1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171
|
/***************************************************************************
* Copyright (C) 2009-2015 by *
* BUI Quang Minh <minh.bui@univie.ac.at> *
* Lam-Tung Nguyen <nltung@gmail.com> *
* *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#ifndef PHYLOTREE_H
#define PHYLOTREE_H
//#define NDEBUG
// comented out this for Mac
// PLEASE DONT TOUCH THESE VARIABLES ANYMORE!
#define EIGEN_NO_AUTOMATIC_RESIZING
//#define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 32 // PLEASE DONT TOUCH THESE VARIABLES ANYMORE!
//#define EIGEN_UNROLLING_LIMIT 1000 // PLEASE DONT TOUCH THESE VARIABLES ANYMORE!
//#define EIGEN_TUNE_FOR_CPU_CACHE_SIZE (512*256)
//#define EIGEN_TUNE_FOR_CPU_CACHE_SIZE (8*512*512)
//#include <Eigen/Core>
#include "mtree.h"
#include "alignment/alignment.h"
#include "model/modelsubst.h"
#include "model/modelfactory.h"
#include "phylonode.h"
#include "utils/optimization.h"
#include "model/rateheterogeneity.h"
#include "candidateset.h"
#include "pll/pll.h"
#include "utils/checkpoint.h"
#include "constrainttree.h"
#include "memslot.h"
#define BOOT_VAL_FLOAT
#define BootValType float
//#define BootValType double
//extern int instruction_set;
#define SAFE_LH true // safe likelihood scaling to avoid numerical underflow for ultra large trees
#define NORM_LH false // normal likelihood scaling
const double TOL_BRANCH_LEN = 0.000001; // NEVER TOUCH THIS CONSTANT AGAIN PLEASE!
const double TOL_LIKELIHOOD = 0.001; // NEVER TOUCH THIS CONSTANT AGAIN PLEASE!
const double TOL_LIKELIHOOD_PARAMOPT = 0.001; // BQM: newly introduced for ModelFactory::optimizeParameters
//const static double SCALING_THRESHOLD = sqrt(DBL_MIN);
//const static double SCALING_THRESHOLD = 1e-100;
//const static double SCALING_THRESHOLD_INVER = 1 / SCALING_THRESHOLD;
//const static double LOG_SCALING_THRESHOLD = log(SCALING_THRESHOLD);
//#include "pll/pll.h"
// 2^256
//#define SCALING_THRESHOLD_INVER 115792089237316195423570985008687907853269984665640564039457584007913129639936.0
#define SCALING_THRESHOLD_EXP 256
//#define SCALING_THRESHOLD (1.0/SCALING_THRESHOLD_INVER)
// 2^{-256}
#define SCALING_THRESHOLD 8.636168555094444625386e-78
//#define SCALING_THRESHOLD ldexp(1.0, -256)
//#define LOG_SCALING_THRESHOLD log(SCALING_THRESHOLD)
#define LOG_SCALING_THRESHOLD -177.4456782233459932741
const int SPR_DEPTH = 2;
//using namespace Eigen;
inline size_t get_safe_upper_limit(size_t cur_limit) {
if (Params::getInstance().SSE >= LK_AVX512)
// AVX-512
return ((cur_limit+7)/8)*8;
else
if (Params::getInstance().SSE >= LK_AVX)
// AVX
return ((cur_limit+3)/4)*4;
else
// SSE
return ((cur_limit+1)/2)*2;
}
inline size_t get_safe_upper_limit_float(size_t cur_limit) {
if (Params::getInstance().SSE >= LK_AVX512)
// AVX-512
return ((cur_limit+15)/16)*16;
else
if (Params::getInstance().SSE >= LK_AVX)
// AVX
return ((cur_limit+7)/8)*8;
else
// SSE
return ((cur_limit+3)/4)*4;
}
template< class T>
inline T *aligned_alloc(size_t size) {
size_t MEM_ALIGNMENT = (Params::getInstance().SSE >= LK_AVX512) ? 64 : ((Params::getInstance().SSE >= LK_AVX) ? 32 : 16);
void *mem;
#if defined WIN32 || defined _WIN32 || defined __WIN32__
#if (defined(__MINGW32__) || defined(__clang__)) && defined(BINARY32)
mem = __mingw_aligned_malloc(size*sizeof(T), MEM_ALIGNMENT);
#else
mem = _aligned_malloc(size*sizeof(T), MEM_ALIGNMENT);
#endif
#else
int res = posix_memalign(&mem, MEM_ALIGNMENT, size*sizeof(T));
if (res == ENOMEM) {
#if (defined(__GNUC__) || defined(__clang__)) && !defined(WIN32) && !defined(__CYGWIN__)
print_stacktrace(cerr);
#endif
outError("Not enough memory, allocation of " + convertInt64ToString(size*sizeof(T)) + " bytes failed (bad_alloc)");
}
#endif
if (mem == NULL) {
#if (defined(__GNUC__) || defined(__clang__)) && !defined(WIN32) && !defined(__CYGWIN__)
print_stacktrace(cerr);
#endif
outError("Not enough memory, allocation of " + convertInt64ToString(size*sizeof(T)) + " bytes failed (bad_alloc)");
}
return (T*)mem;
}
inline void aligned_free(void* mem) {
#if defined WIN32 || defined _WIN32 || defined __WIN32__
#if (defined(__MINGW32__) || defined(__clang__)) && defined(BINARY32)
__mingw_aligned_free(mem);
#else
_aligned_free(mem);
#endif
#else
free(mem);
#endif
}
/**
* Row Major Array For Eigen
*/
//typedef Array<double, Dynamic, Dynamic, RowMajor> RowMajorArrayXXd;
typedef std::map< string, double > StringDoubleMap;
typedef std::map< int, PhyloNode* > IntPhyloNodeMap;
/*
#define MappedMat(NSTATES) Map<Matrix<double, NSTATES, NSTATES> >
#define MappedArr2D(NSTATES) Map<Array<double, NSTATES, NSTATES> >
#define MappedRowVec(NSTATES) Map<Matrix<double, 1, NSTATES> >
#define MappedVec(NSTATES) Map<Matrix<double, NSTATES, 1> >
#define Matrix(NSTATES) Matrix<double, NSTATES, NSTATES>
#define RowVector(NSTATES) Matrix<double, 1, NSTATES>
#define MappedRowArr2DDyn Map<Array<double, Dynamic, Dynamic, RowMajor> >
#define MappedArrDyn Map<Array<double, Dynamic, 1> >
#define MappedVecDyn(NSTATES) Map<Matrix<double, Dynamic, NSTATES> >
*/
const int MAX_SPR_MOVES = 20;
struct NNIMove {
// Two nodes representing the central branch
PhyloNode *node1, *node2;
// Roots of the two subtree that are swapped
NeighborVec::iterator node1Nei_it, node2Nei_it;
// log-likelihood of the tree after applying the NNI
double newloglh;
int swap_id;
// new branch lengths of 5 branches corresponding to the NNI
DoubleVector newLen[5];
// pattern likelihoods
double *ptnlh;
bool operator<(const NNIMove & rhs) const {
return newloglh > rhs.newloglh;
}
};
/**
an SPR move.
*/
struct SPRMove {
PhyloNode *prune_dad;
PhyloNode *prune_node;
PhyloNode *regraft_dad;
PhyloNode *regraft_node;
double score;
};
struct SPR_compare {
bool operator()(SPRMove s1, SPRMove s2) const {
return s1.score > s2.score;
}
};
class SPRMoves : public set<SPRMove, SPR_compare> {
public:
void add(PhyloNode *prune_node, PhyloNode *prune_dad,
PhyloNode *regraft_node, PhyloNode *regraft_dad, double score);
};
/*
left_node-----------dad-----------right_node
|
|
|inline
node
*/
struct PruningInfo {
NeighborVec::iterator dad_it_left, dad_it_right, left_it, right_it;
Neighbor *dad_nei_left, *dad_nei_right, *left_nei, *right_nei;
Node *node, *dad, *left_node, *right_node;
double left_len, right_len;
double *dad_lh_left, *dad_lh_right;
};
/**
* This Structure is used in PhyloSuperTreePlen.
*/
struct SwapNNIParam {
double nni1_score;
double nni1_brlen;
double nni2_score;
double nni2_brlen;
Neighbor* node1_nei;
Neighbor* node2_nei;
double *nni1_ptnlh;
double *nni2_ptnlh;
};
struct LeafFreq {
int leaf_id;
int freq;
bool operator<(const LeafFreq & rhs) const {
return ( freq < rhs.freq);
}
};
// **********************************************
// BEGIN definitions for likelihood mapping (HAS)
// **********************************************
/* maximum exp difference, such that 1.0+exp(-TP_MAX_EXP_DIFF) == 1.0 */
const double TP_MAX_EXP_DIFF = 40.0;
/* Index definition for counter array needed in likelihood mapping analysis (HAS) */
#define LM_REG1 0
#define LM_REG2 1
#define LM_REG3 2
#define LM_REG4 3
#define LM_REG5 4
#define LM_REG6 5
#define LM_REG7 6
#define LM_AR1 7
#define LM_AR2 8
#define LM_AR3 9
#define LM_MAX 10
struct QuartetGroups{
int numGroups; // number of clusters:
// 0: not initialized, default -> 1
// 1: no clusters - any (a,b)|(c,d)
// 2: 2 clusters - (a,a')|(b,b')
// 3: 3 clusters - (a,a')|(b,c) [rare]
// 4: 4 clusters - (a,b)|(c,d)
int numSeqs; // number of seqs in alignment (should be #A+#B+#C+#D+#X)
int numQuartSeqs; // number of seqs in analysis (should be #A+#B+#C+#D)
int numGrpSeqs[5]; // number of seqs in cluster A, B, C, D, and X (exclude)
int64_t uniqueQuarts; // number of existing unique quartets for this grouping
string Name[5]; // seqIDs of cluster A
vector<int> GroupA; // seqIDs of cluster A
vector<int> GroupB; // seqIDs of cluster B
vector<int> GroupC; // seqIDs of cluster C
vector<int> GroupD; // seqIDs of cluster D
vector<int> GroupX; // seqIDs of cluster X
};
struct QuartetInfo {
int seqID[4];
double logl[3]; // log-lh for {0,1}|{2,3} {0,2}|{1,3} {0,3}|{1,4}
double qweight[3]; // weight for {0,1}|{2,3} {0,2}|{1,3} {0,3}|{1,4}
int corner; // for the 3 corners of the simplex triangle (0:top, 1:right, 2:left)
int area; // for the 7 areas of the simplex triangle
// corners (0:top, 1:right, 2:left), rectangles (3:right, 4:left, 5:bottom), 6:center
};
struct SeqQuartetInfo {
int64_t countarr[LM_MAX]; // the 7 areas of the simplex triangle [0-6; corners (0:top, 1:right, 2:left), rectangles (3:right, 4:left, 5:bottom), 6:center] and the 3 corners [7-9; 7:top, 8:right, 9:left]
};
// ********************************************
// END definitions for likelihood mapping (HAS)
// ********************************************
// ********************************************
// BEGIN traversal information
// ********************************************
class TraversalInfo {
public:
PhyloNeighbor *dad_branch;
PhyloNode *dad;
double *echildren;
double *partial_lh_leaves;
TraversalInfo(PhyloNeighbor *dad_branch, PhyloNode *dad) {
this->dad = dad;
this->dad_branch = dad_branch;
}
};
// ********************************************
// END traversal information
// ********************************************
/**
Phylogenetic Tree class
@author BUI Quang Minh, Steffen Klaere, Arndt von Haeseler <minh.bui@univie.ac.at>
*/
class PhyloTree : public MTree, public Optimization, public CheckpointFactory {
friend class PhyloSuperTree;
friend class PhyloSuperTreePlen;
friend class RateGamma;
friend class RateGammaInvar;
friend class RateKategory;
friend class ModelMixture;
friend class RateFree;
friend class RateHeterotachy;
friend class PhyloTreeMixlen;
friend class ModelFactoryMixlen;
friend class MemSlotVector;
friend class ModelFactory;
public:
/**
default constructor ( everything is initialized to NULL)
*/
PhyloTree();
// EIGEN_MAKE_ALIGNED_OPERATOR_NEW
/**
* Constructor with given alignment
* @param alignment
*/
PhyloTree(Alignment *aln);
/**
* Create a phylotree from the tree string and assign alignment.
* Taxa IDs are numbered according to their orders in the alignment.
*/
PhyloTree(string& treeString, Alignment *aln, bool isRooted);
void init();
/**
destructor
*/
virtual ~PhyloTree();
/**
start structure for checkpointing
*/
virtual void startCheckpoint();
/**
save object into the checkpoint
*/
virtual void saveCheckpoint();
/**
restore object from the checkpoint
*/
virtual void restoreCheckpoint();
/**
read the tree from the input file in newick format
@param infile the input file file.
@param is_rooted (IN/OUT) true if tree is rooted
*/
virtual void readTree(const char *infile, bool &is_rooted);
/**
read the tree from the ifstream in newick format
@param in the input stream.
@param is_rooted (IN/OUT) true if tree is rooted
*/
virtual void readTree(istream &in, bool &is_rooted);
/**
copy the phylogenetic tree structure into this tree, override to take sequence names
in the alignment into account
@param tree the tree to copy
*/
virtual void copyTree(MTree *tree);
/**
copy the sub-tree structure into this tree
@param tree the tree to copy
@param taxa_set 0-1 string of length leafNum (1 to keep the leaf)
*/
virtual void copyTree(MTree *tree, string &taxa_set);
/**
copy the phylogenetic tree structure into this tree, designed specifically for PhyloTree.
So there is some distinction with copyTree.
@param tree the tree to copy
*/
void copyPhyloTree(PhyloTree *tree);
/**
copy the phylogenetic tree structure into this tree, designed specifically for PhyloTree.
So there is some distinction with copyTree.
@param tree the tree to copy
@param mix mixture ID of branch lengths
*/
virtual void copyPhyloTreeMixlen(PhyloTree *tree, int mix);
/**
Set the alignment, important to compute parsimony or likelihood score
Assing taxa ids according to their position in the alignment
@param alignment associated alignment
*/
virtual void setAlignment(Alignment *alignment);
/** set the root by name
@param my_root root node name
@param multi_taxa TRUE if my_root is a comma-separated list of nodes
*/
void setRootNode(const char *my_root, bool multi_taxa = false);
/**
set the substitution model, important to compute the likelihood
@param amodel associated substitution model
*/
void setModel(ModelSubst *amodel);
/**
set the model factory
@param model_fac model factory
*/
virtual void setModelFactory(ModelFactory *model_fac);
/**
set rate heterogeneity, important to compute the likelihood
@param rate associated rate heterogeneity class
*/
void setRate(RateHeterogeneity *rate);
/**
get rate heterogeneity
@return associated rate heterogeneity class
*/
RateHeterogeneity *getRate();
void discardSaturatedSite(bool val);
/**
get the name of the model
*/
virtual string getModelName();
/**
* @return model name with parameters in form of e.g. GTR{a,b,c,d,e,f}+I{pinvar}+G{alpha}
*/
virtual string getModelNameParams();
ModelSubst *getModel() {
return model;
}
ModelFactory *getModelFactory() {
return model_factory;
}
virtual bool isSuperTree() {
return false;
}
/**
@return true if this is a tree with mixture branch lengths, default: false
*/
virtual bool isMixlen() { return false; }
/**
@return number of mixture branch lengths, default: 1
*/
virtual int getMixlen() { return 1; }
/**
allocate a new node. Override this if you have an inherited Node class.
@param node_id node ID
@param node_name node name
@return a new node
*/
virtual Node* newNode(int node_id = -1, const char* node_name = NULL);
/**
allocate a new node. Override this if you have an inherited Node class.
@param node_id node ID
@param node_name node name issued by an interger
@return a new node
*/
virtual Node* newNode(int node_id, int node_name);
/**
* @return number of alignment patterns
*/
virtual int getAlnNPattern() {
return aln->getNPattern();
}
/**
* @return number of alignment sites
*/
virtual int getAlnNSite() {
return aln->getNSite();
}
/**
* save branch lengths into a vector
*/
virtual void saveBranchLengths(DoubleVector &lenvec, int startid = 0, PhyloNode *node = NULL, PhyloNode *dad = NULL);
/**
* restore branch lengths from a vector previously called with saveBranchLengths
*/
virtual void restoreBranchLengths(DoubleVector &lenvec, int startid = 0, PhyloNode *node = NULL, PhyloNode *dad = NULL);
/****************************************************************************
Dot product
****************************************************************************/
template <class Numeric, class VectorClass>
Numeric dotProductSIMD(Numeric *x, Numeric *y, int size);
typedef BootValType (PhyloTree::*DotProductType)(BootValType *x, BootValType *y, int size);
DotProductType dotProduct;
typedef double (PhyloTree::*DotProductDoubleType)(double *x, double *y, int size);
DotProductDoubleType dotProductDouble;
double dotProductDoubleCall(double *x, double *y, int size);
#if defined(BINARY32) || defined(__NOAVX__)
void setDotProductAVX() {}
void setDotProductFMA() {}
#else
void setDotProductAVX();
void setDotProductFMA();
void setDotProductAVX512();
#endif
void setDotProductSSE();
/**
this function return the parsimony or likelihood score of the tree. Default is
to compute the parsimony score. Override this function if you define a new
score function.
@return the tree score
*/
//virtual double computeScore() { return -computeLikelihood(); }
//virtual double computeScore() { return (double)computeParsimonyScore(); }
/****************************************************************************
Parsimony function
****************************************************************************/
/**
* Return the approximated branch length estimation using corrected parsimony branch length
* This is usually used as the starting point before using Newton-Raphson
*/
// double computeCorrectedParsimonyBranch(PhyloNeighbor *dad_branch, PhyloNode *dad);
/**
initialize partial_pars vector of all PhyloNeighbors, allocating central_partial_pars
*/
virtual void initializeAllPartialPars();
/**
initialize partial_pars vector of all PhyloNeighbors, allocating central_partial_pars
@param node the current node
@param dad dad of the node, used to direct the search
@param index the index
*/
virtual void initializeAllPartialPars(int &index, PhyloNode *node = NULL, PhyloNode *dad = NULL);
/**
compute the tree parsimony score
@return parsimony score of the tree
*/
int computeParsimony();
typedef void (PhyloTree::*ComputePartialParsimonyType)(PhyloNeighbor *, PhyloNode *);
ComputePartialParsimonyType computePartialParsimonyPointer;
/**
Compute partial parsimony score of the subtree rooted at dad
@param dad_branch the branch leading to the subtree
@param dad its dad, used to direct the tranversal
*/
virtual void computePartialParsimony(PhyloNeighbor *dad_branch, PhyloNode *dad);
// void computePartialParsimonyNaive(PhyloNeighbor *dad_branch, PhyloNode *dad);
void computePartialParsimonyFast(PhyloNeighbor *dad_branch, PhyloNode *dad);
template<class VectorClass>
void computePartialParsimonyFastSIMD(PhyloNeighbor *dad_branch, PhyloNode *dad);
void computeReversePartialParsimony(PhyloNode *node, PhyloNode *dad);
typedef int (PhyloTree::*ComputeParsimonyBranchType)(PhyloNeighbor *, PhyloNode *, int *);
ComputeParsimonyBranchType computeParsimonyBranchPointer;
/**
compute tree parsimony score on a branch
@param dad_branch the branch leading to the subtree
@param dad its dad, used to direct the tranversal
@param branch_subst (OUT) if not NULL, the number of substitutions on this branch
@return parsimony score of the tree
*/
virtual int computeParsimonyBranch(PhyloNeighbor *dad_branch, PhyloNode *dad, int *branch_subst = NULL);
// int computeParsimonyBranchNaive(PhyloNeighbor *dad_branch, PhyloNode *dad, int *branch_subst = NULL);
int computeParsimonyBranchFast(PhyloNeighbor *dad_branch, PhyloNode *dad, int *branch_subst = NULL);
template<class VectorClass>
int computeParsimonyBranchFastSIMD(PhyloNeighbor *dad_branch, PhyloNode *dad, int *branch_subst = NULL);
// void printParsimonyStates(PhyloNeighbor *dad_branch = NULL, PhyloNode *dad = NULL);
virtual void setParsimonyKernel(LikelihoodKernel lk);
#if defined(BINARY32) || defined(__NOAVX__)
virtual void setParsimonyKernelAVX() {}
#else
virtual void setParsimonyKernelAVX();
#endif
virtual void setParsimonyKernelSSE();
/****************************************************************************
likelihood function
****************************************************************************/
size_t getBufferPartialLhSize();
/**
initialize partial_lh vector of all PhyloNeighbors, allocating central_partial_lh
*/
virtual void initializeAllPartialLh();
/**
de-allocate central_partial_lh
*/
virtual void deleteAllPartialLh();
/**
initialize partial_lh vector of all PhyloNeighbors, allocating central_partial_lh
@param node the current node
@param dad dad of the node, used to direct the search
@param index the index
*/
virtual void initializeAllPartialLh(int &index, int &indexlh, PhyloNode *node = NULL, PhyloNode *dad = NULL);
/**
clear all partial likelihood for a clean computation again
@param make_null true to make all partial_lh become NULL
*/
virtual void clearAllPartialLH(bool make_null = false);
/**
* compute all partial likelihoods if not computed before
*/
void computeAllPartialLh(PhyloNode *node = NULL, PhyloNode *dad = NULL);
/**
* compute all partial parsimony vector if not computed before
*/
void computeAllPartialPars(PhyloNode *node = NULL, PhyloNode *dad = NULL);
/**
allocate memory for a partial likelihood vector
*/
double *newPartialLh();
/** get the number of bytes occupied by partial_lh */
size_t getPartialLhBytes();
size_t getPartialLhSize();
/**
allocate memory for a scale num vector
*/
UBYTE *newScaleNum();
/** get the number of bytes occupied by scale_num */
size_t getScaleNumBytes();
size_t getScaleNumSize();
/**
* this stores partial_lh for each state at the leaves of the tree because they are the same between leaves
* e.g. (1,0,0,0) for A, (0,0,0,1) for T
*/
double *tip_partial_lh;
bool tip_partial_lh_computed;
bool ptn_freq_computed;
/** vector size used by SIMD kernel */
size_t vector_size;
/** true if using safe numeric for likelihood kernel */
bool safe_numeric;
/** number of threads used for likelihood kernel */
int num_threads;
/****************************************************************************
helper functions for computing tree traversal
****************************************************************************/
/**
compute traversal_info of a subtree
*/
bool computeTraversalInfo(PhyloNeighbor *dad_branch, PhyloNode *dad, double* &buffer);
/**
compute traversal_info of both subtrees
*/
template<class VectorClass, const int nstates>
void computeTraversalInfo(PhyloNode *node, PhyloNode *dad, bool compute_partial_lh);
template<class VectorClass>
void computeTraversalInfo(PhyloNode *node, PhyloNode *dad, bool compute_partial_lh);
/**
precompute info for models
*/
template<class VectorClass, const int nstates>
void computePartialInfo(TraversalInfo &info, VectorClass* buffer);
template<class VectorClass>
void computePartialInfo(TraversalInfo &info, VectorClass* buffer);
/**
sort neighbor in descending order of subtree size (number of leaves within subree)
@param node the starting node, NULL to start from the root
@param dad dad of the node, used to direct the search
*/
void sortNeighborBySubtreeSize(PhyloNode *node, PhyloNode *dad);
/****************************************************************************
computing partial (conditional) likelihood of subtrees
****************************************************************************/
/** transform _pattern_lh_cat from "interleaved" to "sequential", due to vector_size > 1 */
void transformPatternLhCat();
// Compute the partial likelihoods LH (OUT) at the leaves for an observed PoMo
// STATE (IN). Use binomial sampling unless hyper is true, then use
// hypergeometric sampling.
void computeTipPartialLikelihoodPoMo(int state, double *lh, bool hyper=false);
void computeTipPartialLikelihood();
void computePtnInvar();
void computePtnFreq();
/**
compute the partial likelihood at a subtree
@param dad_branch the branch leading to the subtree
@param dad its dad, used to direct the tranversal
*/
virtual void computePartialLikelihood(TraversalInfo &info, size_t ptn_lower, size_t ptn_upper, int thread_id);
typedef void (PhyloTree::*ComputePartialLikelihoodType)(TraversalInfo &info, size_t ptn_lower, size_t ptn_upper, int thread_id);
ComputePartialLikelihoodType computePartialLikelihoodPointer;
//template <const int nstates>
// void computePartialLikelihoodEigen(PhyloNeighbor *dad_branch, PhyloNode *dad = NULL);
// void computeSitemodelPartialLikelihoodEigen(PhyloNeighbor *dad_branch, PhyloNode *dad = NULL);
// template <class VectorClass, const int VCSIZE, const int nstates>
// void computePartialLikelihoodEigenSIMD(PhyloNeighbor *dad_branch, PhyloNode *dad = NULL);
void computeNonrevPartialLikelihood(TraversalInfo &info, size_t ptn_lower, size_t ptn_upper, int thread_id);
template <class VectorClass, const bool FMA = false>
void computeNonrevPartialLikelihoodGenericSIMD(TraversalInfo &info, size_t ptn_lower, size_t ptn_upper, int thread_id);
template <class VectorClass, const int nstates, const bool FMA = false>
void computeNonrevPartialLikelihoodSIMD(TraversalInfo &info, size_t ptn_lower, size_t ptn_upper, int thread_id);
template <class VectorClass, const bool SAFE_NUMERIC, const int nstates, const bool FMA = false, const bool SITE_MODEL = false>
void computePartialLikelihoodSIMD(TraversalInfo &info, size_t ptn_lower, size_t ptn_upper, int thread_id);
template <class VectorClass, const bool SAFE_NUMERIC, const bool FMA = false, const bool SITE_MODEL = false>
void computePartialLikelihoodGenericSIMD(TraversalInfo &info, size_t ptn_lower, size_t ptn_upper, int thread_id);
/*
template <class VectorClass, const int VCSIZE, const int nstates>
void computeMixratePartialLikelihoodEigenSIMD(PhyloNeighbor *dad_branch, PhyloNode *dad = NULL);
template <class VectorClass, const int VCSIZE, const int nstates>
void computeMixturePartialLikelihoodEigenSIMD(PhyloNeighbor *dad_branch, PhyloNode *dad = NULL);
template <class VectorClass, const int VCSIZE, const int nstates>
void computeSitemodelPartialLikelihoodEigenSIMD(PhyloNeighbor *dad_branch, PhyloNode *dad = NULL);
*/
/****************************************************************************
computing likelihood on a branch
****************************************************************************/
/**
compute tree likelihood on a branch. used to optimize branch length
@param dad_branch the branch leading to the subtree
@param dad its dad, used to direct the tranversal
@return tree likelihood
*/
virtual double computeLikelihoodBranch(PhyloNeighbor *dad_branch, PhyloNode *dad);
typedef double (PhyloTree::*ComputeLikelihoodBranchType)(PhyloNeighbor*, PhyloNode*);
ComputeLikelihoodBranchType computeLikelihoodBranchPointer;
/**
* MINH: this implements the fast alternative strategy for reversible model (March 2013)
* where partial likelihoods at nodes store real partial likelihoods times eigenvectors
*/
// template<int NSTATES>
// inline double computeLikelihoodBranchFast(PhyloNeighbor *dad_branch, PhyloNode *dad);
//template <const int nstates>
// double computeLikelihoodBranchEigen(PhyloNeighbor *dad_branch, PhyloNode *dad);
// double computeSitemodelLikelihoodBranchEigen(PhyloNeighbor *dad_branch, PhyloNode *dad);
// template <class VectorClass, const int VCSIZE, const int nstates>
// double computeLikelihoodBranchEigenSIMD(PhyloNeighbor *dad_branch, PhyloNode *dad);
double computeNonrevLikelihoodBranch(PhyloNeighbor *dad_branch, PhyloNode *dad);
template<class VectorClass, const bool FMA = false>
double computeNonrevLikelihoodBranchGenericSIMD(PhyloNeighbor *dad_branch, PhyloNode *dad);
template<class VectorClass, const int nstates, const bool FMA = false>
double computeNonrevLikelihoodBranchSIMD(PhyloNeighbor *dad_branch, PhyloNode *dad);
template <class VectorClass, const bool SAFE_NUMERIC, const int nstates, const bool FMA = false, const bool SITE_MODEL = false>
double computeLikelihoodBranchSIMD(PhyloNeighbor *dad_branch, PhyloNode *dad);
template <class VectorClass, const bool SAFE_NUMERIC, const bool FMA = false, const bool SITE_MODEL = false>
double computeLikelihoodBranchGenericSIMD(PhyloNeighbor *dad_branch, PhyloNode *dad);
/*
template <class VectorClass, const int VCSIZE, const int nstates>
double computeMixrateLikelihoodBranchEigenSIMD(PhyloNeighbor *dad_branch, PhyloNode *dad);
template <class VectorClass, const int VCSIZE, const int nstates>
double computeMixtureLikelihoodBranchEigenSIMD(PhyloNeighbor *dad_branch, PhyloNode *dad);
template <class VectorClass, const int VCSIZE, const int nstates>
double computeSitemodelLikelihoodBranchEigenSIMD(PhyloNeighbor *dad_branch, PhyloNode *dad);
*/
/****************************************************************************
computing likelihood on a branch using buffer
****************************************************************************/
/**
quickly compute tree likelihood on branch current_it <-> current_it_back given buffer (theta_all).
Used after optimizing branch length
@param pattern_lh (OUT) if not NULL, the function will assign pattern log-likelihoods to this vector
assuming pattern_lh has the size of the number of patterns
@return tree likelihood
*/
virtual double computeLikelihoodFromBuffer();
typedef double (PhyloTree::*ComputeLikelihoodFromBufferType)();
ComputeLikelihoodFromBufferType computeLikelihoodFromBufferPointer;
// template <class VectorClass, const int VCSIZE, const int nstates>
// double computeLikelihoodFromBufferEigenSIMD();
template <class VectorClass, const int nstates, const bool FMA = false, const bool SITE_MODEL = false>
double computeLikelihoodFromBufferSIMD();
template <class VectorClass, const bool FMA = false, const bool SITE_MODEL = false>
double computeLikelihoodFromBufferGenericSIMD();
/*
template <class VectorClass, const int VCSIZE, const int nstates>
double computeMixrateLikelihoodFromBufferEigenSIMD();
template <class VectorClass, const int VCSIZE, const int nstates>
double computeMixtureLikelihoodFromBufferEigenSIMD();
template <class VectorClass, const int VCSIZE, const int nstates>
double computeSitemodelLikelihoodFromBufferEigenSIMD();
double computeSitemodelLikelihoodFromBufferEigen();
*/
/**
compute tree likelihood when a branch length collapses to zero
@param dad_branch the branch leading to the subtree
@param dad its dad, used to direct the tranversal
@return tree likelihood
*/
virtual double computeLikelihoodZeroBranch(PhyloNeighbor *dad_branch, PhyloNode *dad);
/**
compute likelihood of rooted tree with virtual root (FOR TINA)
@param dad_branch the branch leading to the subtree
@param dad its dad, used to direct the tranversal
@return tree likelihood
*/
// virtual double computeLikelihoodRooted(PhyloNeighbor *dad_branch, PhyloNode *dad);
/**
compute the tree likelihood
@param pattern_lh (OUT) if not NULL, the function will assign pattern log-likelihoods to this vector
assuming pattern_lh has the size of the number of patterns
@return tree likelihood
*/
virtual double computeLikelihood(double *pattern_lh = NULL);
/**
* @return number of elements per site lhl entry, used in conjunction with computePatternLhCat
*/
virtual int getNumLhCat(SiteLoglType wsl);
/**
* compute _pattern_lh_cat for site-likelihood per category
* @return tree log-likelihood
*/
virtual double computePatternLhCat(SiteLoglType wsl);
/**
compute state frequency for each pattern (for Huaichun)
@param[out] ptn_state_freq state frequency vector per pattern,
should be pre-allocated with size of num_patterns * num_states
*/
void computePatternStateFreq(double *ptn_state_freq);
/****************************************************************************
ancestral sequence reconstruction
****************************************************************************/
/**
initialize computing ancestral sequence probability for an internal node by marginal reconstruction
*/
virtual void initMarginalAncestralState(ostream &out, bool &orig_kernel_nonrev, double* &ptn_ancestral_prob, int* &ptn_ancestral_seq);
/**
compute ancestral sequence probability for an internal node by marginal reconstruction
(Yang, Kumar and Nei 1995)
@param dad_branch branch leading to an internal node where to obtain ancestral sequence
@param dad dad of the target internal node
@param[out] ptn_ancestral_prob pattern ancestral probability vector of dad_branch->node
*/
virtual void computeMarginalAncestralState(PhyloNeighbor *dad_branch, PhyloNode *dad,
double *ptn_ancestral_prob, int *ptn_ancestral_seq);
virtual void writeMarginalAncestralState(ostream &out, PhyloNode *node, double *ptn_ancestral_prob, int *ptn_ancestral_seq);
/**
end computing ancestral sequence probability for an internal node by marginal reconstruction
*/
virtual void endMarginalAncestralState(bool orig_kernel_nonrev, double* &ptn_ancestral_prob, int* &ptn_ancestral_seq);
/**
compute the joint ancestral states at a pattern (Pupko et al. 2000)
*/
void computeJointAncestralSequences(int *ancestral_seqs);
/**
* compute max ancestral likelihood according to
* step 1-3 of the dynamic programming algorithm of Pupko et al. 2000, MBE 17:890-896
* @param dad_branch branch leading to an internal node where to obtain ancestral sequence
* @param dad dad of the target internal node
* @param[out] C array storing all information about max ancestral states
*/
void computeAncestralLikelihood(PhyloNeighbor *dad_branch, PhyloNode *dad, int *C);
/**
* compute max ancestral states according to
* step 4-5 of the dynamic programming algorithm of Pupko et al. 2000, MBE 17:890-896
* @param dad_branch branch leading to an internal node where to obtain ancestral sequence
* @param dad dad of the target internal node
* @param C array storing all information about max ancestral states
* @param[out] ancestral_seqs array of size nptn*nnode for ancestral sequences at all internal nodes
*/
void computeAncestralState(PhyloNeighbor *dad_branch, PhyloNode *dad, int *C, int *ancestral_seqs);
/**
compute pattern likelihoods only if the accumulated scaling factor is non-zero.
Otherwise, copy the pattern_lh attribute
@param pattern_lh (OUT) pattern log-likelihoods,
assuming pattern_lh has the size of the number of patterns
@param cur_logl current log-likelihood (for sanity check)
@param pattern_lh_cat (OUT) if not NULL, store all pattern-likelihood per category
*/
virtual void computePatternLikelihood(double *pattern_lh, double *cur_logl = NULL,
double *pattern_lh_cat = NULL, SiteLoglType wsl = WSL_RATECAT);
/**
compute pattern posterior probabilities per rate/mixture category
@param pattern_prob_cat (OUT) all pattern-probabilities per category
@param wsl either WSL_RATECAT, WSL_MIXTURE or WSL_MIXTURE_RATECAT
*/
virtual void computePatternProbabilityCategory(double *pattern_prob_cat, SiteLoglType wsl);
vector<uint64_t> ptn_cat_mask;
/**
compute categories for each pattern, update ptn_cat_mask
@return max number of categories necessary
*/
virtual int computePatternCategories(IntVector *pattern_ncat = NULL);
/**
Compute the variance in tree log-likelihood
(Kishino & Hasegawa 1989, JME 29:170-179)
@param pattern_lh pattern log-likelihoods, will be computed if NULL
@param tree_lh tree log-likelihood, will be computed if ZERO
*/
double computeLogLVariance(double *pattern_lh = NULL, double tree_lh = 0.0);
/**
Compute the variance in log-likelihood difference
between the current tree and another tree.
(Kishino & Hasegawa 1989, JME 29:170-179)
@param pattern_lh_other pattern log-likelihoods of the other tree
@param pattern_lh pattern log-likelihoods of current tree, will be computed if NULL
*/
double computeLogLDiffVariance(double *pattern_lh_other, double *pattern_lh = NULL);
/**
* \brief Estimate the observed branch length between \a dad_branch and \a dad analytically.
* The ancestral states of the 2 nodes are first computed (Yang, 2006).
* Branch length are then computed using analytical formula.
* @param[in] dad_branch must be an internal node
* @param[in] dad must be an internal node
* @return estimated branch length or -1.0 if one of the 2 nodes is leaf
*/
double computeBayesianBranchLength(PhyloNeighbor *dad_branch, PhyloNode *dad);
/**
* \brief Approximate the branch legnth between \a dad_branch and \a dad using Least Square instead
* of Newton Raphson
* @param[in] dad_branch
* @param[in] dad
* @return approximated branch length
*/
double computeLeastSquareBranLen(PhyloNeighbor *dad_branch, PhyloNode *dad);
/**
* Update all subtree distances that are affect by doing an NNI on branch (node1-node2)
* @param nni NNI move that is carried out
*/
void updateSubtreeDists(NNIMove &nni);
/**
* Compute all pairwise distance of subtree rooted at \a source and other subtrees
*/
void computeSubtreeDists();
void getUnmarkedNodes(PhyloNodeVector& unmarkedNodes, PhyloNode* node = NULL, PhyloNode* dad = NULL);
void computeAllSubtreeDistForOneNode(PhyloNode* source, PhyloNode* nei1, PhyloNode* nei2, PhyloNode* node, PhyloNode* dad);
double correctBranchLengthF81(double observedBran, double alpha = -1.0);
double computeCorrectedBayesianBranchLength(PhyloNeighbor *dad_branch, PhyloNode *dad);
/**
Compute the variance in log-likelihood difference
between the current tree and another tree.
(Kishino & Hasegawa 1989, JME 29:170-179)
@param other_tree the other tree to compare
@param pattern_lh pattern log-likelihoods of current tree, will be computed if NULL
*/
double computeLogLDiffVariance(PhyloTree *other_tree, double *pattern_lh = NULL);
/**
Roll back the tree saved with only Taxon IDs and branch lengths.
For this function to work, one must printTree before with WT_TAXON_ID + WT_BR_LEN
@param best_tree_string input stream to read from
*/
void rollBack(istream &best_tree_string);
/**
refactored 2015-12-22: Taxon IDs instead of Taxon names to save space!
Read the tree saved with Taxon IDs and branch lengths.
@param tree_string tree string to read from
@param updatePLL if true, tree is read into PLL
*/
virtual void readTreeString(const string &tree_string);
/**
Read the tree saved with Taxon names and branch lengths.
@param tree_string tree string to read from
@param updatePLL if true, tree is read into PLL
*/
virtual void readTreeStringSeqName(const string &tree_string);
/**
Read the tree saved with Taxon Names and branch lengths.
@param tree_string tree string to read from
*/
void readTreeFile(const string &file_name);
/*
refactored 2015-12-22: Taxon IDs instead of Taxon names to save space!
* Return the tree string contining taxon IDs and branch lengths
* @return
* @param format (WT_TAXON_ID, WT_BR_LEN, ...)
* @return the tree string with the specified format
*/
virtual string getTreeString();
/**
* Assign branch lengths for branch that has no or negative length
* With single model branch lengths are assigned using parsimony. With partition model
* branch lengths are assigned randomly
* @param force_change if true then force fixing also positive branch lengths
* @return number of branches fixed
*/
int wrapperFixNegativeBranch(bool force_change);
/**
* Read the newick string into PLL kernel
* @param newickTree
*/
void pllReadNewick(string newickTree);
/**
* Return the sorted topology without branch length, used to compare tree topology
* @param
* printBranchLength true/false
*/
string getTopologyString(bool printBranchLength);
bool checkEqualScalingFactor(double &sum_scaling, PhyloNode *node = NULL, PhyloNode *dad = NULL);
/****************************************************************************
computing derivatives of likelihood function
****************************************************************************/
//template <const int nstates>
// void computeLikelihoodDervEigen(PhyloNeighbor *dad_branch, PhyloNode *dad, double &df, double &ddf);
// void computeSitemodelLikelihoodDervEigen(PhyloNeighbor *dad_branch, PhyloNode *dad, double &df, double &ddf);
// template <class VectorClass, const int VCSIZE, const int nstates>
// void computeLikelihoodDervEigenSIMD(PhyloNeighbor *dad_branch, PhyloNode *dad, double &df, double &ddf);
void computeNonrevLikelihoodDerv(PhyloNeighbor *dad_branch, PhyloNode *dad, double *df, double *ddf);
template<class VectorClass, const bool FMA = false>
void computeNonrevLikelihoodDervGenericSIMD(PhyloNeighbor *dad_branch, PhyloNode *dad, double *df, double *ddf);
template<class VectorClass, const int nstates, const bool FMA = false>
void computeNonrevLikelihoodDervSIMD(PhyloNeighbor *dad_branch, PhyloNode *dad, double *df, double *ddf);
template <class VectorClass, const bool SAFE_NUMERIC, const int nstates, const bool FMA = false, const bool SITE_MODEL = false>
void computeLikelihoodBufferSIMD(PhyloNeighbor *dad_branch, PhyloNode *dad, size_t ptn_lower, size_t ptn_upper, int thread_id);
template <class VectorClass, const bool SAFE_NUMERIC, const bool FMA = false, const bool SITE_MODEL = false>
void computeLikelihoodBufferGenericSIMD(PhyloNeighbor *dad_branch, PhyloNode *dad, size_t ptn_lower, size_t ptn_upper, int thread_id);
template <class VectorClass, const bool SAFE_NUMERIC, const int nstates, const bool FMA = false, const bool SITE_MODEL = false>
void computeLikelihoodDervSIMD(PhyloNeighbor *dad_branch, PhyloNode *dad, double *df, double *ddf);
template <class VectorClass, const bool SAFE_NUMERIC, const bool FMA = false, const bool SITE_MODEL = false>
void computeLikelihoodDervGenericSIMD(PhyloNeighbor *dad_branch, PhyloNode *dad, double *df, double *ddf);
/** For Mixlen stuffs */
virtual int getCurMixture() { return 0; }
template <class VectorClass, const bool SAFE_NUMERIC, const int nstates, const bool FMA = false, const bool SITE_MODEL = false>
void computeLikelihoodDervMixlenSIMD(PhyloNeighbor *dad_branch, PhyloNode *dad, double &df, double &ddf);
template <class VectorClass, const bool SAFE_NUMERIC, const bool FMA = false, const bool SITE_MODEL = false>
void computeLikelihoodDervMixlenGenericSIMD(PhyloNeighbor *dad_branch, PhyloNode *dad, double &df, double &ddf);
/*
template <class VectorClass, const int VCSIZE, const int nstates>
void computeMixrateLikelihoodDervEigenSIMD(PhyloNeighbor *dad_branch, PhyloNode *dad, double &df, double &ddf);
template <class VectorClass, const int VCSIZE, const int nstates>
void computeMixtureLikelihoodDervEigenSIMD(PhyloNeighbor *dad_branch, PhyloNode *dad, double &df, double &ddf);
template <class VectorClass, const int VCSIZE, const int nstates>
void computeSitemodelLikelihoodDervEigenSIMD(PhyloNeighbor *dad_branch, PhyloNode *dad, double &df, double &ddf);
*/
/**
compute tree likelihood and derivatives on a branch. used to optimize branch length
@param dad_branch the branch leading to the subtree
@param dad its dad, used to direct the tranversal
@param df (OUT) first derivative
@param ddf (OUT) second derivative
@return tree likelihood
*/
void computeLikelihoodDerv(PhyloNeighbor *dad_branch, PhyloNode *dad, double *df, double *ddf);
typedef void (PhyloTree::*ComputeLikelihoodDervType)(PhyloNeighbor *, PhyloNode *, double *, double *);
ComputeLikelihoodDervType computeLikelihoodDervPointer;
typedef void (PhyloTree::*ComputeLikelihoodDervMixlenType)(PhyloNeighbor *, PhyloNode *, double &, double &);
ComputeLikelihoodDervMixlenType computeLikelihoodDervMixlenPointer;
/****************************************************************************
Stepwise addition (greedy) by maximum parsimony
****************************************************************************/
/** constraint tree used to guide tree search */
ConstraintTree constraintTree;
/**
FAST VERSION: used internally by computeParsimonyTree() to find the best target branch to add into the tree
@param added_node node to add
@param target_node (OUT) one end of the best branch found
@param target_dad (OUT) the other end of the best branch found
@param target_partial_pars (OUT) copy of the partial_pars corresponding to best branch
@param node the current node
@param dad dad of the node, used to direct the search
@return the parsimony score of the tree
*/
int addTaxonMPFast(Node *added_taxon, Node *added_node, Node *node, Node *dad);
/**
* FAST VERSION: compute parsimony tree by step-wise addition
* @param out_prefix prefix for .parstree file
* @param alignment input alignment
* @return parsimony score
*/
int computeParsimonyTree(const char *out_prefix, Alignment *alignment);
/****************************************************************************
Branch length optimization by maximum likelihood
****************************************************************************/
/**
@param brlen_type either BRLEN_OPTIMIZE, BRLEN_FIX or BRLEN_SCALE
@return the number of free branch parameters
*/
int getNBranchParameters(int brlen_type);
/**
* IMPORTANT: semantic change: this function does not return score anymore, for efficiency purpose
optimize one branch length by ML
@param node1 1st end node of the branch
@param node2 2nd end node of the branch
@param clearLH true to clear the partial likelihood, otherwise false
@param maxNRStep maximum number of Newton-Raphson steps
@return likelihood score
*/
virtual void optimizeOneBranch(PhyloNode *node1, PhyloNode *node2, bool clearLH = true, int maxNRStep = 100);
/**
optimize all branch lengths of the children of node
@param node the current node
@param dad dad of the node, used to direct the search
@return the likelihood of the tree
*/
double optimizeChildBranches(PhyloNode *node, PhyloNode *dad = NULL);
/**
optimize all branch lengths at the subtree rooted at node step-by-step.
@param node the current node
@param dad dad of the node, used to direct the search
@return the likelihood of the tree
*/
virtual void optimizeAllBranches(PhyloNode *node, PhyloNode *dad = NULL, int maxNRStep = 100);
/**
* optimize all branch lengths at the subtree rooted at node step-by-step.
* Using Least Squares instead of Newton Raphson.
* @param node the current node
* @param dad dad of the node, used to direct the search
*/
void optimizeAllBranchesLS(PhyloNode *node = NULL, PhyloNode *dad = NULL);
void computeBestTraversal(NodeVector &nodes, NodeVector &nodes2);
/**
optimize all branch lengths of the tree
@param iterations number of iterations to loop through all branches
@return the likelihood of the tree
*/
virtual double optimizeAllBranches(int my_iterations = 100, double tolerance = TOL_LIKELIHOOD, int maxNRStep = 100);
void moveRoot(Node *node1, Node *node2);
/**
Optimize root position for rooted tree
*/
virtual double optimizeRootPosition(bool write_info, double logl_epsilon);
/**
inherited from Optimization class, to return to likelihood of the tree
when the current branceh length is set to value
@param value current branch length
@return negative of likelihood (for minimization)
*/
virtual double computeFunction(double value);
/**
Inherited from Optimization class.
This function calculate f(value), first derivative f'(value) and 2nd derivative f''(value).
used by Newton raphson method to minimize the function.
@param value current branch length
@param df (OUT) first derivative
@param ddf (OUT) second derivative
@return negative of likelihood (for minimization)
*/
virtual void computeFuncDerv(double value, double &df, double &ddf);
/**
optimize the scaling factor for tree length, given all branch lengths fixed
@param scaling (IN/OUT) start value of scaling factor, and as output the optimal value
@param gradient_epsilon gradient epsilon
@return optimal tree log-likelihood
*/
double optimizeTreeLengthScaling(double min_scaling, double &scaling, double max_scaling, double gradient_epsilon);
/**
print tree length scaling to a file (requested by Rob Lanfear)
@param filename output file name written in YAML format
*/
void printTreeLengthScaling(const char *filename);
/****************************************************************************
Branch length optimization by Least Squares
****************************************************************************/
/**
* Estimate the current branch using least squares
* @param node1 first node of the branch
* @param node2 second node of the branch
* @return
*/
double optimizeOneBranchLS(PhyloNode *node1, PhyloNode *node2);
/****************************************************************************
Auxilary functions and varialbes for speeding up branch length optimization (RAxML Trick)
****************************************************************************/
bool theta_computed;
/**
* NSTATES x NUMCAT x (number of patterns) array
* Used to store precomputed values when optimizing branch length
* See Tung's report on 07.05.2012 for more information
*/
double* theta_all;
/** total scaling buffer */
double *buffer_scale_all;
/** buffer used when computing partial_lh, to avoid repeated mem allocation */
double *buffer_partial_lh;
/**
* frequencies of alignment patterns, used as buffer for likelihood computation
*/
double *ptn_freq;
/**
* used as buffer for faster likelihood computation
* for const pattern: it stores product of p_invar and state frequency
* for other pattern: zero
*/
double *ptn_invar;
vector<TraversalInfo> traversal_info;
/****************************************************************************
Nearest Neighbor Interchange by maximum likelihood
****************************************************************************/
/**
Deprecated
search by a nearest neigbor interchange, then optimize branch lengths. Do it
until tree does not improve
@return the likelihood of the tree
*/
// double optimizeNNIBranches();
/**
search by a nearest neigbor interchange
@return the likelihood of the tree
*/
//double optimizeNNI();
/**
search by a nearest neigbor interchange
@param cur_score current likelihood score
@param node the current node
@param dad dad of the node, used to direct the search
@return the likelihood of the tree
*/
// double optimizeNNI(double cur_score, PhyloNode *node = NULL, PhyloNode *dad = NULL
// /*,ostream *out = NULL, int brtype = 0, ostream *out_lh = NULL, ostream *site_lh = NULL,
// StringIntMap *treels = NULL, vector<double*> *treels_ptnlh = NULL, DoubleVector *treels_logl = NULL,
// int *max_trees = NULL, double *logl_cutoff = NULL*/
// );
/**
search for the best NNI move corresponding to this branch
@return NNIMove the best NNI, this NNI could be worse than the current tree
according to the evaluation scheme in use
@param node1 1 of the 2 nodes on the branch
@param node2 1 of the 2 nodes on the branch
@param nniMoves (IN/OUT) detailed information of the 2 NNIs, set .ptnlh to compute pattern likelihoods
*/
virtual NNIMove getBestNNIForBran(PhyloNode *node1, PhyloNode *node2, NNIMove *nniMoves = NULL);
/**
Do an NNI
@param move reference to an NNI move object containing information about the move
@param clearLH decides whether or not the partial likelihood should be cleared
*/
virtual void doNNI(NNIMove &move, bool clearLH = true);
/**
* [DEPRECATED]
* Randomly choose perform an NNI, out of the two defined by branch node1-node2.
* This function also clear the corresponding partial likelihood vectors
*
* @param branch on which a random NNI is done
*/
// void doOneRandomNNI(Branch branch);
/**
* Get a random NNI from an internal branch, checking for consistency with constraintTree
* @param branch the internal branch
* @return an NNIMove, node1 and node2 are set to NULL if not consistent with constraintTree
*/
NNIMove getRandomNNI(Branch& branch);
/**
* Apply 5 new branch lengths stored in the NNI move
* @param nnimove the NNI move currently in consideration
*/
virtual void changeNNIBrans(NNIMove nnimove);
/****************************************************************************
Stepwise addition (greedy) by maximum likelihood
****************************************************************************/
/**
grow the tree by step-wise addition
@param alignment input alignment
*/
void growTreeML(Alignment *alignment);
/**
used internally by growTreeML() to find the best target branch to add into the tree
@param added_node node to add
@param target_node (OUT) one end of the best branch found
@param target_dad (OUT) the other end of the best branch found
@param node the current node
@param dad dad of the node, used to direct the search
@return the likelihood of the tree
*/
double addTaxonML(Node *added_node, Node* &target_node, Node* &target_dad, Node *node, Node *dad);
/****************************************************************************
Distance function
****************************************************************************/
/**
compute the distance between 2 sequences.
@param seq1 index of sequence 1
@param seq2 index of sequence 2
@param initial_dist initial distance
@param (OUT) variance of distance between seq1 and seq2
@return distance between seq1 and seq2
*/
virtual double computeDist(int seq1, int seq2, double initial_dist, double &var);
virtual double computeDist(int seq1, int seq2, double initial_dist);
/**
compute distance and variance matrix, assume dist_mat and var_mat are allocated by memory of size num_seqs * num_seqs.
@param dist_mat (OUT) distance matrix between all pairs of sequences in the alignment
@param var_mat (OUT) variance matrix for distance matrix
@return the longest distance
*/
double computeDist(double *dist_mat, double *var_mat);
/**
compute observed distance matrix, assume dist_mat is allocated by memory of size num_seqs * num_seqs.
@param dist_mat (OUT) distance matrix between all pairs of sequences in the alignment
@return the longest distance
*/
double computeObsDist(double *dist_mat);
/**
compute distance matrix, allocating memory if necessary
@param params program parameters
@param alignment input alignment
@param dist_mat (OUT) distance matrix between all pairs of sequences in the alignment
@param dist_file (OUT) name of the distance file
@return the longest distance
*/
double computeDist(Params ¶ms, Alignment *alignment, double* &dist_mat, double* &var_mat, string &dist_file);
/**
compute observed distance matrix, allocating memory if necessary
@param params program parameters
@param alignment input alignment
@param dist_mat (OUT) distance matrix between all pairs of sequences in the alignment
@param dist_file (OUT) name of the distance file
@return the longest distance
*/
double computeObsDist(Params ¶ms, Alignment *alignment, double* &dist_mat, string &dist_file);
/**
correct the distances to follow metric property of triangle inequalities.
Using the Floyd alogrithm.
@param dist_mat (IN/OUT) the shortest path between all pairs of taxa
@return the longest distance
*/
double correctDist(double *dist_mat);
/****************************************************************************
compute BioNJ tree, a more accurate extension of Neighbor-Joining
****************************************************************************/
/**
compute BioNJ tree
@param params program parameters
@param alignment input alignment
@param dist_file distance matrix file
*/
void computeBioNJ(Params ¶ms, Alignment *alignment, string &dist_file);
/**
called by fixNegativeBranch to fix one branch
@param branch_length new branch length
@param dad_branch dad branch
@param dad dad node
*/
virtual void fixOneNegativeBranch(double branch_length, Neighbor *dad_branch, Node *dad);
/**
Neighbor-joining/parsimony tree might contain negative branch length. This
function will fix this.
@param fixed_length fixed branch length to set to negative branch lengths
@param node the current node
@param dad dad of the node, used to direct the search
@return The number of branches that have no/negative length
*/
virtual int fixNegativeBranch(bool force = false, Node *node = NULL, Node *dad = NULL);
/**
set negative branch to a new len
*/
int setNegativeBranch(bool force, double newlen, Node *node = NULL, Node *dad = NULL);
// OBSOLETE: assignRandomBranchLengths no longer needed, use fixNegativeBranch instead!
// int assignRandomBranchLengths(bool force = false, Node *node = NULL, Node *dad = NULL);
/* compute Bayesian branch lengths based on ancestral sequence reconstruction */
void computeAllBayesianBranchLengths(Node *node = NULL, Node *dad = NULL);
/**
generate random tree
*/
void generateRandomTree(TreeGenType tree_type);
/**
test the best number of threads
*/
int testNumThreads();
/**
print warning about too many threads for short alignments
*/
void warnNumThreads();
/****************************************************************************
Subtree Pruning and Regrafting by maximum likelihood
NOTE: NOT DONE YET
****************************************************************************/
/**
search by Subtree pruning and regrafting
@return the likelihood of the tree
*/
double optimizeSPR();
/**
search by Subtree pruning and regrafting, then optimize branch lengths. Iterative until
no tree improvement found.
@return the likelihood of the tree
*/
double optimizeSPRBranches();
/**
search by Subtree pruning and regrafting at a current subtree
@param cur_score current likelihood score
@param node the current node
@param dad dad of the node, used to direct the search
@return the likelihood of the tree
*/
double optimizeSPR(double cur_score, PhyloNode *node = NULL, PhyloNode *dad = NULL);
/**
* original implementation by Minh
*/
double optimizeSPR_old(double cur_score, PhyloNode *node = NULL, PhyloNode *dad = NULL);
/**
* original implementation by Minh
*/
double swapSPR_old(double cur_score, int cur_depth, PhyloNode *node1, PhyloNode *dad1,
PhyloNode *orig_node1, PhyloNode *orig_node2,
PhyloNode *node2, PhyloNode *dad2, vector<PhyloNeighbor*> &spr_path);
/**
move the subtree (dad1-node1) to the branch (dad2-node2)
*/
double swapSPR(double cur_score, int cur_depth, PhyloNode *node1, PhyloNode *dad1,
PhyloNode *orig_node1, PhyloNode *orig_node2,
PhyloNode *node2, PhyloNode *dad2, vector<PhyloNeighbor*> &spr_path);
double assessSPRMove(double cur_score, const SPRMove &spr);
void pruneSubtree(PhyloNode *node, PhyloNode *dad, PruningInfo &info);
void regraftSubtree(PruningInfo &info,
PhyloNode *in_node, PhyloNode *in_dad);
/****************************************************************************
Approximate Likelihood Ratio Test with SH-like interpretation
****************************************************************************/
void computeNNIPatternLh(double cur_lh,
double &lh2, double *pattern_lh2,
double &lh3, double *pattern_lh3,
PhyloNode *node1, PhyloNode *node2);
/**
Resampling estimated log-likelihood (RELL)
*/
void resampleLh(double **pat_lh, double *lh_new, int *rstream);
/**
Test one branch of the tree with aLRT SH-like interpretation
*/
double testOneBranch(double best_score, double *pattern_lh,
int reps, int lbp_reps,
PhyloNode *node1, PhyloNode *node2,
double &lbp_support, double &aLRT_support, double &aBayes_support);
/**
Test all branches of the tree with aLRT SH-like interpretation
*/
int testAllBranches(int threshold, double best_score, double *pattern_lh,
int reps, int lbp_reps, bool aLRT_test, bool aBayes_test,
PhyloNode *node = NULL, PhyloNode *dad = NULL);
/****************************************************************************
Quartet functions
****************************************************************************/
QuartetGroups LMGroups;
/**
* for doLikelihoodMapping reportLikelihoodMapping: likelihood mapping information by region
*/
vector<QuartetInfo> lmap_quartet_info;
int areacount[8];
int cornercount[4];
// int areacount[8] = {0, 0, 0, 0, 0, 0, 0, 0};
// int cornercount[4] = {0, 0, 0, 0};
/**
* for doLikelihoodMapping, reportLikelihoodMapping: likelihood mapping information by sequence
*/
vector<SeqQuartetInfo> lmap_seq_quartet_info;
/** generate a bunch of quartets and compute likelihood for 3 quartet trees for each replicate
@param lmap_num_quartets number of quartets
@param lmap_quartet_info (OUT) vector of quartet information
*/
void computeQuartetLikelihoods(vector<QuartetInfo> &lmap_quartet_info, QuartetGroups &LMGroups);
/** main function that performs likelihood mapping analysis (Strimmer & von Haeseler 1997) */
void doLikelihoodMapping();
/** output results of likelihood mapping analysis */
void reportLikelihoodMapping(ofstream &out);
/** read clusters for likelihood mapping analysis */
void readLikelihoodMappingGroups(char *filename, QuartetGroups &LMGroups);
/****************************************************************************
Collapse stable (highly supported) clades by one representative
****************************************************************************/
/**
delete a leaf from the tree, assume tree is birfucating
@param leaf the leaf node to remove
*/
void deleteLeaf(Node *leaf);
/**
reinsert one leaf back into the tree
@param leaf the leaf to reinsert
@param adjacent_node the node adjacent to the leaf, returned by deleteLeaves() function
@param node one end node of the reinsertion branch in the existing tree
@param dad the other node of the reinsertion branch in the existing tree
*/
void reinsertLeaf(Node *leaf, Node *node, Node *dad);
bool isSupportedNode(PhyloNode* node, int min_support);
/**
Collapse stable (highly supported) clades by one representative
@return the number of taxa prunned
*/
int collapseStableClade(int min_support, NodeVector &pruned_taxa, StrVector &linked_name, double* &dist_mat);
int restoreStableClade(Alignment *original_aln, NodeVector &pruned_taxa, StrVector &linked_name);
/**
randomize the neighbor orders of all nodes
*/
void randomizeNeighbors(Node *node = NULL, Node *dad = NULL);
virtual void changeLikelihoodKernel(LikelihoodKernel lk);
virtual void setLikelihoodKernel(LikelihoodKernel lk);
virtual void setNumThreads(int num_threads);
#if defined(BINARY32) || defined(__NOAVX__)
void setLikelihoodKernelAVX() {}
void setLikelihoodKernelFMA() {}
#else
void setLikelihoodKernelAVX();
void setLikelihoodKernelFMA();
void setLikelihoodKernelAVX512();
#endif
virtual void setLikelihoodKernelSSE();
/****************************************************************************
Public variables
****************************************************************************/
/**
associated alignment
*/
Alignment *aln;
/**
* Distance matrix
*/
double *dist_matrix;
/**
* Variance matrix
*/
double *var_matrix;
/** distance matrix file */
string dist_file;
/**
TRUE if you want to optimize branch lengths by Newton-Raphson method
*/
bool optimize_by_newton;
/**
* TRUE if the loglikelihood is computed using SSE
*/
LikelihoodKernel sse;
/**
* for UpperBounds: Initial tree log-likelihood
*/
double mlInitial;
/**
* for UpperBounds: Log-likelihood after optimization of model parameters in the beginning of tree search
*/
double mlFirstOpt;
/**
* for Upper Bounds: how many NNIs have UB < L curScore, that is NNIs for which we don't need to compute likelihood
*/
int skippedNNIub;
/**
* for Upper Bounds: how many NNIs were considered in total
*/
int totalNNIub;
/**
* for Upper Bounds: min, mean and max UB encountered during the tree search, such that UB < L curScore
*/
//double minUB, meanUB, maxUB;
/*
* for UpperBounds: mlCheck = 1, if previous two values were already saved.
* Needed, because parameter optimization is done twice before and after tree search
*/
int mlCheck;
/*
* for Upper Bounds: min base frequency
*/
double minStateFreq;
/** sequence names that were removed */
StrVector removed_seqs;
/** sequence that are identical to one of the removed sequences */
StrVector twin_seqs;
size_t num_partial_lh_computations;
/** remove identical sequences from the tree */
virtual void removeIdenticalSeqs(Params ¶ms);
/** reinsert identical sequences into the tree and reset original alignment */
virtual void reinsertIdenticalSeqs(Alignment *orig_aln);
/**
assign the leaf names with the alignment sequence names, using the leaf ID for assignment.
@param node the starting node, NULL to start from the root
@param dad dad of the node, used to direct the search
*/
void assignLeafNames(Node *node = NULL, Node *dad = NULL);
/**
* initialize partition information for super tree
*/
virtual void initPartitionInfo() {
}
/**
* print transition matrix for all branches
*
*/
void printTransMatrices(Node *node = NULL, Node *dad = NULL);
/**
* compute the memory size required for storing partial likelihood vectors
* @return memory size required in bytes
*/
virtual uint64_t getMemoryRequired(size_t ncategory = 1, bool full_mem = false);
void getMemoryRequired(uint64_t &partial_lh_entries, uint64_t &scale_num_entries, uint64_t &partial_pars_entries);
/****** following variables are for ultra-fast bootstrap *******/
/** 2 to save all trees, 1 to save intermediate trees */
int save_all_trees;
set<int> computeNodeBranchDists(Node *node = NULL, Node *dad = NULL);
/*
* Manuel's approach for analytic approximation of branch length given initial guess
b0: initial guess for the maximum
@return approximted branch length
*/
double approxOneBranch(PhyloNode *node, PhyloNode *dad, double b0);
void approxAllBranches(PhyloNode *node = NULL, PhyloNode *dad = NULL);
double getCurScore() {
return curScore;
}
void setCurScore(double curScore) {
this->curScore = curScore;
}
/**
* This will invalidate curScore variable, used whenever reading a tree!
*/
void resetCurScore(double score = 0.0) {
if (score != 0.0)
curScore = score;
else
curScore = -DBL_MAX;
if (model)
initializeAllPartialLh();
}
void computeSeqIdentityAlongTree(Split &resp, Node *node = NULL, Node *dad = NULL);
void computeSeqIdentityAlongTree();
double *getPatternLhCatPointer() { return _pattern_lh_cat; }
/**
* for rooted tree update direction for all branches
*/
void computeBranchDirection(PhyloNode *node = NULL, PhyloNode *dad = NULL);
/**
convert from unrooted to rooted tree
*/
void convertToRooted();
/**
convert from rooted to unrooted tree
*/
void convertToUnrooted();
/**
write site-rates to a file in the following format:
1 rate_1
2 rate_2
....
This function will call computePatternRates()
@param out output stream to write rates
*/
virtual void writeSiteRates(ostream &out, int partid = -1);
/**
write site log likelihood to a output stream
@param out output stream
@param wsl write site-loglikelihood type
@param partid partition ID as first column of the line. -1 to omit it
*/
virtual void writeSiteLh(ostream &out, SiteLoglType wsl, int partid = -1);
/**
write branches into a csv file
Feature requested by Rob Lanfear
@param out output stream
*/
virtual void writeBranches(ostream &out);
protected:
/**
* Instance of the phylogenetic likelihood library. This is basically the tree data strucutre in RAxML
*/
pllInstance *pllInst;
/**
* PLL data structure for alignment
*/
pllAlignmentData *pllAlignment;
/**
* PLL data structure for storing phylognetic analysis options
*/
pllInstanceAttr pllAttr;
/**
* PLL partition list
*/
partitionList * pllPartitions;
/**
* is the subtree distance matrix need to be computed or updated
*/
bool subTreeDistComputed;
/**
* Map data structure to store distance Candidate trees between subtree.
* The key is a string which is constructed by concatenating IDs of
* the 2 nodes, e.g. 15-16
*/
StringDoubleMap subTreeDists;
StringDoubleMap subTreeWeights;
/** distance (# of branches) between 2 nodes */
int *nodeBranchDists;
/**
* A list containing all the marked list. This is used in the dynamic programming
* algorithm for compute inter subtree distances
*/
IntPhyloNodeMap markedNodeList;
/** converted root state, for Tina's zoombie domain */
char root_state;
/**
internal pattern log-likelihoods, always stored after calling computeLikelihood()
or related functions. Note that scaling factors are not incorporated here.
If you want to get real pattern log-likelihoods, please use computePatternLikelihood()
*/
double *_pattern_lh;
/**
internal pattern likelihoods per category,
*/
double *_pattern_lh_cat;
/**
internal pattern likelihoods per category per state
will be computed if not NULL and using non-reversible kernel
*/
double *_pattern_lh_cat_state;
/**
associated substitution model
*/
ModelSubst *model;
/**
Model factory includes SubstModel and RateHeterogeneity
stores transition matrices computed before for efficiency purpose, eps. AA or CODON model.
*/
ModelFactory *model_factory;
/**
among-site rates
*/
RateHeterogeneity *site_rate;
/**
current branch iterator, used by computeFunction() to optimize branch lengths
and by computePatternLikelihood() to compute all pattern likelihoods
*/
PhyloNeighbor *current_it;
/**
current branch iterator of the other end, used by computeFunction() to optimize branch lengths
and by computePatternLikelihood() to compute all pattern likelihoods
*/
PhyloNeighbor *current_it_back;
bool is_opt_scaling;
/** current scaling factor for optimizeTreeLengthScaling() */
double current_scaling;
/**
spr moves
*/
SPRMoves spr_moves;
/**
SPR radius
*/
int spr_radius;
/**
the main memory storing all partial likelihoods for all neighbors of the tree.
The variable partial_lh in PhyloNeighbor will be assigned to a region inside this variable.
*/
double *central_partial_lh;
double *nni_partial_lh; // used for NNI functions
/**
the main memory storing all scaling event numbers for all neighbors of the tree.
The variable scale_num in PhyloNeighbor will be assigned to a region inside this variable.
*/
UBYTE *central_scale_num;
UBYTE *nni_scale_num; // used for NNI functions
/**
the main memory storing all partial parsimony states for all neighbors of the tree.
The variable partial_pars in PhyloNeighbor will be assigned to a region inside this variable.
*/
UINT *central_partial_pars;
virtual void reorientPartialLh(PhyloNeighbor* dad_branch, Node *dad);
//----------- memory saving technique ------//
/** maximum number of partial_lh_slots */
int64_t max_lh_slots;
/** mapping from */
MemSlotVector mem_slots;
/**
TRUE to discard saturated for Meyer & von Haeseler (2003) model
*/
bool discard_saturated_site;
/**
* Temporary partial likelihood array: used when swapping branch and recalculate the
* likelihood --> avoid calling malloc everytime
*/
// double *tmp_partial_lh1;
// double *tmp_partial_lh2;
/**
* Temporary array containing anscentral states.
* Used to avoid calling malloc
*/
// double *tmp_anscentral_state_prob1;
// double *tmp_anscentral_state_prob2;
/** pattern-specific rates */
//double *tmp_ptn_rates;
/**
* Temporary scale num array: used when swapping branch and recalculate the
* likelihood --> avoid calling malloc
*/
// UBYTE *tmp_scale_num1;
// UBYTE *tmp_scale_num2;
/****************************************************************************
Vector of bit blocks, used for parsimony function
****************************************************************************/
/**
@return size of the bits block vector for one node
*/
size_t getBitsBlockSize();
/**
allocate new memory for a bit block vector
@return the allocated memory
*/
UINT *newBitsBlock();
virtual void saveCurrentTree(double logl) {
} // save current tree
/**
* Current score of the tree;
*/
double curScore;
/** current best parsimony score */
UINT best_pars_score;
};
#endif
|