1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
|
#! /usr/bin/env python
# This file is part of khmer, https://github.com/dib-lab/khmer/, and is
# Copyright (C) 2013-2015, Michigan State University.
# Copyright (C) 2015-2016, The Regents of the University of California.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following
# disclaimer in the documentation and/or other materials provided
# with the distribution.
#
# * Neither the name of the Michigan State University nor the names
# of its contributors may be used to endorse or promote products
# derived from this software without specific prior written
# permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Contact: khmer-project@idyll.org
# pylint: disable=missing-docstring,invalid-name
"""
Sequence trimming by abundance w/o countgraph.
Trim sequences at k-mers of the given abundance for the given file,
without loading a prebuilt countgraph. Output sequences will be
placed in 'infile.abundfilt'.
% python scripts/filter-abund-single.py <data>
Use '-h' for parameter help.
"""
from __future__ import print_function
import os
import sys
import threading
import textwrap
import khmer
from khmer import ReadParser
from khmer.utils import broken_paired_reader, write_record
from khmer import khmer_args
from khmer.khmer_args import (build_counting_args, report_on_config,
add_threading_args, calculate_graphsize,
sanitize_help, check_argument_range)
from khmer.kfile import (check_input_files, check_space,
check_space_for_graph,
add_output_compression_type,
get_file_writer)
from khmer.khmer_logger import (configure_logging, log_info, log_error,
log_warn)
from khmer.trimming import (trim_record)
DEFAULT_NORMALIZE_LIMIT = 20
DEFAULT_CUTOFF = 2
def get_parser():
epilog = """\
Trimmed sequences will be placed in
``${input_sequence_filename}.abundfilt``.
This script is constant memory.
To trim reads based on k-mer abundance across multiple files, use
:program:`load-into-counting.py` and :program:`filter-abund.py`.
Example::
filter-abund-single.py -k 20 -x 5e7 -C 2 data/100k-filtered.fa
"""
parser = build_counting_args(
descr="Trims sequences at a minimum k-mer abundance "
"(in memory version).", epilog=textwrap.dedent(epilog),
citations=['counting', 'SeqAn'])
add_threading_args(parser)
parser.add_argument('-C', '--cutoff', default=DEFAULT_CUTOFF,
type=check_argument_range(0, 256, "cutoff"),
help="Trim at k-mers below this abundance.")
parser.add_argument('-V', '--variable-coverage', action='store_true',
dest='variable_coverage', default=False,
help='Only trim low-abundance k-mers from sequences '
'that have high coverage.')
parser.add_argument('-Z', '--normalize-to', type=int, dest='normalize_to',
help='Base the variable-coverage cutoff on this median'
' k-mer abundance.',
default=DEFAULT_NORMALIZE_LIMIT)
parser.add_argument('--savegraph', metavar="filename", default='',
help="If present, the name of the file to save the "
"k-mer countgraph to")
parser.add_argument('-o', '--outfile', metavar='optional_output_filename',
default=None, help='Override default output filename '
'and output trimmed sequences into a file with the '
'given filename.')
parser.add_argument('datafile', metavar='input_sequence_filename',
help="FAST[AQ] sequence file to trim")
parser.add_argument('-f', '--force', default=False, action='store_true',
help='Overwrite output file if it exists')
parser.add_argument('-q', '--quiet', dest='quiet', default=False,
action='store_true')
add_output_compression_type(parser)
return parser
def main():
args = sanitize_help(get_parser()).parse_args()
configure_logging(args.quiet)
check_input_files(args.datafile, args.force)
check_space([args.datafile], args.force)
if args.savegraph:
tablesize = calculate_graphsize(args, 'countgraph')
check_space_for_graph(args.savegraph, tablesize, args.force)
report_on_config(args)
log_info('making countgraph')
graph = khmer_args.create_countgraph(args)
# first, load reads into graph
rparser = khmer.ReadParser(args.datafile)
threads = []
log_info('consuming input, round 1 -- {datafile}', datafile=args.datafile)
for _ in range(args.threads):
cur_thread = \
threading.Thread(
target=graph.consume_seqfile_with_reads_parser,
args=(rparser, )
)
threads.append(cur_thread)
cur_thread.start()
for _ in threads:
_.join()
log_info('Total number of unique k-mers: {nk}', nk=graph.n_unique_kmers())
fp_rate = khmer.calc_expected_collisions(graph, args.force)
log_info('fp rate estimated to be {fpr:1.3f}', fpr=fp_rate)
# the filtering loop
log_info('filtering {datafile}', datafile=args.datafile)
if args.outfile is None:
outfile = os.path.basename(args.datafile) + '.abundfilt'
else:
outfile = args.outfile
outfp = open(outfile, 'wb')
outfp = get_file_writer(outfp, args.gzip, args.bzip)
paired_iter = broken_paired_reader(ReadParser(args.datafile),
min_length=graph.ksize(),
force_single=True)
for n, is_pair, read1, read2 in paired_iter:
assert not is_pair
assert read2 is None
trimmed_record, _ = trim_record(graph, read1, args.cutoff,
args.variable_coverage,
args.normalize_to)
if trimmed_record:
write_record(trimmed_record, outfp)
log_info('output in {outfile}', outfile=outfile)
if args.savegraph:
log_info('Saving k-mer countgraph filename {graph}',
graph=args.savegraph)
graph.save(args.savegraph)
if __name__ == '__main__':
main()
|