1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
#!/usr/bin/python3
import networkx as nx
import sys
from collections import Counter
# This script condenses the graph down, creates a gfa with for the condensed graph, and computes the contig N50
# python3 condense_graph_create_gfa_compute_n50.py ecoli.edges
# The conditions in lines 23 and 24 are meant to prevent nodes corresponding to different strands to be merged
# (and should be commented out if this is not desired, or if a json is not available)
def merge_simple_path(g):
for node in g.nodes():
if g.in_degree(node) == 1 and g.out_degree(node) == 1:
in_node = g.in_edges(node)[0][0]
out_node = g.out_edges(node)[0][1]
if g.out_degree(in_node) == 1 and g.in_degree(out_node) == 1:
if in_node != node and out_node != node and in_node != out_node:
if g.node[in_node]['aln_strand']==g.node[node]['aln_strand'] or max(g.node[in_node]['aln_strand'],g.node[node]['aln_strand']) == 5:
if g.node[out_node]['aln_strand']==g.node[node]['aln_strand'] or max(g.node[out_node]['aln_strand'],g.node[node]['aln_strand']) == 5:
#print in_node, node, out_node
merge_path(g,in_node,node,out_node)
def merge_path(g,in_node,node,out_node):
#ov1 = find_overlap(g.node[in_node]['bases'], g.node[node]['bases'])
#ov2 = find_overlap(g.node[node]['bases'], g.node[out_node]['bases'])
node_id = g.graph['aval']
g.graph['aval'] += 1
#length = g.node[node]['length'] + g.node[in_node]['length'] + g.node[out_node]['length'] - ov1 - ov2
#cov = (g.node[in_node]['cov'] * g.node[in_node]['length'] + g.node[node]['cov'] * g.node[node]['length'] + \
#g.node[out_node]['cov'] * g.node[out_node]['length'])/float(length)
#bases = g.node[in_node]['bases'][:-ov1] + g.node[node]['bases'] + g.node[out_node]['bases'][ov2:]
overlap1 = g.edge[in_node][node][0]['overlap']
overlap2 = g.edge[node][out_node][0]['overlap']
length0 = g.node[in_node]['length']
length1 = g.node[node]['length']
length2 = g.node[out_node]['length']
if overlap1 > min(length0,length1):
print("problem here:")
print(overlap1, length0, length1)
g.add_node(str(node_id),length = length0+length1+length2 - overlap1 - overlap2, aln_strand = g.node[node]['aln_strand'])
#g.add_node(str(node_id)+'-', bases = reverse_comp_bases(bases), length = length, cov = cov)
for cur_edge in g.in_edges(in_node):
# print g.edge[cur_edge[0]][cur_edge[1]][0]['overlap']
g.add_edge(cur_edge[0],str(node_id),overlap = g.edge[cur_edge[0]][cur_edge[1]][0]['overlap'])
for cur_edge in g.out_edges(out_node):
g.add_edge(str(node_id),cur_edge[1],overlap = g.edge[cur_edge[0]][cur_edge[1]][0]['overlap'])
g.remove_node(in_node)
g.remove_node(node)
g.remove_node(out_node)
def comp_n50(contig_vec):
if len(contig_vec) == 0:
return 0
sorted_lengths = sorted(contig_vec)
total_length = sum(contig_vec)
half_length = 0.5*total_length
min_n50 = sorted_lengths[-1]
max_n50 = 0
for i in range(len(sorted_lengths)):
#if len(sorted_lengths) % 2 == 0:
# sum_1 = sum(sorted_lengths[0:i])
# sum_2 = sum(sorted_lengths[i:])
#else:
# sum_1 = sum(sorted_lengths[0:i+1])
# sum_2 = sum(sorted_lengths[i:])
sum_1 = sum(sorted_lengths[0:i+1])
sum_2 = sum(sorted_lengths[i:])
if sum_1 >= half_length and sum_2 >= half_length:
min_n50 = min(sorted_lengths[i],min_n50)
max_n50 = max(sorted_lengths[i],max_n50)
# print "Min N50: "+str(min_n50)
# print "Max N50: "+str(max_n50)
return 0.5*(min_n50+max_n50)
def de_clip(filename, n_iter):
g = nx.MultiDiGraph()
# count = 0
with open(filename,'r') as f:
for line in f:
l = line.strip().split()
#print l2
g.add_edge(l[0],l[1],overlap=int(l[2])/2)
# if count < 10:
# print l[0], l[1], l[2]
# count += 1
node0start = int(l[7][1:])
node0end = int(l[8][:-1])
g.node[l[0]]['length'] = node0end - node0start
node1start = int(l[9][1:])
node1end = int(l[10][:-1])
g.node[l[1]]['length'] = node1end - node1start
print(nx.info(g))
try:
import ujson
mapping = ujson.load(open(filename.split('.')[0]+'.mapping.json'))
# print mapping
print('get mapping')
for node in g.nodes():
#print node
if node in mapping:
# alnstart = int(mapping[node][0])
# alnend = int(mapping[node][1])
# g.node[node]['length'] = abs(alnend-alnstart)
# print abs(alnend-alnstart)
g.node[node]['aln_strand'] = mapping[node][3]
# g.node[node]['aln_start'] = mapping[node][0]
# g.node[node]['aln_end'] = mapping[node][1]
# g.node[node]['aln_strand'] = mapping[node][2]
else:
# g.node[node]['length'] = 5000
g.node[node]['aln_strand'] = 5
# print "this happened"
# g.node[node]['aln_start'] = 0
# g.node[node]['aln_end'] = 0
# g.node[node]['aln_strand'] = 0
except:
pass
degree_sequence=sorted(list(g.degree().values()),reverse=True)
print(Counter(degree_sequence))
for i in range(n_iter):
for node in g.nodes():
if g.degree(node) < 2:
g.remove_node(node)
print(nx.info(g))
degree_sequence=sorted(list(nx.degree(g).values()),reverse=True)
print(Counter(degree_sequence))
degree_sequence=sorted(list(nx.degree(g).values()),reverse=True)
print(Counter(degree_sequence))
g.graph['aval'] = 1000000000
for i in range(5):
merge_simple_path(g)
degree_sequence=sorted(list(nx.degree(g).values()),reverse=True)
print(Counter(degree_sequence))
nx.write_graphml(g, filename.split('.')[0]+'.graphml')
print(nx.number_weakly_connected_components(g))
print(nx.number_strongly_connected_components(g))
# Next we create the gfa file
outputfile = filename.split('.')[0]+'.gfa'
with open(outputfile, 'w') as fout:
for cur_node in g.nodes():
node_length = g.node[cur_node]['length']
node_str = 'A'*node_length
node_str = node_str + '\n'
fout.write("NODE "+str(cur_node)+' 0 0 0 0 0\n')
fout.write(node_str)
fout.write(node_str)
# print "NODE "+str(node)
for arc in g.edges():
fout.write("ARC "+str(arc[0])+' '+str(arc[1])+' 0\n')
# Compute N50
contig_lengths = []
for cur_node in g.nodes():
contig_lengths.append(g.node[cur_node]['length'])
print("N50 = "+str(comp_n50(contig_lengths)))
filename = sys.argv[1]
de_clip(filename, 5)
|