1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
#!/usr/bin/python3
import networkx as nx
import sys
from collections import Counter
def merge_simple_path(g):
for node in g.nodes():
#print g.in_degree(node), g.out_degree(node)
if g.in_degree(node) == 1 and g.out_degree(node) == 1:
in_node = g.in_edges(node)[0][0]
out_node = g.out_edges(node)[0][1]
if g.out_degree(in_node) == 1 and g.in_degree(out_node) == 1:
if in_node != node and out_node != node and in_node != out_node:
merge_path(g,in_node,node,out_node)
def merge_two_nodes(g):
for node in g.nodes():
if g.in_degree(node) == 1 and g.out_degree(node) == 0:
in_node = g.in_edges(node)[0][0]
if g.out_degree(in_node) == 1:
if in_node != node:
node_id = g.graph['aval']
g.graph['aval'] += 1
g.add_node(str(node_id),
count = g.node[in_node]['count'] + g.node[node]['count'],
read = g.node[in_node]['read'] + ':' + g.node[node]['read'],
#aln_chr = g.node[node]['aln_chr']
)
g.remove_node(in_node)
g.remove_node(node)
def merge_path(g,in_node,node,out_node):
#ov1 = find_overlap(g.node[in_node]['bases'], g.node[node]['bases'])
#ov2 = find_overlap(g.node[node]['bases'], g.node[out_node]['bases'])
node_id = g.graph['aval']
g.graph['aval'] += 1
#length = g.node[node]['length'] + g.node[in_node]['length'] + g.node[out_node]['length'] - ov1 - ov2
#cov = (g.node[in_node]['cov'] * g.node[in_node]['length'] + g.node[node]['cov'] * g.node[node]['length'] + \
#g.node[out_node]['cov'] * g.node[out_node]['length'])/float(length)
#bases = g.node[in_node]['bases'][:-ov1] + g.node[node]['bases'] + g.node[out_node]['bases'][ov2:]
g.add_node(str(node_id),
count = g.node[in_node]['count'] + g.node[node]['count'] + g.node[out_node]['count'],
read = g.node[in_node]['read'] + ':' + g.node[node]['read'] + ':' +g.node[out_node]['read'],
#aln_chr = g.node[node]['aln_chr']
)
#g.add_node(str(node_id)+'-', bases = reverse_comp_bases(bases), length = length, cov = cov)
#print g.node[str(node_id)]['chr']
for edge in g.in_edges(in_node):
g.add_edge(edge[0],str(node_id),st_pc=g.edge[edge[0]][edge[1]]['st_pc'],end_pc=g.edge[edge[0]][edge[1]]['end_pc'])
for edge in g.out_edges(out_node):
g.add_edge(str(node_id),edge[1],st_pc=g.edge[edge[0]][edge[1]]['st_pc'],end_pc=g.edge[edge[0]][edge[1]]['end_pc'])
g.remove_node(in_node)
g.remove_node(node)
g.remove_node(out_node)
def input1(flname):
g = nx.DiGraph()
with open (flname) as f:
for lines in f:
lines1=lines.split()
#print lines1
if len(lines1) < 5:
continue
#print lines1
g.add_edge(lines1[0] + "_" + lines1[3], lines1[1] + "_" + lines1[4], hinge_edge=int(lines1[5]))
g.add_edge(lines1[1] + "_" + str(1-int(lines1[4])), lines1[0] + "_" + str(1-int(lines1[3])),hinge_edge=int(lines1[5]))
return g
def input2(flname):
g = nx.DiGraph()
with open (flname) as f:
for lines in f:
lines1=lines.split()
#print lines1
g.add_edge(lines1[0], lines1[1])
return g
def run(filename, gt_file, n_iter):
f=open(filename)
line1=f.readline()
print(line1)
f.close()
if len(line1.split()) !=2:
g=input1(filename)
else:
g=input2(filename)
read_to_chr_map={}
pos_dict = {}
mapping_dict = {}
chr_lengths = {}
for chr in range(14):
chr_lengths[chr] = 1000
with open(gt_file,'r') as f:
for num, line in enumerate(f.readlines()):
m = list(map(int, line.strip().split()))
# mapping_dict[num] = [min(m), max(m), int(m[0]>m[1])]
read_to_chr_map[m[0]]= str(m[1])
mapping_dict[num] = m[1]
pos_dict[num] = [min(m[2],m[3]),max(m[2],m[3])]
# pos_dict[num] = [m[2],m[3],int(m[2]>m[3])]
chr_lengths[m[1]] = max(chr_lengths[m[1]],max(m[2],m[3]))
print(nx.info(g))
print("Chromosome lenghts:")
print(chr_lengths)
margin = 10000
del_count = 0
#print nx.info(g)
print("Num reads read : "+str(len(read_to_chr_map)))
for cur_edge in g.edges():
node0=int(cur_edge[0].split('_')[0])
node1=int(cur_edge[1].split('_')[0])
# g.edge[cur_edge[0]][cur_edge[1]]['st_pc'] = "{0:.2f}".format(1.0*pos_dict[node0][1]/chr_lengths[mapping_dict[node0]])
# g.edge[cur_edge[0]][cur_edge[1]]['end_pc'] = "{0:.2f}".format(1.0*pos_dict[node1][0]/chr_lengths[mapping_dict[node1]])
# st_pc is the "start percentage"; i.e., the percent location of edge[0] on its original chromosome
# end_pc is the "end percentage"; i.e., the percent location of edge[1] on its original chromosome
g.edge[cur_edge[0]][cur_edge[1]]['st_pc'] = 1.0*pos_dict[node0][1]/chr_lengths[mapping_dict[node0]]
g.edge[cur_edge[0]][cur_edge[1]]['end_pc'] = 1.0*pos_dict[node1][0]/chr_lengths[mapping_dict[node1]]
for node in g.nodes():
nodeid=int(node.split('_')[0])
if pos_dict[nodeid][0] < margin:
g.remove_node(node)
del_count += 1
continue
if pos_dict[nodeid][1] > chr_lengths[mapping_dict[nodeid]] - margin:
g.remove_node(node)
del_count += 1
continue
g.node[node]['count'] = 1
g.node[node]['read'] = node
#print str(nodeid), node,g.node[node]['chr']
print("Deleted nodes: "+str(del_count))
degree_sequence=sorted(list(g.degree().values()),reverse=True)
print(Counter(degree_sequence))
for i in range(n_iter):
for node in g.nodes():
if g.in_degree(node) == 0:
g.remove_node(node)
print(nx.info(g))
degree_sequence=sorted(list(nx.degree(g).values()),reverse=True)
print(Counter(degree_sequence))
degree_sequence=sorted(list(nx.degree(g).values()),reverse=True)
print(Counter(degree_sequence))
g.graph['aval'] = 1000000000
for i in range(5):
merge_simple_path(g)
degree_sequence=sorted(list(nx.degree(g).values()),reverse=True)
print(Counter(degree_sequence))
h=nx.DiGraph()
h.add_nodes_from(g)
h.add_edges_from(g.edges())
for cur_edge in h.edges():
h.edge[cur_edge[0]][cur_edge[1]]['st_pc'] = g.edge[cur_edge[0]][cur_edge[1]]['st_pc']
h.edge[cur_edge[0]][cur_edge[1]]['end_pc'] = g.edge[cur_edge[0]][cur_edge[1]]['end_pc']
# h = g.copy()
for node in g.nodes():
reads_in_node=[int(x.split('_')[0]) for x in g.node[node]['read'].split(':')]
try:
chr_in_node=[read_to_chr_map[x] for x in reads_in_node]
except:
print(reads_in_node,g.node[node]['read'])
return
chr_in_node_set=set(chr_in_node)
if len(chr_in_node_set) ==1:
h.node[node]['chr']=chr_in_node[0]
else:
h.node[node]['chr']= ':'.join(chr_in_node)
h.node[node]['count']=g.node[node]['count']
try:
h.node[node]['read']=g.node[node]['read']
except:
pass
try:
import ujson
mapping = ujson.load(open(filename.split('.')[0]+'.mapping.json'))
print('get mapping')
for node in h.nodes():
#print node
if node in mapping:
h.node[node]['aln_start'] = mapping[node][0]
h.node[node]['aln_end'] = mapping[node][1]
h.node[node]['aln_strand'] = mapping[node][2]
else:
h.node[node]['aln_start'] = 0
h.node[node]['aln_end'] = 0
h.node[node]['aln_strand'] = 0
except:
pass
nx.write_graphml(h, filename.split('.')[0]+'_condensed_annotated.graphml')
nx.write_graphml(g, filename.split('.')[0]+'_G_condensed_annotated.graphml')
print(nx.number_weakly_connected_components(h))
print(nx.number_strongly_connected_components(h))
#
filename = sys.argv[1]
gt_file=sys.argv[2]
run(filename, gt_file,5)
|