File: condense_graph_create_gfa_compute_n50.py

package info (click to toggle)
hinge 0.5.0-8
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 2,972 kB
  • sloc: cpp: 9,480; ansic: 8,826; python: 5,023; sh: 340; makefile: 10
file content (233 lines) | stat: -rwxr-xr-x 7,179 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
#!/usr/bin/python3

import networkx as nx
import sys
from collections import Counter


# This script condenses the graph down, creates a gfa with for the condensed graph, and computes the contig N50

# python3 condense_graph_create_gfa_compute_n50.py ecoli.edges

# The conditions in lines 23 and 24 are meant to prevent nodes corresponding to different strands to be merged 
# (and should be commented out if this is not desired, or if a json is not available)


def merge_simple_path(g):
    for node in g.nodes():
        if g.in_degree(node) == 1 and g.out_degree(node) == 1:
            
            in_node = g.in_edges(node)[0][0]
            out_node = g.out_edges(node)[0][1]
            if g.out_degree(in_node) == 1 and g.in_degree(out_node) == 1:
                if in_node != node and out_node != node and in_node != out_node:
                    if g.node[in_node]['aln_strand']==g.node[node]['aln_strand'] or max(g.node[in_node]['aln_strand'],g.node[node]['aln_strand']) == 5:
                        if g.node[out_node]['aln_strand']==g.node[node]['aln_strand'] or max(g.node[out_node]['aln_strand'],g.node[node]['aln_strand']) == 5:
                    #print in_node, node, out_node
                            merge_path(g,in_node,node,out_node)

def merge_path(g,in_node,node,out_node):
    #ov1 = find_overlap(g.node[in_node]['bases'], g.node[node]['bases'])
    #ov2 = find_overlap(g.node[node]['bases'], g.node[out_node]['bases'])
    
    node_id = g.graph['aval']
    g.graph['aval'] += 1
    #length = g.node[node]['length'] + g.node[in_node]['length'] + g.node[out_node]['length'] - ov1 - ov2
    #cov = (g.node[in_node]['cov'] * g.node[in_node]['length'] + g.node[node]['cov'] * g.node[node]['length']  + \
    #g.node[out_node]['cov'] * g.node[out_node]['length'])/float(length)
    #bases = g.node[in_node]['bases'][:-ov1] + g.node[node]['bases'] + g.node[out_node]['bases'][ov2:]

    overlap1 = g.edge[in_node][node][0]['overlap']
    overlap2 = g.edge[node][out_node][0]['overlap']

    length0 = g.node[in_node]['length']
    length1 = g.node[node]['length']
    length2 = g.node[out_node]['length']


    if overlap1 > min(length0,length1):
        print("problem here:")
        print(overlap1, length0, length1)


    g.add_node(str(node_id),length = length0+length1+length2 - overlap1 - overlap2, aln_strand = g.node[node]['aln_strand'])
    #g.add_node(str(node_id)+'-', bases = reverse_comp_bases(bases), length = length, cov = cov)
    
    for cur_edge in g.in_edges(in_node):

        # print g.edge[cur_edge[0]][cur_edge[1]][0]['overlap']

        g.add_edge(cur_edge[0],str(node_id),overlap = g.edge[cur_edge[0]][cur_edge[1]][0]['overlap'])
    
    for cur_edge in g.out_edges(out_node):
        g.add_edge(str(node_id),cur_edge[1],overlap = g.edge[cur_edge[0]][cur_edge[1]][0]['overlap'])

    
        
    g.remove_node(in_node)
    g.remove_node(node)
    g.remove_node(out_node)
    
def comp_n50(contig_vec):
    if len(contig_vec) == 0:
        return 0
    sorted_lengths = sorted(contig_vec)

    total_length = sum(contig_vec)

    half_length = 0.5*total_length

    min_n50 = sorted_lengths[-1]
    max_n50 = 0

    for i in range(len(sorted_lengths)):
    #if len(sorted_lengths) % 2 == 0:
    #  sum_1 = sum(sorted_lengths[0:i])
    #  sum_2 = sum(sorted_lengths[i:])
    #else:
    #  sum_1 = sum(sorted_lengths[0:i+1])
    #  sum_2 = sum(sorted_lengths[i:])
        sum_1 = sum(sorted_lengths[0:i+1])
        sum_2 = sum(sorted_lengths[i:])
        if sum_1 >= half_length and sum_2 >= half_length:
            min_n50 = min(sorted_lengths[i],min_n50)
            max_n50 = max(sorted_lengths[i],max_n50)

  # print "Min N50: "+str(min_n50)
  # print "Max N50: "+str(max_n50)

    return 0.5*(min_n50+max_n50)



def de_clip(filename, n_iter):

    g = nx.MultiDiGraph()
    
    # count = 0

    with open(filename,'r') as f:
        for line in f:
            l = line.strip().split()
            #print l2
            g.add_edge(l[0],l[1],overlap=int(l[2])/2)
            # if count < 10:
            #     print l[0], l[1], l[2]
            #     count += 1

            node0start = int(l[7][1:])
            node0end = int(l[8][:-1])

            g.node[l[0]]['length'] = node0end - node0start

            node1start = int(l[9][1:])
            node1end = int(l[10][:-1])

            g.node[l[1]]['length'] = node1end - node1start

    
    print(nx.info(g))

    try:
        import ujson
        mapping = ujson.load(open(filename.split('.')[0]+'.mapping.json'))
        
        # print mapping

        print('get mapping')
        
        for node in g.nodes():
            #print node
            if node in mapping:

                # alnstart = int(mapping[node][0])
                # alnend = int(mapping[node][1])

                # g.node[node]['length'] = abs(alnend-alnstart)
                # print abs(alnend-alnstart)

                g.node[node]['aln_strand'] = mapping[node][3]

                # g.node[node]['aln_start'] = mapping[node][0]
                # g.node[node]['aln_end'] = mapping[node][1]
                # g.node[node]['aln_strand'] = mapping[node][2]
            else:
                # g.node[node]['length'] = 5000
                g.node[node]['aln_strand'] = 5
                # print "this happened"
                # g.node[node]['aln_start'] = 0
                # g.node[node]['aln_end'] = 0
                # g.node[node]['aln_strand'] = 0
                
    except:
        pass 



    degree_sequence=sorted(list(g.degree().values()),reverse=True)
    print(Counter(degree_sequence))
    for i in range(n_iter):
        for node in g.nodes():
            if g.degree(node) < 2:
                g.remove_node(node)

        print(nx.info(g))
        degree_sequence=sorted(list(nx.degree(g).values()),reverse=True)
        print(Counter(degree_sequence))

    degree_sequence=sorted(list(nx.degree(g).values()),reverse=True)
    print(Counter(degree_sequence))
    
    
    g.graph['aval'] = 1000000000
    
    for i in range(5):
        merge_simple_path(g)
        degree_sequence=sorted(list(nx.degree(g).values()),reverse=True)
        print(Counter(degree_sequence))
    
       
    
    nx.write_graphml(g, filename.split('.')[0]+'.graphml')
    
    print(nx.number_weakly_connected_components(g))
    print(nx.number_strongly_connected_components(g))


    # Next we create the gfa file


    outputfile = filename.split('.')[0]+'.gfa'
    with open(outputfile, 'w') as fout:

        for cur_node in g.nodes():

            node_length = g.node[cur_node]['length']
            node_str = 'A'*node_length
            node_str = node_str + '\n'

            fout.write("NODE "+str(cur_node)+' 0 0 0 0 0\n')
            fout.write(node_str)
            fout.write(node_str)
            # print "NODE "+str(node)

        for arc in g.edges():
            fout.write("ARC "+str(arc[0])+' '+str(arc[1])+' 0\n')



    # Compute N50

    contig_lengths = []

    for cur_node in g.nodes():
        contig_lengths.append(g.node[cur_node]['length'])

    print("N50 = "+str(comp_n50(contig_lengths)))



    
    
filename = sys.argv[1]
de_clip(filename, 5)