1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708
|
/*
* parstree.cpp
*
* Created on: Nov 6, 2014
* Author: diep
*/
#include <cstring>
#include "parstree.h"
#include "utils/tools.h"
ParsTree::ParsTree(): IQTree(){
cost_matrix = NULL;
}
ParsTree::ParsTree(Alignment *alignment): IQTree(alignment){
cost_matrix = NULL;
}
ParsTree::~ParsTree() {
if(cost_matrix){
aligned_free(cost_matrix);
cost_matrix = NULL;
}
if (central_partial_pars)
delete[] central_partial_pars;
central_partial_pars = NULL;
}
void ParsTree::loadCostMatrixFile(char * file_name){
if(cost_matrix){
aligned_free(cost_matrix);
cost_matrix = NULL;
}
// if(strcmp(file_name, "fitch") == 0)
//// if(file_name == NULL)
// cost_matrix = new SankoffCostMatrix(aln->num_states);
// else
// cost_matrix = new SankoffCostMatrix(file_name);
if(strcmp(file_name, "fitch") == 0 || strcmp(file_name, "e") == 0) { // uniform cost
cost_nstates = aln->num_states;
cost_matrix = aligned_alloc<unsigned int>(cost_nstates * cost_nstates);
for(int i = 0; i < cost_nstates; i++)
for(int j = 0; j < cost_nstates; j++){
if(j == i) cost_matrix[i * cost_nstates + j] = 0;
else cost_matrix[i * cost_nstates + j] = 1;
}
} else{ // Sankoff cost
cout << "Loading cost matrix from " << file_name << "..." << endl;
ifstream fin(file_name);
if(!fin.is_open()){
outError("Reading cost matrix file cannot perform. Please check your input file!");
}
fin >> cost_nstates;
// allocate memory for cost_matrix
cost_matrix = aligned_alloc<unsigned int>(cost_nstates * cost_nstates);
// read numbers from file
for(int i = 0; i < cost_nstates; i++){
for(int j = 0; j < cost_nstates; j++)
fin >> cost_matrix[i * cost_nstates + j];
}
fin.close();
}
int i, j, k;
bool changed = false;
for (k = 0; k < cost_nstates; k++)
for (i = 0; i < cost_nstates; i++)
for (j = 0; j < cost_nstates; j++)
if (cost_matrix[i*cost_nstates+j] > cost_matrix[i*cost_nstates+k] + cost_matrix[k*cost_nstates+j]) {
changed = true;
cost_matrix[i*cost_nstates+j] = cost_matrix[i*cost_nstates+k] + cost_matrix[k*cost_nstates+j];
}
if (changed) {
cout << "WARING: Cost matrix does not satisfy triangular inenquality and is automatically fixed to:" << endl;
cout << cost_nstates << endl;
for (i = 0; i < cost_nstates; i++) {
for (j = 0; j < cost_nstates; j++)
cout << " " << cost_matrix[i*cost_nstates+j];
cout << endl;
}
} else {
cout << "Cost matrix satisfies triangular inenquality" << endl;
}
}
void ParsTree::initCostMatrix(CostMatrixType cost_type) {
if(cost_matrix){
aligned_free(cost_matrix);
cost_matrix = NULL;
}
ASSERT(aln);
cost_nstates = aln->num_states;
// allocate memory for cost_matrix
cost_matrix = aligned_alloc<unsigned int>(cost_nstates * cost_nstates);
switch (cost_type) {
case CM_LINEAR:
for(int i = 0; i < cost_nstates; i++){
for(int j = 0; j < cost_nstates; j++)
cost_matrix[i * cost_nstates + j] = abs(i-j);
}
break;
case CM_UNIFORM:
for(int i = 0; i < cost_nstates; i++){
for(int j = 0; j < cost_nstates; j++)
cost_matrix[i * cost_nstates + j] = ((i==j) ? 0 : 1);
}
break;
}
clearAllPartialLH();
}
/**
compute the tree parsimony score
@return parsimony score of the tree
*/
int ParsTree::computeParsimony(){
// assert(root && root->isLeaf());
// cout << "nstates = " << aln->num_states << endl;
// clearAllPartialLH();
assert(root->isLeaf());
PhyloNeighbor *nei = ((PhyloNeighbor*) root->neighbors[0]);
current_it = nei;
assert(current_it);
current_it_back = (PhyloNeighbor*) nei->node->findNeighbor(root);
assert(current_it_back);
int nptn = aln->size();
// if(_pattern_pars == NULL) _pattern_pars = aligned_alloc<BootValTypePars>(nptn + VCSIZE_USHORT);
return computeParsimonyBranch((PhyloNeighbor*) root->neighbors[0], (PhyloNode*) root);
}
//inline UINT computeCostFromChild(UINT child_cost, UINT transition_cost){
// return (child_cost + transition_cost);
//}
/**
compute partial parsimony score of the subtree rooted at dad
@param dad_branch the branch leading to the subtree
@param dad its dad, used to direct the traversal
*/
void ParsTree::computePartialParsimony(PhyloNeighbor *dad_branch, PhyloNode *dad){
// don't recompute the parsimony
if (dad_branch->partial_lh_computed & 2)
return;
Node *node = dad_branch->node;
//assert(node->degree() <= 3);
int ptn;
if(aln->num_states != cost_nstates){
cout << "Your cost matrix is not compatible with the alignment"
<< " in terms of number of states. Please check!" << endl;
exit(1);
}
int nstates = aln->num_states;
assert(dad_branch->partial_pars);
int pars_block_size = getParsBlockSize();
if (node->isLeaf() && dad) {
// cout << "############# leaf!" << endl;
// external node
for(int i = 0; i < pars_block_size - 1; i++)
dad_branch->partial_pars[i] = 1000;
dad_branch->partial_pars[pars_block_size - 1] = 0; // reserved for corresponding subtree pars
for (ptn = 0; ptn < aln->size(); ptn++){
// ignore const ptn because it does not affect pars score
if (!aln->at(ptn).isConst()) {
int ptn_start_index = ptn * nstates;
char state;
if (node->name == ROOT_NAME) {
state = aln->STATE_UNKNOWN;
} else {
assert(node->id < aln->getNSeq());
state = (aln->at(ptn))[node->id];
}
if (state < nstates) {
dad_branch->partial_pars[ptn_start_index + state] = 0;
} else {
// unknown, ambiguous character
// cout << "####### ambigous state = " << int(state) << endl;
initLeafSiteParsForAmbiguousState(state, dad_branch->partial_pars + ptn_start_index);
}
}
}
} else {
// cout << "############# internal!" << endl;
// internal node
UINT i, j, ptn, min_child_ptn_pars;
UINT * partial_pars = dad_branch->partial_pars;
for(int i = 0; i < pars_block_size; i++)
partial_pars[i] = 0;
UINT *left = NULL, *right = NULL;
FOR_NEIGHBOR_IT(node, dad, it)if ((*it)->node->name != ROOT_NAME) {
computePartialParsimony((PhyloNeighbor*) (*it), (PhyloNode*) node);
if (!left)
left = ((PhyloNeighbor*)*it)->partial_pars;
else
right = ((PhyloNeighbor*)*it)->partial_pars;
}
if (node->degree() > 3) {
FOR_NEIGHBOR_IT(node, dad, it) if ((*it)->node->name != ROOT_NAME) {
UINT *partial_pars_child = ((PhyloNeighbor*) (*it))->partial_pars;
for (ptn = 0; ptn < aln->size(); ptn++){
// ignore const ptn because it does not affect pars score
if (aln->at(ptn).isConst()) continue;
int ptn_start_index = ptn*nstates;
UINT *partial_pars_child_ptr = &partial_pars_child[ptn_start_index];
UINT *partial_pars_ptr = &partial_pars[ptn_start_index];
UINT *cost_matrix_ptr = cost_matrix;
for(i = 0; i < nstates; i++){
// min(j->i) from child_branch
min_child_ptn_pars = partial_pars_child_ptr[0] + cost_matrix_ptr[0];
for(j = 1; j < nstates; j++) {
UINT value = partial_pars_child_ptr[j] + cost_matrix_ptr[j];
min_child_ptn_pars = min(value, min_child_ptn_pars);
}
partial_pars_ptr[i] += min_child_ptn_pars;
cost_matrix_ptr += nstates;
}
}
}
} else {
// bifurcating node
assert(node->degree() == 3);
switch (nstates) {
case 4:
for (ptn = 0; ptn < aln->size(); ptn++){
// ignore const ptn because it does not affect pars score
if (aln->at(ptn).isConst()) continue;
int ptn_start_index = ptn*4;
UINT *left_ptr = &left[ptn_start_index];
UINT *right_ptr = &right[ptn_start_index];
UINT *partial_pars_ptr = &partial_pars[ptn_start_index];
UINT *cost_matrix_ptr = cost_matrix;
UINT left_contrib, right_contrib;
for(i = 0; i < 4; i++){
// min(j->i) from child_branch
left_contrib = left_ptr[0] + cost_matrix_ptr[0];
right_contrib = right_ptr[0] + cost_matrix_ptr[0];
for(j = 1; j < 4; j++) {
UINT value = left_ptr[j] + cost_matrix_ptr[j];
left_contrib = min(value, left_contrib);
value = right_ptr[j] + cost_matrix_ptr[j];
right_contrib = min(value, right_contrib);
}
partial_pars_ptr[i] = left_contrib+right_contrib;
cost_matrix_ptr += 4;
}
}
break;
case 20:
for (ptn = 0; ptn < aln->size(); ptn++){
// ignore const ptn because it does not affect pars score
if (aln->at(ptn).isConst()) continue;
int ptn_start_index = ptn*20;
UINT *left_ptr = &left[ptn_start_index];
UINT *right_ptr = &right[ptn_start_index];
UINT *partial_pars_ptr = &partial_pars[ptn_start_index];
UINT *cost_matrix_ptr = cost_matrix;
UINT left_contrib, right_contrib;
for(i = 0; i < 20; i++){
// min(j->i) from child_branch
left_contrib = left_ptr[0] + cost_matrix_ptr[0];
right_contrib = right_ptr[0] + cost_matrix_ptr[0];
for(j = 1; j < 20; j++) {
UINT value = left_ptr[j] + cost_matrix_ptr[j];
left_contrib = min(value, left_contrib);
value = right_ptr[j] + cost_matrix_ptr[j];
right_contrib = min(value, right_contrib);
}
partial_pars_ptr[i] = left_contrib+right_contrib;
cost_matrix_ptr += 20;
}
}
break;
default:
for (ptn = 0; ptn < aln->size(); ptn++){
// ignore const ptn because it does not affect pars score
if (aln->at(ptn).isConst()) continue;
int ptn_start_index = ptn*nstates;
UINT *left_ptr = &left[ptn_start_index];
UINT *right_ptr = &right[ptn_start_index];
UINT *partial_pars_ptr = &partial_pars[ptn_start_index];
UINT *cost_matrix_ptr = cost_matrix;
UINT left_contrib, right_contrib;
for(i = 0; i < nstates; i++){
// min(j->i) from child_branch
left_contrib = left_ptr[0] + cost_matrix_ptr[0];
right_contrib = right_ptr[0] + cost_matrix_ptr[0];
for(j = 1; j < nstates; j++) {
UINT value = left_ptr[j] + cost_matrix_ptr[j];
left_contrib = min(value, left_contrib);
value = right_ptr[j] + cost_matrix_ptr[j];
right_contrib = min(value, right_contrib);
}
partial_pars_ptr[i] = left_contrib+right_contrib;
cost_matrix_ptr += nstates;
}
}
break;
}
}
/*
// calc subtree pars
for (ptn = 0; ptn < aln->size(); ptn++){
// ignore const ptn because it does not affect pars score
if (aln->at(ptn).is_const) continue;
int ptn_start_index = ptn * nstates;
UINT min_ptn_pars = partial_pars[ptn_start_index];
for(i = 1; i < nstates; i++){
if(partial_pars[ptn_start_index + i] < min_ptn_pars)
min_ptn_pars = partial_pars[ptn_start_index + i];
}
partial_pars[pars_block_size - 1] += min_ptn_pars * aln->at(ptn).frequency;
}
*/
}
dad_branch->partial_lh_computed |= 2;
}
void ParsTree::initLeafSiteParsForAmbiguousState(char state, UINT * site_partial_pars){
int i, nstates = aln->num_states;
if(state < nstates) return; // no need for manipulate normal state
if (state == aln->STATE_UNKNOWN){
for(i = 0; i < nstates; i++) site_partial_pars[i] = 0;
return;
}
if (state == STATE_INVALID){
cout << "nstates = " << nstates << "; state = " << (int) state << endl;
outError("Alignment contains invalid state. Please check your data!");
}
// for(i = 0; i < nstates; i++) site_partial_pars[i] = UINT_MAX;
switch (nstates) {
case 2:
cout << "nstates = " << nstates << "; state = " << (int) state << endl;
outError("Alignment contains invalid state. Please check your data!");
break;
case 4: // DNA
switch (state) {
case 1+4+3:
site_partial_pars[aln->convertState('A')] = 0;
site_partial_pars[aln->convertState('G')] = 0;
return; // A or G, Purine
case 2+8+3:
site_partial_pars[aln->convertState('C')] = 0;
site_partial_pars[aln->convertState('T')] = 0;
return; // C or T, Pyrimidine
case 1+8+3:
site_partial_pars[aln->convertState('A')] = 0;
site_partial_pars[aln->convertState('T')] = 0;
return; // A or T, Weak
case 2+4+3:
site_partial_pars[aln->convertState('G')] = 0;
site_partial_pars[aln->convertState('C')] = 0;
return; // G or C, Strong
case 1+2+3:
site_partial_pars[aln->convertState('A')] = 0;
site_partial_pars[aln->convertState('C')] = 0;
return; // A or C, Amino
case 4+8+3:
site_partial_pars[aln->convertState('G')] = 0;
site_partial_pars[aln->convertState('T')] = 0;
return; // G or T, Keto
case 2+4+8+3:
site_partial_pars[aln->convertState('C')] = 0;
site_partial_pars[aln->convertState('G')] = 0;
site_partial_pars[aln->convertState('T')] = 0;
return;// C or G or T
case 1+2+8+3:
site_partial_pars[aln->convertState('A')] = 0;
site_partial_pars[aln->convertState('C')] = 0;
site_partial_pars[aln->convertState('T')] = 0;
return; // A or C or T
case 1+4+8+3:
site_partial_pars[aln->convertState('A')] = 0;
site_partial_pars[aln->convertState('G')] = 0;
site_partial_pars[aln->convertState('T')] = 0;
return; // A or G or T
case 1+2+4+3:
site_partial_pars[aln->convertState('A')] = 0;
site_partial_pars[aln->convertState('G')] = 0;
site_partial_pars[aln->convertState('C')] = 0;
return; // A or G or C
case 18:
site_partial_pars[aln->convertState('A')] = 0;
site_partial_pars[aln->convertState('C')] = 0;
site_partial_pars[aln->convertState('G')] = 0;
site_partial_pars[aln->convertState('T')] = 0;
return; // UNKNOWN for DNA
default:
cout << "nstates = " << nstates << "; state = " << (int) state << endl;
outError("Alignment contains invalid state. Please check your data!");
return;
}
break;
case 20: // Protein
if (state == 4+8+19){
site_partial_pars[aln->convertState('D')] = 0;
site_partial_pars[aln->convertState('N')] = 0;
return; // Aspartic acid (D) or Asparagine (N)
}
else if (state == 32+64+19){
site_partial_pars[aln->convertState('Q')] = 0;
site_partial_pars[aln->convertState('E')] = 0;
return; // Glutamine (Q) or Glutamic acid (E)
}
else if (state == 22){
for(i = 0; i < nstates; i++) site_partial_pars[i] = 0;
return; // UNKNOWN for Protein
}
else{
cout << "nstates = " << nstates << "; state = " << (int) state << endl;
outError("Alignment contains invalid state. Please check your data!");
return;
}
default:
// unknown
cout << "nstates = " << nstates << "; state = " << (int) state << endl;
outError("Alignment contains invalid state. Please check your data!");
return;
}
}
/**
compute tree parsimony score based on a particular branch
@param dad_branch the branch leading to the subtree
@param dad its dad, used to direct the traversal
@param branch_subst (OUT) if not NULL, the number of substitutions on this branch
@return parsimony score of the tree
*/
int ParsTree::computeParsimonyBranch(PhyloNeighbor *dad_branch, PhyloNode *dad, int *branch_subst) {
PhyloNode *node = (PhyloNode*) dad_branch->node;
PhyloNeighbor *node_branch = (PhyloNeighbor*) node->findNeighbor(dad);
assert(node_branch);
if (!central_partial_pars)
initializeAllPartialPars();
// DTH: I don't really understand what this is for. ###########
// swap node and dad if dad is a leaf
if (node->isLeaf()) {
PhyloNode *tmp_node = dad;
dad = node;
node = tmp_node;
PhyloNeighbor *tmp_nei = dad_branch;
dad_branch = node_branch;
node_branch = tmp_nei;
// cout << "swapped\n";
}
int nptn = aln->size();
// if(!_pattern_pars) _pattern_pars = aligned_alloc<BootValTypePars>(nptn+VCSIZE_USHORT);
// memset(_pattern_pars, 0, sizeof(BootValTypePars) * (nptn+VCSIZE_USHORT));
if ((dad_branch->partial_lh_computed & 2) == 0)
computePartialParsimony(dad_branch, dad);
if ((node_branch->partial_lh_computed & 2) == 0)
computePartialParsimony(node_branch, node);
// now combine likelihood at the branch
tree_pars = 0;
int nstates = aln->num_states;
UINT i, j, ptn;
UINT *ptn_partial_pars = new UINT[nstates];
if(!ptn_partial_pars){
outError("Could not allocate for ptn_partial_pars\n");
exit(1);
}
switch (nstates) {
case 4:
for (ptn = 0; ptn < aln->size(); ptn++){
//_pattern_pars[ptn] = 0;
if (aln->at(ptn).isConst()) continue;
int ptn_start_index = ptn * 4;
UINT *node_branch_ptr = &node_branch->partial_pars[ptn_start_index];
UINT *dad_branch_ptr = &dad_branch->partial_pars[ptn_start_index];
UINT *cost_matrix_ptr = cost_matrix;
UINT min_ptn_pars = UINT_MAX;
for(i = 0; i < 4; i++){
// min(j->i) from node_branch
UINT min_score = node_branch_ptr[0] + cost_matrix_ptr[0];
for(j = 1; j < 4; j++) {
UINT value = node_branch_ptr[j] + cost_matrix_ptr[j];
min_score = min(value, min_score);
}
ptn_partial_pars[i] = min_score + dad_branch_ptr[i];
min_ptn_pars = min(min_ptn_pars, ptn_partial_pars[i]);
cost_matrix_ptr += 4;
}
//_pattern_pars[ptn] = min_ptn_pars;
tree_pars += min_ptn_pars * aln->at(ptn).frequency;
}
break;
default:
for (ptn = 0; ptn < aln->size(); ptn++){
//_pattern_pars[ptn] = 0;
if (aln->at(ptn).isConst()) continue;
int ptn_start_index = ptn * nstates;
UINT *node_branch_ptr = &node_branch->partial_pars[ptn_start_index];
UINT *dad_branch_ptr = &dad_branch->partial_pars[ptn_start_index];
UINT *cost_matrix_ptr = cost_matrix;
UINT min_ptn_pars = UINT_MAX;
for(i = 0; i < nstates; i++){
// min(j->i) from node_branch
UINT min_score = node_branch_ptr[0] + cost_matrix_ptr[0];
for(j = 1; j < nstates; j++) {
UINT value = node_branch_ptr[j] + cost_matrix_ptr[j];
min_score = min(value, min_score);
}
ptn_partial_pars[i] = min_score + dad_branch_ptr[i];
min_ptn_pars = min(min_ptn_pars, ptn_partial_pars[i]);
cost_matrix_ptr += nstates;
}
//_pattern_pars[ptn] = min_ptn_pars;
tree_pars += min_ptn_pars * aln->at(ptn).frequency;
}
break;
}
if (branch_subst)
*branch_subst = tree_pars;
if(ptn_partial_pars){
delete [] ptn_partial_pars;
ptn_partial_pars = NULL;
}
return tree_pars;
}
void ParsTree::initializeAllPartialPars() {
PhyloTree::initializeAllPartialPars();
// if(params->maximum_parsimony && (!_pattern_pars))
// _pattern_pars = new UINT[aln->size()];
// int index = 0;
// initializeAllPartialPars(index);
}
size_t ParsTree::getParsBlockSize(){
// the extra one is reserved for subtree pars score
// TODO minus const ptn
return aln->size() * aln->num_states + 1;
}
UINT* ParsTree::newBitsBlock(){
return new UINT[getParsBlockSize()];
}
void ParsTree::initializeAllPartialPars(int &index, PhyloNode *node, PhyloNode *dad) {
size_t pars_block_size = getParsBlockSize();
if (!node) {
node = (PhyloNode*) root;
// allocate the big central partial pars memory
if (!central_partial_pars) {
int memsize = (aln->getNSeq() - 1) * 4 * pars_block_size; // Important for handling informal NEXUS format (e.g. output of TNT)
if (verbose_mode >= VB_MED)
cout << "Allocating " << memsize * sizeof(UINT) << " bytes for partial parsimony vectors" << endl;
central_partial_pars = new UINT[memsize];
if (!central_partial_pars)
outError("Not enough memory for partial parsimony vectors");
}
index = 0;
}
if (dad) {
// make memory alignment 16
// assign a region in central_partial_lh to both Neihgbors (dad->node, and node->dad)
PhyloNeighbor *nei = (PhyloNeighbor*) node->findNeighbor(dad);
nei->partial_pars = central_partial_pars + (index * pars_block_size);
nei = (PhyloNeighbor*) dad->findNeighbor(node);
nei->partial_pars = central_partial_pars + ((index + 1) * pars_block_size);
index += 2;
//assert(index < nodeNum * 2 - 1);
}
FOR_NEIGHBOR_IT(node, dad, it) initializeAllPartialPars(index, (PhyloNode*) (*it)->node, node);
}
UINT* ParsTree::newPartialPars(){
UINT *ret = new UINT[getParsBlockSize()];
return ret;
}
//
//void ParsTree::initParsData(Params* pars_params) {
// if(!pars_params) return;
// initCostMatrixLinear();
// if(cost_matrix == NULL) loadCostMatrixFile(pars_params->sankoff_cost_file);
//}
void ParsTree::printPatternScore() {
// for(int i = 0; i < aln->getNPattern(); i++)
// cout << _pattern_pars[i] << ", ";
}
// find minimum spanning tree score for a given pattern
UINT ParsTree::findMstScore(int ptn) {
//--- Initialize site_states to mark which state character is present in the pattern # 'ptn'
UINT * site_states = new UINT[aln->num_states];
// site_states[i] = 0 => state i is present, nonzero means it's absent
for(int i = 0; i < aln->num_states; i++) site_states[i] = UINT_MAX;
Pattern pat = aln->at(ptn);
for(int j = 0; j < pat.size(); j++){
if(pat[j] < aln->num_states) site_states[pat[j]] = 0;
// else initLeafSiteParsForAmbiguousState(pat[j], site_states)
}
int state_count = 0;
for(int i = 0; i < aln->num_states; i++)
if(site_states[i] == 0) state_count++;
if(state_count <= 1) return 0;
// cout << "state_count = " << state_count << endl;
//--- Prim algorithm
UINT * labelled_value = new UINT[aln->num_states];
bool * added = new bool[aln->num_states];
for(int i = 0; i < aln->num_states; i++) labelled_value[i] = UINT_MAX;
for(int i = 0; i < aln->num_states; i++) added[i] = false;
int add_node;
// labeled_value[0] = 0;
int count = 0;
do{
if(count == 0){
for(int c = 0; c < aln->num_states; c++){
if((added[c] == false) && (site_states[c] == 0)){
labelled_value[c] = 0;
// cout << "c = " << c << endl;
break;
}
}
}
// find among nodes unadded the one with smallest value
int min_label = UINT_MAX;
add_node = -1;
for(int c = 0; c < aln->num_states; c++){
if((added[c] == false) && (site_states[c] == 0))
if(labelled_value[c] < min_label){
min_label = labelled_value[c];
add_node = c;
}
}
if(add_node >= 0){
added[add_node] = true;
count++;
}else break;
// update adjacent list
for(int c = 0; c < aln->num_states; c++)
if((site_states[c] == 0) && (added[c] == false)){
if(labelled_value[c] > cost_matrix[add_node * cost_nstates + c])
labelled_value[c] = cost_matrix[add_node * cost_nstates + c];
}
}while(count < aln->num_states);
UINT score = 0;
for(int i = 0; i < aln->num_states; i++)
if(site_states[i] == 0)
score += labelled_value[i];
delete [] site_states;
delete [] labelled_value;
delete [] added;
return score;
}
|