File: get_draft_annotation.py

package info (click to toggle)
hinge 0.5.0-8
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 2,972 kB
  • sloc: cpp: 9,480; ansic: 8,826; python: 5,023; sh: 340; makefile: 10
file content (368 lines) | stat: -rwxr-xr-x 13,759 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
#!/usr/bin/python3
import sys
import os
import subprocess
from parse_read import *
import numpy as np
import networkx as nx
import itertools

NCTCname = sys.argv[1]
filename = '/data/pacbio_assembly/pb_data/NCTC/'+NCTCname+'/'+NCTCname
graphml_path = sys.argv[2]

in_graph = nx.read_graphml(graphml_path)

reads = sorted(list(set([int(x.split("_")[0].lstrip("B")) for x in in_graph.nodes()])))

dbshow_reads = ' '.join([str(x+1) for x in reads])

DBshow_cmd = "DBshow "+filename+' '+dbshow_reads
stream = subprocess.Popen(DBshow_cmd.split(),
                                  stdout=subprocess.PIPE,bufsize=1)
reads_queried = parse_read(stream.stdout)
read_dict = {}
for read_id,read in zip(reads,reads_queried):
    rdlen = len(read[1])
#     print read
    read_dict[read_id] = read

complement = {'A':'T','C': 'G','T':'A', 'G':'C','a':'t','t':'a','c':'g','g':'c'}

def reverse_complement(string):
    return "".join([complement[x] for x in reversed(string)])

def get_string(path):
    #print path
    ret_str = ''
    for itm in path:
#         print itm
        read_id,rd_orientation = itm[0].split("_")
        if rd_orientation == '1':
            assert itm[1][0] >= itm[1][1]
#             print itm
            str_st = itm[1][1]
            str_end = itm[1][0]
            read_str = read_dict[int(read_id.lstrip("B"))][1][str_st:str_end]
        else:
            assert itm[1][0] <= itm[1][1]
            str_st = itm[1][0]
            str_end = itm[1][1]
            read_str = reverse_complement(read_dict[int(read_id.lstrip("B"))][1][str_st:str_end])
#         print str_st,str_end
#         print read_id
#         print read_dict[int(read_id)][str_st:str_end]
#         print read_str
        print('read len',len(read_str))
        ret_str += read_str
    print(len(path), len(ret_str))
    return ret_str




vertices_of_interest = set([x for x in in_graph if in_graph.in_degree(x) != 1 or in_graph.out_degree(x) != 1])

read_tuples = {}

for vert in vertices_of_interest:

    vert_id, vert_or = vert.split("_")
    if vert_or == '1':
        continue
    vert_len = len(read_dict[int(vert_id)][1])
#     print vert_len
    read_starts = [(in_graph.edge[x][vert]['read_b_start']) for x in in_graph.predecessors(vert)]
    read_ends = [(in_graph.edge[vert][x]['read_a_start']) for x in in_graph.successors(vert)]
    if read_starts:
        read_start = max(read_starts)
    else:
        read_start = 0
    if read_ends:
        read_end = min(read_ends)
    else:
        read_end = vert_len
    read_tuples[vert] = (read_start,read_end)
    print(read_starts, read_ends, vert)


for vert in vertices_of_interest:

    vert_id, vert_or = vert.split("_")
    if vert_or == '1':
        read_tuples[vert] = read_tuples[vert_id+"_0"]


start_vertices = [x for x in vertices_of_interest if in_graph.in_degree(x) == 0 or in_graph.out_degree(x) > 1]
h = nx.DiGraph()

read_tuples_raw = {}
for vertex in vertices_of_interest:
    successors = in_graph.successors(vertex)
    if successors:
        succ = successors[0]
        d =  in_graph.get_edge_data(vertex,succ)
        read_tuples_raw[vertex] = (d['read_a_start_raw'], d['read_a_end_raw'])
    else:
        predecessors = in_graph.predecessors(vertex)
        if not len(predecessors) == 0:
            pred = predecessors[0]
            d =  in_graph.get_edge_data(pred,vertex)
            read_tuples_raw[vertex] = (d['read_b_start_raw'], d['read_b_end_raw'])
        else:
            read_tuples_raw[vertex] = (0,0)



for vertex in vertices_of_interest:
    h.add_node(vertex)
    if vertex.split("_")[1] == '0':
        path_var = [(vertex,(read_tuples[vertex][0], read_tuples[vertex][1]))]
    else:
        path_var = [(vertex,(read_tuples[vertex][1], read_tuples[vertex][0]))]
    #print path_var
    segment = get_string(path_var)
    h.node[vertex]['start_read'] = path_var[0][1][0]
    h.node[vertex]['end_read'] = path_var[0][1][1]
    h.node[vertex]['path'] = [vertex]
    h.node[vertex]['segment'] = segment

vertices_used = set([x for x in h.nodes()])
contig_no = 1
for start_vertex in vertices_of_interest:
    first_out_vertices = in_graph.successors(start_vertex)
    print(start_vertex, first_out_vertices)
    for vertex in first_out_vertices:
        predecessor = start_vertex
        start_vertex_id,start_vertex_or = start_vertex.split("_")
        cur_vertex = vertex
        if start_vertex_or == '0':
            cur_path = [(start_vertex,(read_tuples[start_vertex][1],
                                       in_graph.edge[start_vertex][cur_vertex]['read_a_start']))]
        elif start_vertex_or == '1':
            cur_path = [(start_vertex,(read_tuples[start_vertex][0],
                                       in_graph.edge[start_vertex][cur_vertex]['read_a_start']))]

        while cur_vertex not in vertices_of_interest:
            successor = in_graph.successors(cur_vertex)[0]
            start_point = in_graph.edge[predecessor][cur_vertex]['read_b_start']
            end_point = in_graph.edge[cur_vertex][successor]['read_a_start']
            cur_path.append((cur_vertex,(start_point,end_point)))
            vertices_used.add(cur_vertex)
            predecessor = cur_vertex
            cur_vertex = successor

        stop_vertex_id, stop_vertex_or = cur_vertex.split("_")
        if stop_vertex_or == '0':
            cur_path.append((cur_vertex,(in_graph.edge[predecessor][cur_vertex]['read_b_start'],
                        read_tuples[cur_vertex][0])))
        elif stop_vertex_or == '1':
            cur_path.append((cur_vertex,(in_graph.edge[predecessor][cur_vertex]['read_b_start'],
                        read_tuples[cur_vertex][1])))


        node_name = str(contig_no)
        h.add_node(node_name)
        contig_no += 1
#         print cur_path
        node_path = [x[0] for x in cur_path]
        h.node[node_name]['path'] = node_path
        h.node[node_name]['start_read'] = path_var[0][1][0]
        h.node[node_name]['end_read'] = path_var[-1][1][1]
        h.node[node_name]['segment'] = get_string(cur_path)
        h.add_edges_from([(start_vertex,node_name),(node_name,cur_vertex)])
#         paths.append(cur_path)

#print read_tuples

while set(in_graph.nodes())-vertices_used:
    vert = list(set(in_graph.nodes())-vertices_used)[0]
    vert_id,vert_or = vert.split("_")
    if vert_or == '0':
        read_start = min( min([(in_graph.edge[x][vert]['read_b_start']) for x in in_graph.predecessors(vert)]),
                         max([(in_graph.edge[vert][x]['read_a_start']) for x in in_graph.successors(vert)]))
        read_end = max( min([(in_graph.edge[x][vert]['read_b_start']) for x in in_graph.predecessors(vert)]),
                         max([(in_graph.edge[vert][x]['read_a_start']) for x in in_graph.successors(vert)]))
        vertRC = vert_id+"_1"
    else:
        read_start = max( min([(in_graph.edge[x][vert]['read_b_start']) for x in in_graph.predecessors(vert)]),
                         max([(in_graph.edge[vert][x]['read_a_start']) for x in in_graph.successors(vert)]))
        read_end = min( min([(in_graph.edge[x][vert]['read_b_start']) for x in in_graph.predecessors(vert)]),
                         max([(in_graph.edge[vert][x]['read_a_start']) for x in in_graph.successors(vert)]))
        vertRC = vert_id+"_0"

    successor_start = in_graph.successors(vert)[0]
    d =  in_graph.get_edge_data(vert,successor_start)
    read_tuples_raw[vert] = (d['read_a_start_raw'], d['read_a_end_raw'])

    successor_start = in_graph.successors(vertRC)[0]
    d =  in_graph.get_edge_data(vertRC,successor_start)
    read_tuples_raw[vertRC] = (d['read_a_start_raw'], d['read_a_end_raw'])

    h.add_node(vert)
    node_path = [vert]
    h.node[vert]['path'] = node_path
    h.node[vert]['start_read'] = read_start
    h.node[vert]['end_read'] = read_end
    h.node[vert]['segment'] = get_string([(vert,(read_start, read_end))])
    vertices_used.add(vert)

    first_out_vertices = in_graph.successors(vert)
    for vertex in first_out_vertices:
        predecessor = vert
        cur_vertex = vertex
        cur_path = []
        while cur_vertex != vert:
            successor = in_graph.successors(cur_vertex)[0]
            start_point = in_graph.edge[predecessor][cur_vertex]['read_b_start']
            end_point = in_graph.edge[cur_vertex][successor]['read_a_start']
            cur_path.append((cur_vertex,(start_point,end_point)))
            vertices_used.add(cur_vertex)
            predecessor = cur_vertex
            cur_vertex = successor
        node_name = str(contig_no)
        h.add_node(node_name)
        contig_no += 1
#         print cur_path

        node_path = [x[0] for x in cur_path]
        h.node[node_name]['path'] = node_path
        h.node[node_name]['start_read'] = path_var[0][1][0]
        h.node[node_name]['end_read'] = path_var[-1][1][1]
        h.node[node_name]['segment'] = get_string(cur_path)
        h.add_edges_from([(vert,node_name),(node_name,vert)])

    if vertRC not in vertices_used:
        h.add_node(vertRC)
        h.node[vertRC]['segment'] = get_string([(vertRC,(read_end, read_start))])
        h.node[vertRC]['path'] = [vertRC]
        h.node[vertRC]['start_read'] = read_end
        h.node[vertRC]['end_read'] = read_start

        vertices_used.add(vertRC)
        first_out_vertices = in_graph.successors(vertRC)
        for vertex in first_out_vertices:
            predecessor = vertRC
            cur_vertex = vertex
            cur_path = []
            while cur_vertex != vertRC:
                successor = in_graph.successors(cur_vertex)[0]
                start_point = in_graph.edge[predecessor][cur_vertex]['read_b_start']
                end_point = in_graph.edge[cur_vertex][successor]['read_a_start']
                cur_path.append((cur_vertex,(start_point,end_point)))
                vertices_used.add(cur_vertex)
                predecessor = cur_vertex
                cur_vertex = successor
            node_name = str(contig_no)
            h.add_node(node_name)
            contig_no += 1
    #         print cur_path

            node_path = [x[0] for x in cur_path]
            h.node[node_name]['path'] = node_path
            h.node[node_name]['start_read'] = path_var[0][1][0]
            h.node[node_name]['end_read'] = path_var[-1][1][1]
            h.node[node_name]['segment'] = get_string(cur_path)
            print(len(cur_path))
            h.add_edges_from([(vertRC,node_name),(node_name,vertRC)])



outfile = '/data/pacbio_assembly/pb_data/NCTC/'+NCTCname+'/'+NCTCname + ".edges.list"

vert_to_merge = [x for x in h.nodes() if len(h.successors(x)) == 1 and len(h.predecessors(h.successors(x)[0])) == 1 and
 len(nx.node_connected_component(h.to_undirected(), x)) > 2]

while True:

    vert_to_merge = [x for x in h.nodes() if len(h.successors(x)) == 1 and len(h.predecessors(h.successors(x)[0])) == 1 and
 len(nx.node_connected_component(h.to_undirected(), x)) > 2]

    if not vert_to_merge:
        break
    vert = vert_to_merge[0]
    #print vert,
    succ = h.successors(vert)[0]
    preds = h.predecessors(vert)
    h.node[succ]['segment'] =  h.node[vert]['segment'] + h.node[succ]['segment']
    h.node[succ]['path'] = h.node[vert]['path'] + h.node[succ]['path'][1:]
    for pred in preds:
        #print pred, succ
        h.add_edges_from([(pred,succ)])
        h.remove_edge(pred,vert)
    h.remove_edge(vert,succ)
    h.remove_node(vert)

for  i, vert in enumerate(h.nodes()):
    print(i,len(h.node[vert]['path']))

with open(outfile, 'w') as f:
    for i,node in enumerate(h.nodes()):
        #print node
        #print h.node[node]
        path = h.node[node]['path']

        f.write('>Unitig%d\n'%(i))
        if len(path) == 1:
            #print path[0]
            f.write(' '.join([path[0].split('_')[0], path[0].split('_')[1], str(read_tuples_raw[path[0]][0]), str(read_tuples_raw[path[0]][1])]) + '\n')
        for j in range(len(path)-1):
            nodeA = path[j].lstrip("B")
            nodeB = path[j+1].lstrip("B")

            d =  in_graph.get_edge_data(path[j],path[j+1])

            f.write('%s %s %s %s %d %d %d %d %d\n'%(nodeA.split('_')[0],nodeA.split('_')[1]  , nodeB.split('_')[0],
                    nodeB.split('_')[1], -d['read_a_start_raw'] + d['read_a_end_raw'] - d['read_b_start_raw'] + d['read_b_end_raw'],
                    d['read_a_start_raw'], d['read_a_end_raw'], d['read_b_start_raw'], d['read_b_end_raw']))

out_graphml_name = '/data/pacbio_assembly/pb_data/NCTC/'+NCTCname+'/'+NCTCname+'_draft.graphml'



gfaname = '/data/pacbio_assembly/pb_data/NCTC/'+NCTCname+'/'+NCTCname+'_draft_python.gfa'
consensus_name = sys.argv[3]

consensus_contigs = []
try:
    with open(consensus_name) as f:
        for line in f:
            if line[0] != '>':
                consensus_contigs.append(line.strip())
except:
    pass
for  i, vert in enumerate(h.nodes()):
    print(i,len(h.node[vert]['path']), len(h.node[vert]['segment']), len(consensus_contigs[i]))


with open(gfaname,'w') as f:
    f.write("H\tVN:Z:1.0\n")
    for i,vert in enumerate(h.nodes()):
        if len(consensus_contigs) > 0:
            seg = consensus_contigs[i]
        else:
            seg = h.node[vert]['segment']

        seg_line = "S\t"+vert+"\t"+seg + '\n'
        f.write(seg_line)
    for edge in h.edges():
        edge_line = "L\t"+edge[0]+"\t+\t"+edge[1]+"\t+\t0M\n"
        f.write(edge_line)

#last =  h.nodes()[-1]
#print h.node[last]
#path_last = h.node[last]['path']



#for i in range(len(path_last)-1):
#    read_a = path_last[i]
#    read_b = path_last[i+1]
#    print read_a, read_b, in_graph.edge[read_a][read_b]

for i,node in enumerate(h.nodes()):
     h.node[node]['path'] = ';'.join(h.node[node]['path'])
nx.write_graphml(h,out_graphml_name)