1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
|
/***************************************************************************
* Copyright (C) 2009-2016 by *
* BUI Quang Minh <minh.bui@univie.ac.at> *
* *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#include "tree/phylotree.h"
#include "memslot.h"
const int MEM_LOCKED = 1;
const int MEM_SPECIAL = 2;
void MemSlotVector::init(PhyloTree *tree, int num_slot) {
if (Params::getInstance().lh_mem_save != LM_MEM_SAVE)
return;
reserve(num_slot+2);
resize(num_slot);
size_t lh_size = tree->getPartialLhSize();
size_t scale_size = tree->getScaleNumSize();
reset();
for (iterator it = begin(); it != end(); it++) {
it->partial_lh = tree->central_partial_lh + lh_size*(it-begin());
it->scale_num = tree->central_scale_num + scale_size*(it-begin());
}
}
void MemSlotVector::reset() {
if (Params::getInstance().lh_mem_save != LM_MEM_SAVE)
return;
for (iterator it = begin(); it != end(); it++) {
it->status = 0;
it->nei = NULL;
}
nei_id_map.clear();
free_count = 0;
}
MemSlotVector::iterator MemSlotVector::findNei(PhyloNeighbor *nei) {
auto it = nei_id_map.find(nei);
ASSERT(it != nei_id_map.end());
// assert(at(it->second).nei == nei);
return begin()+it->second;
}
void MemSlotVector::addNei(PhyloNeighbor *nei, iterator it) {
// assert((it->status & MEM_SPECIAL) == 0);
nei->partial_lh = it->partial_lh;
nei->scale_num = it->scale_num;
it->nei = nei;
nei_id_map[nei] = it-begin();
}
void MemSlotVector::addSpecialNei(PhyloNeighbor *nei) {
if (Params::getInstance().lh_mem_save != LM_MEM_SAVE)
return;
MemSlot ms;
ms.status = MEM_SPECIAL + MEM_LOCKED;
ms.nei = nei;
ms.partial_lh = nei->partial_lh;
ms.scale_num = nei->scale_num;
push_back(ms);
nei_id_map[nei] = size()-1;
}
void MemSlotVector::eraseSpecialNei() {
if (Params::getInstance().lh_mem_save != LM_MEM_SAVE)
return;
while (back().status & MEM_SPECIAL) {
nei_id_map.erase(back().nei);
pop_back();
}
}
bool MemSlotVector::lock(PhyloNeighbor *nei) {
if (Params::getInstance().lh_mem_save != LM_MEM_SAVE)
return false;
if (nei->node->isLeaf())
return false;
iterator id = findNei(nei);
if (id->status & MEM_SPECIAL)
return false;
ASSERT((id->status & MEM_LOCKED) == 0);
id->status |= MEM_LOCKED;
return true;
}
void MemSlotVector::unlock(PhyloNeighbor *nei) {
if (Params::getInstance().lh_mem_save != LM_MEM_SAVE)
return;
if (nei->node->isLeaf())
return;
iterator id = findNei(nei);
if (id->status & MEM_SPECIAL)
return;
ASSERT((id->status & MEM_LOCKED) != 0);
id->status &= ~MEM_LOCKED;
}
bool MemSlotVector::locked(PhyloNeighbor *nei) {
if (Params::getInstance().lh_mem_save != LM_MEM_SAVE)
return false;
if (nei->node->isLeaf())
return false;
iterator id = findNei(nei);
if (id->status & MEM_SPECIAL)
return false;
if ((id->status & MEM_LOCKED) == 0)
return false;
else
return true;
}
int MemSlotVector::allocate(PhyloNeighbor *nei) {
if (Params::getInstance().lh_mem_save != LM_MEM_SAVE)
return -1;
// first find a free slot
if (free_count < size() && (at(free_count).status & MEM_SPECIAL) == 0) {
iterator it = begin() + free_count;
ASSERT(it->nei == NULL);
addNei(nei, it);
free_count++;
return it-begin();
}
int min_size = INT_MAX;
iterator best = end();
// no free slot found, find an unlocked slot with minimal size
for (iterator it = begin(); it != end(); it++)
if ((it->status & MEM_LOCKED) == 0 && (it->status & MEM_SPECIAL) == 0 && min_size > it->nei->size) {
best = it;
min_size = it->nei->size;
// 2 is the minimum size
if (min_size == 2)
break;
}
if (best == end())
return -1;
// clear mem assigned to it->nei
best->nei->clearPartialLh();
// assign mem to nei
addNei(nei, best);
return best-begin();
}
void MemSlotVector::update(PhyloNeighbor *nei) {
if (Params::getInstance().lh_mem_save != LM_MEM_SAVE)
return;
iterator it = findNei(nei);
// if (it->status & MEM_SPECIAL)
// return;
if (it->nei != nei) {
// clear mem assigned to it->nei
it->nei->clearPartialLh();
// assign mem to nei
addNei(nei, it);
}
}
/*
void MemSlotVector::cleanup() {
if (Params::getInstance().lh_mem_save != LM_MEM_SAVE)
return;
unordered_map<PhyloNeighbor*, iterator> new_map;
for (auto it = nei_id_map.begin(); it != nei_id_map.end(); it++)
if (it->first != it->second->nei) {
it->first->partial_lh_computed &= ~1; // clear bit
it->first->partial_lh = NULL;
it->first->scale_num = NULL;
} else {
new_map[it->first] = it->second;
}
nei_id_map = new_map;
assert(nei_id_map.size() == size());
}
*/
void MemSlotVector::takeover(PhyloNeighbor *nei, PhyloNeighbor *taken_nei) {
ASSERT(taken_nei->partial_lh);
nei->partial_lh = taken_nei->partial_lh;
nei->scale_num = taken_nei->scale_num;
taken_nei->partial_lh = NULL;
taken_nei->scale_num = NULL;
taken_nei->partial_lh_computed &= ~1; // clear bit
if (Params::getInstance().lh_mem_save != LM_MEM_SAVE)
return;
iterator id = findNei(taken_nei);
// if (id->status & MEM_SPECIAL)
// return;
nei_id_map.erase(nei_id_map.find(taken_nei));
nei_id_map[nei] = id - begin();
if (id->nei == taken_nei) {
id->nei = nei;
}
}
void MemSlotVector::replace(PhyloNeighbor *new_nei, PhyloNeighbor *old_nei) {
if (Params::getInstance().lh_mem_save != LM_MEM_SAVE)
return;
iterator it = findNei(old_nei);
ASSERT(it->partial_lh == old_nei->partial_lh);
it->saved_nei = it->nei;
it->nei = new_nei;
it->partial_lh = new_nei->partial_lh;
it->scale_num = new_nei->scale_num;
it->status = MEM_LOCKED + MEM_SPECIAL;
nei_id_map[new_nei] = it-begin();
// nei_id_map.erase(old_nei);
cout << "slot " << distance(begin(), it) << " replaced" << endl;
}
void MemSlotVector::restore(PhyloNeighbor *new_nei, PhyloNeighbor *old_nei) {
if (Params::getInstance().lh_mem_save != LM_MEM_SAVE)
return;
iterator it = findNei(new_nei);
ASSERT(it->nei == new_nei);
ASSERT(nei_id_map[old_nei] == it-begin());
it->nei = it->saved_nei;
it->saved_nei = NULL;
it->partial_lh = old_nei->partial_lh;
it->scale_num = old_nei->scale_num;
it->status = 0;
nei_id_map.erase(new_nei);
// nei_id_map[old_nei] = it;
cout << "slot " << distance(begin(), it) << " restored" << endl;
}
|