1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
|
/***************************************************************************
* Copyright (C) 2009-2015 by *
* BUI Quang Minh <minh.bui@univie.ac.at> *
* Lam-Tung Nguyen <nltung@gmail.com> *
* *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#include "node.h"
//#include <sys/time.h>
//#include <time.h>
#include <cmath>
//#define INFINITY 1000000000
/*********************************************
class Node
*********************************************/
Node::Node(int aid) {
id = aid;
//name = NULL;
height = -1;
}
Node::Node(int aid, int aname) {
id = aid;
char str[20];
sprintf(str, "%d", aname);
name = str;
height = -1;
}
Node::Node(int aid, const char *aname) {
id = aid;
if (aname)
name = aname;
height = -1;
}
bool Node::isLeaf() {
return neighbors.size() <= 1;
}
bool Node::isInCherry() {
if (this->isLeaf()) {
if (neighbors[0]->node->isCherry()) {
return true;
} else {
return false;
}
} else {
return false;
}
}
bool Node::isCherry() {
int num_leaves = 0;
for (NeighborVec::iterator it = neighbors.begin(); it != neighbors.end(); it++)
if ((*it)->node->isLeaf()) num_leaves++;
return (num_leaves > 1);
}
int Node::degree() {
return neighbors.size();
}
/** calculate the height of the subtree rooted at this node,
given the dad. Also return the lowestLeaf.
@param dad the dad of this node
@return the leaf at the lowest level. Also modify the height, highestNei of this class.
*/
Node *Node::calcHeight(Node *dad) {
if (isLeaf() && dad != NULL) {
// if a leaf, but not the root
height = 0;
highestNei = NULL;
return this;
}
// scan through all children
height = -INFINITY;
Node *lowestLeaf = NULL;
for (NeighborVec::iterator it = neighbors.begin(); it != neighbors.end(); it++)
if ((*it)->node != dad) {
Node *leaf = (*it)->node->calcHeight(this);
if ((*it)->node->height + (*it)->length > height) {
height = (*it)->node->height + (*it)->length;
highestNei = (*it);
lowestLeaf = leaf;
}
}
return lowestLeaf;
}
int Node::calDist(Node* partner, Node* dad, int curLen) {
if ( this->isLeaf() && this != partner && dad != NULL )
return 0;
if ( this->isLeaf() && dad == NULL ) {
return this->neighbors[0]->node->calDist(partner, this, 1);
} else {
Node* left = NULL;
Node* right = NULL;
for (NeighborVec::iterator it = neighbors.begin(); it != neighbors.end(); it++) {
if ((*it)->node != dad) {
if (left == NULL)
left = (*it)->node;
else
right = (*it)->node;
}
}
curLen++;
// cout << left->id << endl;
// cout << right->id << endl;
int sumLeft = 0;
int sumRight = 0;
if ( left->isLeaf() ) {
if ( left == partner)
{
//cout << " I found you baby" << endl;
return curLen;
}
}
else {
sumLeft = left->calDist(partner, this, curLen);
}
if ( right->isLeaf() ) {
if ( right == partner) {
//cout << " I found you baby" << endl;
return curLen;
}
}
else {
sumRight = right->calDist(partner, this, curLen);
}
return sumRight + sumLeft;
}
}
/**
efficient longest path algorithm
*/
double Node::longestPath2(Node* &node1, Node* &node2) {
// step 1: find the farthest leaf from this node (as a leaf)
ASSERT(isLeaf());
node1 = calcHeight();
// step 2: find the farthest leaf from node1
node2 = node1->calcHeight();
return node1->height;
}
Neighbor *Node::findNeighbor(Node *node) {
int size = neighbors.size();
for (int i = 0; i < size; i++)
if (neighbors[i]->node == node) return neighbors[i];
/*
for (NeighborVec::iterator it = neighbors.begin(); it != neighbors.end(); it ++)
if ((*it)->node == node)
return (*it);*/
cout << "ERROR : Could not find neighbors of node " << node->id << endl;
ASSERT(0);
return NULL;
}
bool Node::isNeighbor(Node* node) {
int size = neighbors.size();
for (int i = 0; i < size; i++)
if (neighbors[i]->node == node) return true;
return false;
}
NeighborVec::iterator Node::findNeighborIt(Node *node) {
for (NeighborVec::iterator it = neighbors.begin(); it != neighbors.end(); it++)
if ((*it)->node == node)
return it;
ASSERT(0);
return neighbors.end();
}
void Node::addNeighbor(Node *node, double length, int id) {
neighbors.push_back(new Neighbor(node, length, id));
}
void Node::addNeighbor(Node *node, DoubleVector &length, int id) {
// assert(!length.empty());
if (length.empty())
addNeighbor(node, -1.0, id);
else
addNeighbor(node, length[0], id);
}
void Node::updateNeighbor(NeighborVec::iterator nei_it, Neighbor *newnei) {
ASSERT(nei_it != neighbors.end());
*nei_it = newnei;
}
void Node::updateNeighbor(NeighborVec::iterator nei_it, Neighbor *newnei, double newlen) {
ASSERT(nei_it != neighbors.end());
*nei_it = newnei;
newnei->length = newlen;
}
void Node::updateNeighbor(Node *node, Neighbor *newnei) {
NeighborVec::iterator nei_it = findNeighborIt(node);
ASSERT(nei_it != neighbors.end());
*nei_it = newnei;
}
void Node::updateNeighbor(Node *node, Neighbor *newnei, double newlen) {
NeighborVec::iterator nei_it = findNeighborIt(node);
ASSERT(nei_it != neighbors.end());
*nei_it = newnei;
newnei->length = newlen;
}
void Node::updateNeighbor(Node* node, Node *newnode, double newlen) {
for (NeighborVec::iterator it = neighbors.begin(); it != neighbors.end(); it++)
if ((*it)->node == node) {
(*it)->node = newnode;
(*it)->length = newlen;
break;
}
}
double Node::updateNeighbor(Node* node, Node *newnode) {
for (NeighborVec::iterator it = neighbors.begin(); it != neighbors.end(); it++)
if ((*it)->node == node) {
(*it)->node = newnode;
return (*it)->length;
}
return -1;
}
void Node::deleteNode() {
NeighborVec::reverse_iterator it;
for (it = neighbors.rbegin(); it != neighbors.rend(); it++)
delete (*it);
neighbors.clear();
}
Node::~Node() {
deleteNode();
}
|