File: mexttree.cpp

package info (click to toggle)
iqtree 1.6.12%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 12,140 kB
  • sloc: cpp: 111,752; ansic: 53,619; python: 242; sh: 195; makefile: 52
file content (502 lines) | stat: -rw-r--r-- 13,436 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
/***************************************************************************
 *   Copyright (C) 2006 by BUI Quang Minh, Steffen Klaere, Arndt von Haeseler   *
 *   minh.bui@univie.ac.at   *
 *                                                                         *
 *   This program is free software; you can redistribute it and/or modify  *
 *   it under the terms of the GNU General Public License as published by  *
 *   the Free Software Foundation; either version 2 of the License, or     *
 *   (at your option) any later version.                                   *
 *                                                                         *
 *   This program is distributed in the hope that it will be useful,       *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
 *   GNU General Public License for more details.                          *
 *                                                                         *
 *   You should have received a copy of the GNU General Public License     *
 *   along with this program; if not, write to the                         *
 *   Free Software Foundation, Inc.,                                       *
 *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
 ***************************************************************************/
#include "mexttree.h"
#include "alignment/alignment.h"

void MExtTree::generateRandomTree(TreeGenType tree_type, Params &params, bool binary) {
	Alignment *alignment = NULL;
	if (params.aln_file) {
		// generate random tree with leaf sets taken from an alignment
		alignment = new Alignment(params.aln_file, params.sequence_type, params.intype, params.model_name);
		params.sub_size = alignment->getNSeq();
	}
	if (params.sub_size < 3) {
		outError(ERR_FEW_TAXA);
	}
	switch (tree_type) {
	case YULE_HARDING: 
		generateYuleHarding(params, binary);
		break;
	case UNIFORM:
		generateUniform(params.sub_size, binary);
		break;
	case CATERPILLAR:
		generateCaterpillar(params.sub_size);
		break;
	case BALANCED:
		generateBalanced(params.sub_size);
		break;
	case STAR_TREE:
		generateStarTree(params);
		break;
	default:
		break;
	}
	if (!alignment) return;
	NodeVector taxa;
	getTaxa(taxa);
	ASSERT(taxa.size() == params.sub_size);
	for (NodeVector::iterator it = taxa.begin(); it != taxa.end(); it++)
		(*it)->name = alignment->getSeqName((*it)->id);
}

void MExtTree::setZeroInternalBranches(int num_zero_len) {
	NodeVector nodes, nodes2;
	generateNNIBraches(nodes, nodes2);
	if (num_zero_len > nodes.size()) outError("The specified number of zero branches is too much");
	for (int i = 0; i < num_zero_len;) {
		int id = random_int(nodes.size());
		if (!nodes[id]) continue;
		i++;
		nodes[id]->findNeighbor(nodes2[id])->length = 0.0;
		nodes2[id]->findNeighbor(nodes[id])->length = 0.0;
		nodes[id] = NULL;
		nodes2[id] = NULL;
	}
}

void MExtTree::generateCaterpillar(int size) {
	if (size < 3)
		outError(ERR_FEW_TAXA);
	root = newNode();
	int i;
	NodeVector myleaves;
	NodeVector innodes;
	Node *node;
	double len;

	innodes.push_back(root);
	// create initial tree with 3 leaves
	for (i = 0; i < 3; i++)
	{
		node = newNode();
		len = random_double();
		root->addNeighbor(node, len);
		node->addNeighbor(root, len);
		myleaves.push_back(node);
	}

	// additionally add a leaf
	for (i = 3; i < size; i++)
	{
		int index;
		index = i-1;

		node = myleaves[index];
		innodes.push_back(node);
		// add the first leaf
		Node *newleaf = newNode();
		len = random_double();
		node->addNeighbor(newleaf, len);
		newleaf->addNeighbor(node, len);
		myleaves[index] = newleaf;

		// add the second leaf
		newleaf = newNode();
		len = random_double();
		node->addNeighbor(newleaf, len);
		newleaf->addNeighbor(node, len);
		myleaves.push_back(newleaf);

	}

	root = myleaves[0];
	// indexing the leaves
	setLeavesName(myleaves);

	leafNum = myleaves.size();
	nodeNum = leafNum;
	initializeTree();

}


void MExtTree::generateBalanced(int size) {
	if (size < 3)
		outError(ERR_FEW_TAXA);
	root = newNode();
	int i;
	NodeVector myleaves;
	Node *node;
	double len;

	myleaves.push_back(root);
	// create initial tree with 2 leaves
	node = newNode();
	len = random_double();
	root->addNeighbor(node, len);
	node->addNeighbor(root, len);
	myleaves.push_back(node);

	while (myleaves.size() < size) {

		int cur_size = myleaves.size();
		// additionally add a leaf
		for (i = 0; i < cur_size && myleaves.size() < size; i++)
		{
			int index = i;
	
			node = myleaves[index];
			// add the first leaf
			Node *newleaf = newNode();
			len = random_double();
			node->addNeighbor(newleaf, len);
			newleaf->addNeighbor(node, len);
			myleaves[index] = newleaf;
	
			// add the second leaf
			newleaf = newNode();
			len = random_double();
			node->addNeighbor(newleaf, len);
			newleaf->addNeighbor(node, len);
			myleaves.push_back(newleaf);
	
		}
	}

	root = myleaves[0];
	// indexing the leaves
	setLeavesName(myleaves);

	leafNum = myleaves.size();
	nodeNum = leafNum;
	initializeTree();

}

/**
	generate a random tree following uniform model
*/
void MExtTree::generateUniform(int size, bool binary)
{
	if (size < 3)
		outError(ERR_FEW_TAXA);
	int i;

	// list of left- and right-end of branches
	NodeVector leftend, rightend, myleaves;
	Node *node;
	double len;

	root = newNode(0, "0");
	// create initial tree with 2 leaves
	node = newNode(1, "1");
	len = random_double();
	root->addNeighbor(node, len);
	node->addNeighbor(root, len);

	leftend.push_back(root);
	rightend.push_back(node);

	myleaves.push_back(root);
	myleaves.push_back(node);

	// additionally add a leaf
	for (i = 2; i < size; i++)
	{
		int index;
		index = random_int(2*i-3);
		//cout << "step " << i << " left = " << leftend[index]->id << " right = " << rightend[index]->id << endl;

		// add an internal node
		Node *newnode = newNode(size+i-2);
		// reconnect the left end
		node = leftend[index];
		for (NeighborVec::iterator it = node->neighbors.begin(); it != node->neighbors.end(); it++) 
			if ((*it)->node == rightend[index]) {
				len = random_double();
				(*it)->node = newnode;
				(*it)->length = len;
				newnode->addNeighbor(node, len);
				//cout << "  left " << leftend[index]->id << " " << newnode->id << endl;
				break;
			}
		// reconnect the right end
		node = rightend[index];
		for (NeighborVec::iterator it = node->neighbors.begin(); it != node->neighbors.end(); it++) 
			if ((*it)->node == leftend[index]) {
				len = random_double();
				(*it)->node = newnode;
				(*it)->length = len;
				newnode->addNeighbor(node, len);
				//cout << "  right " << rightend[index]->id  << " " << newnode->id  << endl;
				break;
			}

		// add a new leaf
		Node *newleaf = newNode(i, i);
		len = random_double();
		newnode->addNeighbor(newleaf, len);
		newleaf->addNeighbor(newnode, len);

		// update the leftend and rightend list
		leftend.push_back(newnode);
		rightend.push_back(rightend[index]);

		leftend.push_back(newnode);
		rightend.push_back(newleaf);

		rightend[index] = newnode;

		myleaves.push_back(newleaf);

	}

	// indexing the leaves
	setLeavesName(myleaves);

	leafNum = size;
	nodeNum = leafNum;
	initializeTree();

}

/**
	generate a random tree following Yule Harding model
*/
void MExtTree::generateYuleHarding(Params &params, bool binary) {
	int size = params.sub_size;
	if (size < 3)
		outError(ERR_FEW_TAXA);
	root = newNode();
	int i;
	NodeVector myleaves;
	NodeVector innodes;
	Node *node;
	double len;

	innodes.push_back(root);
	// create initial tree with 3 leaves
	for (i = 0; i < 3; i++) {
		node = newNode();
		len = randomLen(params);
		root->addNeighbor(node, len);
		node->addNeighbor(root, len);
		myleaves.push_back(node);
	}

	// additionally add a leaf
	for (i = 3; i < size; i++)
	{
		int index;
		if (binary) {
			index = random_int(i);
		} else {
 			index = random_int(i + innodes.size());
		}
		if (index < i) {
			node = myleaves[index];
			innodes.push_back(node);
			// add the first leaf
			Node *newleaf = newNode();
			len = randomLen(params);
			node->addNeighbor(newleaf, len);
			newleaf->addNeighbor(node, len);
			myleaves[index] = newleaf;
	
			// add the second leaf
			newleaf = newNode();
			len = randomLen(params);
			node->addNeighbor(newleaf, len);
			newleaf->addNeighbor(node, len);
			myleaves.push_back(newleaf);
		}
		else {
			node = innodes[index-i];
			// add only 1 new leaf
			Node *newleaf = newNode();
			len = randomLen(params);
			node->addNeighbor(newleaf, len);
			newleaf->addNeighbor(node, len);
			myleaves.push_back(newleaf);
			
		}

	}

	root = myleaves[0];
	// indexing the leaves
	setLeavesName(myleaves);

	leafNum = myleaves.size();
	nodeNum = leafNum;
	initializeTree();


}

void MExtTree::generateConstrainedYuleHarding(Params &params, MTree* constraint_tree, StrVector &taxnames) {
	int size = taxnames.size();
	if (size < 3)
		outError(ERR_FEW_TAXA);
	NodeVector myleaves;
	NodeVector innodes;
    StrVector names;
    StringIntMap namemap;
    StrVector::iterator it;
    
    // copy constraint tree and resolve multifurcation
    copyTree(constraint_tree);
    resolveMultifurcation();
    
    getTaxa(myleaves);
    getTaxaName(names);
    for (it = names.begin(); it != names.end(); it++)
        namemap[*it] = 1;

    // add the remaining taxa names
    for (it = taxnames.begin(); it != taxnames.end(); it++)
        if (namemap.find(*it) == namemap.end())
            names.push_back(*it);
    ASSERT(names.size() == taxnames.size());
    my_random_shuffle(names.begin()+leafNum, names.end());

	// additionally add a leaf
	for (; leafNum < size; leafNum++)
	{
		int index;
		index = random_int(leafNum);
        Node *leaf = myleaves[index];
        Node *dad = leaf->neighbors[0]->node;
        // add the first leaf
        
        Node *newleaf = newNode(leafNum, names[leafNum].c_str());
        Node *node = newNode();

        // redirect the current leaf
        node->addNeighbor(leaf, -1.0);
        leaf->updateNeighbor(dad, node);
        
        // add the new leaf
        node->addNeighbor(newleaf, -1.0);
        newleaf->addNeighbor(node, -1.0);

        // connect dad and new node
        dad->updateNeighbor(leaf, node);
        node->addNeighbor(dad, -1.0);

        myleaves.push_back(newleaf);
	}

    // assign random branch lengths
    myleaves.clear();
    innodes.clear();
    getBranches(myleaves, innodes);
    for (int i = 0; i < myleaves.size(); i++) {
        double len = randomLen(params);
        myleaves[i]->findNeighbor(innodes[i])->length = len;
        innodes[i]->findNeighbor(myleaves[i])->length = len;
    }
    

	nodeNum = leafNum;
	initializeTree();

}

void MExtTree::generateStarTree(Params &params) {
	generateYuleHarding(params);
	NodeVector nodes, nodes2;
	generateNNIBraches(nodes, nodes2);
	for (int i = 0; i < nodes.size(); i++) {
		nodes[i]->findNeighbor(nodes2[i])->length = 0.0;
		nodes2[i]->findNeighbor(nodes[i])->length = 0.0;
	}

}

void MExtTree::generateRandomBranchLengths(Params &params, Node *node, Node *dad) {
	if (!node) node = root;
	FOR_NEIGHBOR_IT(node, dad, it) {
		double len = randomLen(params);
		(*it)->length = len;
		(*it)->node->findNeighbor(node)->length = len;
		generateRandomBranchLengths(params, (*it)->node, node);
	}
}


void MExtTree::setLeavesName(NodeVector &myleaves) {
	for (int i = 0; i < myleaves.size(); i++)
	{
		myleaves[i]->id = i;
		stringstream str;
		str << 'T' << myleaves[i]->id;
		myleaves[i]->name = str.str();
	}
}


void MExtTree::createCluster(NodeVector &taxa, mmatrix(int) &clusters, Node *node, Node *dad) {
	if (node == NULL) node = root;
	FOR_NEIGHBOR_IT(node, dad, it) {
		// if both end-nodes are bifurcating
		Node *child = (*it)->node;
		if (!child->isLeaf()) child->name = "";
		if (node->degree() == 3 && child->degree() == 3) { 
			int count = 0;
			FOR_NEIGHBOR_DECLARE(child, node, it2)
				createCluster(count++, (*it2)->node, child);
			if (!rooted) {
				FOR_NEIGHBOR(node, child, it2) 
					createCluster(count++, (*it2)->node, node);
			} else createCluster(count++, node, child);


			clusters.resize(clusters.size()+1);
			for (NodeVector::iterator nit = taxa.begin(); nit != taxa.end(); nit++) {
				clusters.back().push_back((int)((*nit)->height));
			}
			child->name = "";
			child->name += clusters.size();
		}
		createCluster(taxa, clusters, child, node);
	}
}

void MExtTree::createCluster(int clu_num, Node *node, Node *dad) {
	if (node->isLeaf()) node->height = clu_num;
	FOR_NEIGHBOR_IT(node, dad, it) {
		createCluster(clu_num, (*it)->node, node);
	}
}


void MExtTree::collapseLowBranchSupport(DoubleVector &minsup, Node *node, Node *dad) {
    if (!node) node = root;
    FOR_NEIGHBOR_IT(node, dad, it) {
        collapseLowBranchSupport(minsup, (*it)->node, node);
    }
    if (!node->isLeaf() && dad && node->name != "") {
        DoubleVector vec;
        convert_double_vec(node->name.c_str(), vec, '/');
        if (vec.size() != minsup.size()) {
            cout << "Branch with name " << node->name << " ignored" << endl;
            return;
        }
        for (int i = 0; i < vec.size(); i++)
            if (vec[i] < minsup[i]) {
                // support smaller than threshold, mark this branch for deletion
                dad->findNeighbor(node)->length = -1.0;
                node->findNeighbor(dad)->length = -1.0;
                break;
            }
    }
}