1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
#!/usr/bin/python3
import networkx as nx
import random
import sys
from collections import Counter
# This script does a random condensation of the graph down to 2000 nodes
# python3 random_condensation.py ecoli.edges 2000
# It also keeps the ground truth on the graph through the condensation steps (if a json file is available)
def merge_path(g,in_node,node,out_node):
g.add_edge(in_node,out_node,hinge_edge = -1,false_positive = 0)
g.remove_node(node)
def input1(flname):
print("input1")
g = nx.DiGraph()
with open (flname) as f:
for lines in f:
lines1=lines.split()
#print lines1
if len(lines1) < 5:
continue
#print lines1
g.add_edge(lines1[0] + "_" + lines1[3], lines1[1] + "_" + lines1[4], hinge_edge=int(lines1[5]))
g.add_edge(lines1[1] + "_" + str(1-int(lines1[4])), lines1[0] + "_" + str(1-int(lines1[3])),hinge_edge=int(lines1[5]))
return g
def input2(flname):
print("input2")
g = nx.DiGraph()
with open (flname) as f:
for lines in f:
lines1=lines.split()
#print lines1
g.add_edge(lines1[0], lines1[1])
return g
def input3(flname):
print("input3")
# g = nx.DiGraph()
g = nx.read_graphml(flname)
def de_clip(filename, n_nodes, hinge_list,gt_file):
n_iter = 5
f=open(filename)
line1=f.readline()
print(line1)
f.close()
extension = filename.split('.')[-1]
if extension == 'graphml':
g=input3(filename)
elif len(line1.split()) !=2:
g=input1(filename)
else:
g=input2(filename)
print(nx.info(g))
degree_sequence=sorted(list(g.degree().values()),reverse=True)
print(Counter(degree_sequence))
degree_sequence=sorted(list(nx.degree(g).values()),reverse=True)
print(Counter(degree_sequence))
try:
import ujson
mapping = ujson.load(open(gt_file))
print('getting mapping')
mapped_nodes=0
print(str(len(mapping)))
print(str(len(g.nodes())))
for node in g.nodes():
# print node
node_base=node.split("_")[0]
# print node_base
#print node
if node_base in mapping:
g.node[node]['aln_start'] = min (mapping[node_base][0][0],mapping[node_base][0][1])
g.node[node]['aln_end'] = max(mapping[node_base][0][1],mapping[node_base][0][0])
g.node[node]['chr'] = mapping[node_base][0][2]
mapped_nodes+=1
else:
# pass
g.node[node]['aln_start'] = 0
g.node[node]['aln_end'] = 0
g.node[node]['aln_strand'] = 0
for edge in g.edges_iter():
in_node=edge[0]
out_node=edge[1]
# print 'akjdfakjhfakljh'
if ((g.node[in_node]['aln_start'] < g.node[out_node]['aln_start'] and
g.node[out_node]['aln_start'] < g.node[in_node]['aln_end']) or
(g.node[in_node]['aln_start'] < g.node[out_node]['aln_end'] and
g.node[out_node]['aln_end'] < g.node[in_node]['aln_end'])):
g.edge[in_node][out_node]['false_positive']=0
else:
g.edge[in_node][out_node]['false_positive']=1
except:
raise
# print "json "+filename.split('.')[0]+'.mapping.json'+" not found. exiting."
print(hinge_list)
print(str(mapped_nodes)+" out of " +str(len(g.nodes()))+" nodes mapped.")
# for i in range(5):
# merge_simple_path(g)
# degree_sequence=sorted(nx.degree(g).values(),reverse=True)
# print Counter(degree_sequence)
in_hinges = set()
out_hinges = set()
num_iter=10000
iter_done=0
if hinge_list != None:
print("Found hinge list.")
with open(hinge_list,'r') as f:
for lines in f:
lines1=lines.split()
if lines1[2] == '1':
in_hinges.add(lines1[0]+'_0')
out_hinges.add(lines1[0]+'_1')
elif lines1[2] == '-1':
in_hinges.add(lines1[0]+'_1')
out_hinges.add(lines1[0]+'_0')
print(str(len(in_hinges))+' hinges found.')
for node in g.nodes():
if node in in_hinges and node in out_hinges:
g.node[node]['hinge']=100
elif node in in_hinges:
g.node[node]['hinge']=10
elif node in out_hinges:
g.node[node]['hinge']=-10
else:
g.node[node]['hinge']=0
while len(g.nodes()) > n_nodes and iter_done < num_iter :
node = g.nodes()[random.randrange(len(g.nodes()))]
iter_done+=1
# print iter_done
if g.in_degree(node) == 1 and g.out_degree(node) == 1:
base_node=node.split("_")[0]
orintation = node.split("_")[1]
# if orintation=='1':
# node2=base_node+'_0'
# else:
# node2=base_node+'_1'
# print node,node2
in_node = g.in_edges(node)[0][0]
out_node = g.out_edges(node)[0][1]
if g.node[node]['hinge']==0 and g.node[in_node]['hinge']==0 and g.node[out_node]['hinge']==0:
if g.out_degree(in_node) == 1 and g.in_degree(out_node) == 1:
if in_node != node and out_node != node and in_node != out_node:
bad_node=False
# print g.in_edges(node)
# print g.edge[g.in_edges(node)[0][0]][g.in_edges(node)[0][1]]
# print g.out_edges(node)
for in_edge in g.in_edges(node):
if g.edge[in_edge[0]][in_edge[1]]['false_positive']==1:
bad_node=True
for out_edge in g.out_edges(node):
if g.edge[out_edge[0]][out_edge[1]]['false_positive']==1:
bad_node=True
if not bad_node:
#print in_node, node, out_node
merge_path(g,in_node,node,out_node)
# print g.edge[edge1[0]][edge1[1]]['hinge_edge']
for nd in g.nodes():
if len(nd.split("_"))==1:
print(nd + " in trouble")
# in_node = g.in_edges(node2)[0][0]
# out_node = g.out_edges(node2)[0][1]
# if g.node[node2]['hinge']==0 and g.node[in_node]['hinge']==0 and g.node[out_node]['hinge']==0:
# if g.out_degree(in_node) == 1 and g.in_degree(out_node) == 1:
# if in_node != node2 and out_node != node2 and in_node != out_node:
# bad_node=False
# for in_edge in g.in_edges(node2):
# if g.edge[in_edge]==1:
# bad_node=True
# for out_edge in g.out_edges(node2):
# if g.edge[out_edge]==1:
# bad_node=True
# if not bad_node:
# #print in_node, node, out_node
# merge_path(g,in_node,node2,out_node)
# for nd in g.nodes():
# print nd
else:
while len(g.nodes()) > n_nodes:
node = g.nodes()[random.randrange(len(g.nodes()))]
if g.in_degree(node) == 1 and g.out_degree(node) == 1:
# assert g.in_degree(node2) == 1 and g.out_degree(node2) == 1
# edge_1 = g.out_edges(node)[0]
# edge_2 = g.in_edges(node)[0]
edge1 = g.out_edges(node)[0]
edge2 = g.in_edges(node)[0]
# print g.edge[edge1[0]][edge1[1]]['hinge_edge']
if (g.edge[edge1[0]][edge1[1]]['hinge_edge'] == -1 and g.edge[edge2[0]][edge2[1]]['hinge_edge'] == -1):
in_node = g.in_edges(node)[0][0]
out_node = g.out_edges(node)[0][1]
if g.out_degree(in_node) == 1 and g.in_degree(out_node) == 1:
if in_node != node and out_node != node and in_node != out_node:
#print in_node, node, out_node
merge_path(g,in_node,node,out_node)
degree_sequence=sorted(list(nx.degree(g).values()),reverse=True)
print(Counter(degree_sequence))
nx.write_graphml(g, filename.split('.')[0]+'.sparse3.graphml')
print(nx.number_weakly_connected_components(g))
print(nx.number_strongly_connected_components(g))
if __name__ == "__main__":
filename = sys.argv[1]
try :
hinge_list=sys.argv[3]
print("Found hinge list.")
except:
hinge_list=None
print("in except "+hinge_list)
de_clip(filename, int(sys.argv[2]),hinge_list, sys.argv[4])
|