if len(component) < 10:
g.remove_nodes_from(component)
print(str(len(g.nodes())) + " vertices in graph after removing components of at most "+str(LENGTH_THRESHOLD)+ " nodes.")
read_to_chr_map={}
if gt_file.split('.')[-1]=='json':
with open(gt_file,'r') as f:
tmp_map=json.load(f)
for read in tmp_map:
readid=int(read.strip("'"))
read_to_chr_map[readid] = int(tmp_map[read][0][2])
else:
with open(gt_file,'r') as f:
for num, line in enumerate(f.readlines()):
m = list(map(int, line.strip().split()))
read_to_chr_map[m[0]]=m[1]
nodes_seen=set([x.split("_")[0] for x in g.nodes()])
for node in nodes_seen:
read_to_chr_map.setdefault(int(node),-1)
#print nx.info(g)
print("Num reads read : "+str(len(read_to_chr_map)))
for node in g.nodes():
nodeid=int(node.split('_')[0])
g.node[node]['count'] = 1
g.node[node]['read'] = node
#print str(nodeid), node,g.node[node]['chr']
degree_sequence=sorted(list(g.degree().values()),reverse=True)
print(Counter(degree_sequence))
for i in range(n_iter):
for node in g.nodes():
if g.in_degree(node) == 0:
g.remove_node(node)
print(nx.info(g))
degree_sequence=sorted(list(nx.degree(g).values()),reverse=True)
print(Counter(degree_sequence))
degree_sequence=sorted(list(nx.degree(g).values()),reverse=True)
print(Counter(degree_sequence))
g.graph['aval'] = 1000000000
for i in range(5):
merge_simple_path(g)
degree_sequence=sorted(list(nx.degree(g).values()),reverse=True)
print(Counter(degree_sequence))
h=nx.DiGraph()
h.add_nodes_from(g)
h.add_edges_from(g.edges())
for node in g.nodes():
reads_in_node=[int(x.split('_')[0]) for x in g.node[node]['read'].split(':')]
try:
chr_in_node=[read_to_chr_map[x] for x in reads_in_node]
except:
print(reads_in_node,g.node[node]['read'])
return
chr_in_node_set=set(chr_in_node)
if len(chr_in_node_set) ==1:
h.node[node]['chr']=chr_in_node[0]
else:
h.node[node]['chr']=':'.join(map(str,chr_in_node))
h.node[node]['count']=g.node[node]['count']
try:
h.node[node]['read']=g.node[node]['read']
except:
pass
nx.write_graphml(h, filename.split('.')[0]+'_condensed_annotated.graphml')
print(nx.number_weakly_connected_components(h))
print(nx.number_strongly_connected_components(h))
#
filename = sys.argv[1]
gt_file=sys.argv[2]
run(filename, gt_file,5)
|