1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
|
/*
* Managing global state for the VHDL code generator.
*
* Copyright (C) 2009 Nick Gasson (nick@nickg.me.uk)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "state.hh"
#include "vhdl_syntax.hh"
#include "vhdl_target.h"
#include <algorithm>
#include <string>
#include <map>
#include <vector>
#include <cstring>
#include <iostream>
using namespace std;
/*
* This file stores all the global state required during VHDL code
* generation. At present we store the following:
*
* - A mapping from Verilog signals to the VHDL scope (entity, etc.)
* where it is found, and the name of the corresponding VHDL signal.
* This allows us to support renaming invalid Verilog signal names
* to valid VHDL ones.
*
* - The set of all VHDL entities generated.
*
* - The currently active entity. "Active" here means that we are
* currently generating code for a process inside the corresponding
* scope. This is useful, for example, if a statement or expression
* in a process needs to add are referencing something in the containing
* architecture object.
*/
/*
* Maps a signal to the scope it is defined within. Also
* provides a mechanism for renaming signals -- i.e. when
* an output has the same name as register: valid in Verilog
* but not in VHDL, so two separate signals need to be
* defined.
*/
struct signal_defn_t {
std::string renamed; // The name of the VHDL signal
vhdl_scope *scope; // The scope where it is defined
};
// All entities to emit.
// These are stored in a list rather than a set so the first
// entity added will correspond to the first (top) Verilog module
// encountered and hence it will appear first in the output file.
static entity_list_t g_entities;
// Store the mapping of ivl scope names to entity names
typedef map<ivl_scope_t, string> scope_name_map_t;
static scope_name_map_t g_scope_names;
typedef std::map<ivl_signal_t, signal_defn_t> signal_defn_map_t;
static signal_defn_map_t g_known_signals;
static vhdl_entity *g_active_entity = NULL;
// Set of scopes that are treated as the default examples of
// that type. Any other scopes of the same type are ignored.
typedef std::vector<ivl_scope_t> default_scopes_t;
static default_scopes_t g_default_scopes;
// True if signal `sig' has already been encountered by the code
// generator. This means we have already assigned it to a VHDL code
// object and possibly renamed it.
bool seen_signal_before(ivl_signal_t sig)
{
return g_known_signals.find(sig) != g_known_signals.end();
}
// Remember the association of signal to a VHDL code object (typically
// an entity).
void remember_signal(ivl_signal_t sig, vhdl_scope *scope)
{
assert(!seen_signal_before(sig));
signal_defn_t defn = { ivl_signal_basename(sig), scope };
g_known_signals[sig] = defn;
}
// Change the VHDL name of a Verilog signal.
void rename_signal(ivl_signal_t sig, const std::string &renamed)
{
assert(seen_signal_before(sig));
g_known_signals[sig].renamed = renamed;
}
// Given a Verilog signal, return the VHDL code object where it should
// be defined. Note that this can return a NULL pointer if `sig' hasn't
// be encountered yet.
vhdl_scope *find_scope_for_signal(ivl_signal_t sig)
{
if (seen_signal_before(sig))
return g_known_signals[sig].scope;
else
return NULL;
}
// Get the name of the VHDL signal corresponding to Verilog signal `sig'.
const std::string &get_renamed_signal(ivl_signal_t sig)
{
assert(seen_signal_before(sig));
return g_known_signals[sig].renamed;
}
// TODO: Can we dispose of this???
// -> This is only used in logic.cc to get the type of a signal connected
// to a logic device -> we should be able to get this from the nexus
ivl_signal_t find_signal_named(const std::string &name, const vhdl_scope *scope)
{
signal_defn_map_t::const_iterator it;
for (it = g_known_signals.begin(); it != g_known_signals.end(); ++it) {
if (((*it).second.scope == scope
|| (*it).second.scope == scope->get_parent())
&& (*it).second.renamed == name)
return (*it).first;
}
assert(false);
return NULL;
}
// Compare the name of an entity against a string
struct cmp_ent_name {
explicit cmp_ent_name(const string& n) : name_(n) {}
bool operator()(const vhdl_entity* ent) const
{
return ent->get_name() == name_;
}
const string& name_;
};
// Find an entity given its name.
vhdl_entity* find_entity(const string& name)
{
entity_list_t::const_iterator it
= find_if(g_entities.begin(), g_entities.end(),
cmp_ent_name(name));
if (it != g_entities.end())
return *it;
else
return NULL;
}
// Find a VHDL entity given a Verilog module scope. The VHDL entity
// name should be the same as the Verilog module type name.
// Note that this will return NULL if no entity has been recorded
// for this scope type.
vhdl_entity* find_entity(ivl_scope_t scope)
{
// Skip over generate scopes
while (ivl_scope_type(scope) == IVL_SCT_GENERATE)
scope = ivl_scope_parent(scope);
assert(ivl_scope_type(scope) == IVL_SCT_MODULE);
if (is_default_scope_instance(scope)) {
scope_name_map_t::iterator it = g_scope_names.find(scope);
if (it != g_scope_names.end())
return find_entity((*it).second);
else
return NULL;
}
else {
const char *tname = ivl_scope_tname(scope);
for (scope_name_map_t::iterator it = g_scope_names.begin();
it != g_scope_names.end(); ++it) {
if (strcmp(tname, ivl_scope_tname((*it).first)) == 0)
return find_entity((*it).second);
}
return NULL;
}
}
// Add an entity/architecture pair to the list of entities to emit.
void remember_entity(vhdl_entity* ent, ivl_scope_t scope)
{
g_entities.push_back(ent);
g_scope_names[scope] = ent->get_name();
}
// Print all VHDL entities, in order, to the specified output stream.
void emit_all_entities(std::ostream& os, int max_depth)
{
for (entity_list_t::iterator it = g_entities.begin();
it != g_entities.end();
++it) {
if ((max_depth == 0 || (*it)->depth < max_depth))
(*it)->emit(os);
}
}
// Release all memory for the VHDL objects. No vhdl_element pointers
// will be valid after this call.
void free_all_vhdl_objects()
{
int freed = vhdl_element::free_all_objects();
debug_msg("Deallocated %d VHDL syntax objects", freed);
size_t total = vhdl_element::total_allocated();
debug_msg("%d total bytes used for VHDL syntax objects", total);
g_entities.clear();
}
// Return the currently active entity
vhdl_entity *get_active_entity()
{
return g_active_entity;
}
// Change the currently active entity
void set_active_entity(vhdl_entity *ent)
{
g_active_entity = ent;
}
/*
* True if two scopes have the same type name.
*/
static bool same_scope_type_name(ivl_scope_t a, ivl_scope_t b)
{
if (strcmp(ivl_scope_tname(a), ivl_scope_tname(b)) != 0)
return false;
unsigned nparams_a = ivl_scope_params(a);
unsigned nparams_b = ivl_scope_params(b);
if (nparams_a != nparams_b)
return false;
for (unsigned i = 0; i < nparams_a; i++) {
ivl_parameter_t param_a = ivl_scope_param(a, i);
ivl_parameter_t param_b = ivl_scope_param(b, i);
if (strcmp(ivl_parameter_basename(param_a),
ivl_parameter_basename(param_b)) != 0)
return false;
if (ivl_parameter_local(param_a) && ivl_parameter_local(param_b))
continue;
// If this is a type parameter consider the scopes not equal since we do
// not have support for comparing the actual types yet.
if (ivl_parameter_is_type(param_a) || ivl_parameter_is_type(param_b))
return false;
ivl_expr_t value_a = ivl_parameter_expr(param_a);
ivl_expr_t value_b = ivl_parameter_expr(param_b);
if (ivl_expr_type(value_a) != ivl_expr_type(value_b))
return false;
switch (ivl_expr_type(value_a)) {
case IVL_EX_STRING:
if (strcmp(ivl_expr_string(value_a), ivl_expr_string(value_b)) != 0)
return false;
break;
case IVL_EX_NUMBER:
if (ivl_expr_uvalue(value_a) != ivl_expr_uvalue(value_b))
return false;
break;
default:
assert(false);
}
}
return true;
}
/*
* True if we have already seen a scope with this type before.
* If the result is `false' then s is stored in the set of seen
* scopes.
*/
bool seen_this_scope_type(ivl_scope_t s)
{
for (auto cur = g_default_scopes.begin() ; cur != g_default_scopes.end() ; cur++) {
if (same_scope_type_name(s, *cur))
return true;
}
g_default_scopes.push_back(s);
return false;
}
/*
* True if this scope is the default example of this scope type.
* All other instances of this scope type are ignored.
*/
bool is_default_scope_instance(ivl_scope_t s)
{
return find(g_default_scopes.begin(), g_default_scopes.end(), s)
!= g_default_scopes.end();
}
|