1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
|
/***************************************************************************
* Copyright (C) 2009 by BUI Quang Minh *
* minh.bui@univie.ac.at *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#include "tinatree.h"
TinaTree::TinaTree()
: PhyloTree()
{
}
TinaTree::TinaTree(Alignment *alignment) : PhyloTree(alignment) {
}
TinaTree::~TinaTree()
{
}
int TinaTree::computeParsimonyScore(int ptn, int &states, PhyloNode *node, PhyloNode *dad) {
int score = 0;
states = 0;
if (!node) node = (PhyloNode*) root;
if (node->degree() > 3)
outError("Does not work with multifurcating tree");
if (verbose_mode == VB_DEBUG)
cout << ptn << " " << node->id << " " << node->name << endl;
if (node->isLeaf()) {
char state;
if (node->name == ROOT_NAME) {
state = aln->STATE_UNKNOWN;
} else {
ASSERT(node->id < aln->getNSeq());
state = (*aln)[ptn][node->id];
}
if (state == aln->STATE_UNKNOWN) {
states = (1 << aln->num_states) - 1;
} else if (state < aln->num_states)
states = (1 << state);
else {
// ambiguous character, for DNA, RNA
states = state - 3;
}
}
if (!node->isLeaf() || node == root) {
int union_states = 0;
int intersect_states = (1 << aln->num_states) - 1;
if (states != 0) {
union_states = states;
intersect_states = states;
}
FOR_NEIGHBOR_IT(node, dad, it) {
int states_child;
int score_child = computeParsimonyScore(ptn, states_child, (PhyloNode*) ((*it)->node), node);
union_states |= states_child;
intersect_states &= states_child;
score += score_child;
}
if (intersect_states)
states = intersect_states;
else {
states = union_states;
score++;
}
}
return score;
}
int TinaTree::computeParsimonyScore() {
ASSERT(root && root->isLeaf());
int score = 0;
for (int ptn = 0; ptn < aln->size(); ptn++)
if (!aln->at(ptn).isConst()) {
int states;
int ptn_score = computeParsimonyScore(ptn, states);
score += ptn_score * (*aln)[ptn].frequency;
if (verbose_mode >= VB_MAX) {
for (int seq=0; seq < aln->getNSeq(); seq++)
cout << aln->convertStateBackStr(aln->at(ptn)[seq]);
cout << " " << ptn_score << endl;
}
}
if (verbose_mode >= VB_MAX)
cout << endl;
return score;
}
void TinaTree::initializeAllPartialLh() {
int index, indexlh;
initializeAllPartialLh(index, indexlh);
ASSERT(index == (nodeNum - 1)*2);
}
void TinaTree::initializeAllPartialLh(int &index, int &indexlh, PhyloNode *node, PhyloNode *dad) {
int pars_block_size = getBitsBlockSize();
if (!node) {
node = (PhyloNode*) root;
// allocate the big central partial likelihoods memory
if (!central_partial_pars) {
if (verbose_mode >= VB_MAX)
cout << "Allocating " << (leafNum - 1)*4 * pars_block_size * sizeof (UINT) << " bytes for partial parsimony vectors" << endl;
central_partial_pars = new UINT[(leafNum-1)*4*pars_block_size];
if (!central_partial_pars)
outError("Not enough memory for partial parsimony vectors");
}
index = 0;
}
if (dad) {
// assign a region in central_partial_lh to both Neihgbors (dad->node, and node->dad)
PhyloNeighbor *nei = (PhyloNeighbor*) node->findNeighbor(dad);
//assert(!nei->partial_lh);
nei->partial_pars = central_partial_pars + (index * pars_block_size);
nei = (PhyloNeighbor*) dad->findNeighbor(node);
//assert(!nei->partial_lh);
nei->partial_pars = central_partial_pars + ((index + 1) * pars_block_size);
index += 2;
ASSERT(index < nodeNum * 2 - 1);
}
FOR_NEIGHBOR_IT(node, dad, it)
initializeAllPartialLh(index, indexlh, (PhyloNode*) (*it)->node, node);
}
|