1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
|
#! /usr/bin/env python
# This file is part of khmer, https://github.com/dib-lab/khmer/, and is
# Copyright (C) 2011-2015, Michigan State University.
# Copyright (C) 2015-2016, The Regents of the University of California.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following
# disclaimer in the documentation and/or other materials provided
# with the distribution.
#
# * Neither the name of the Michigan State University nor the names
# of its contributors may be used to endorse or promote products
# derived from this software without specific prior written
# permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Contact: khmer-project@idyll.org
# pylint: disable=invalid-name,missing-docstring
"""
Find an initial set of highly connected k-mers, to save on repartitioning time.
% python scripts/make-initial-stoptags.py <base>
"""
from __future__ import print_function
import sys
import textwrap
import khmer
from khmer import khmer_args
from khmer.khmer_args import (build_counting_args, sanitize_help)
from khmer.kfile import check_input_files
DEFAULT_SUBSET_SIZE = int(1e4)
DEFAULT_COUNTING_HT_SIZE = 3e6 # number of bytes
DEFAULT_COUNTING_HT_N = 4 # number of counting hash tables
# Lump removal parameters. Probably shouldn't be changed, but who knows?
#
# explanation:
#
# We will walk EXCURSION_DISTANCE out from each tag; if we find more than
# EXCURSION_KMER_THRESHOLD kmers within that range, this will be a "big"
# excursion and we will track all k-mers visited. If we find that any
# k-mer has been visited more than EXCURSION_KMER_COUNT_THRESHOLD times,
# we will mark it as BAD and make it a stop tag for traversal.
# don't change these!
EXCURSION_DISTANCE = 40
EXCURSION_KMER_THRESHOLD = 200
EXCURSION_KMER_COUNT_THRESHOLD = 5
def get_parser():
epilog = """\
Loads a k-mer nodegraph/tagset pair created by
:program:`load-graph.py`, and
does a small set of traversals from graph waypoints; on these traversals,
looks for k-mers that are repeatedly traversed in high-density regions of
the graph, i.e. are highly connected. Outputs those k-mers as an initial
set of stoptags, which can be fed into :program:`partition-graph.py`,
:program:`find-knots.py`, and :program:`filter-stoptags.py`.
The k-mer countgraph size options parameters are for a k-mer countgraph
to keep track of repeatedly-traversed k-mers. The subset size option
specifies the number of waypoints from which to traverse; for highly
connected data sets, the default (1000) is probably ok.
"""
parser = build_counting_args(
descr="Find an initial set of highly connected k-mers.",
epilog=textwrap.dedent(epilog),
citations=['graph'])
parser.add_argument('-s', '--subset-size', default=DEFAULT_SUBSET_SIZE,
dest='subset_size', type=float,
help='Set subset size (default 1e4 is prob ok)')
parser.add_argument('-S', '--stoptags', metavar='filename', default='',
help="Use stoptags in this file during partitioning")
parser.add_argument('graphbase', help='basename for input and output '
'filenames')
parser.add_argument('-f', '--force', default=False, action='store_true',
help='Overwrite output file if it exists')
return parser
def main():
args = sanitize_help(get_parser()).parse_args()
graphbase = args.graphbase
# @RamRS: This might need some more work
infiles = [graphbase, graphbase + '.tagset']
if args.stoptags:
infiles.append(args.stoptags)
for _ in infiles:
check_input_files(_, args.force)
print('loading nodegraph %s.pt' % graphbase, file=sys.stderr)
nodegraph = khmer.load_nodegraph(graphbase)
# do we want to load stop tags, and do they exist?
if args.stoptags:
print('loading stoptags from', args.stoptags, file=sys.stderr)
nodegraph.load_stop_tags(args.stoptags)
print('loading tagset %s.tagset...' % graphbase, file=sys.stderr)
nodegraph.load_tagset(graphbase + '.tagset')
counting = khmer_args.create_countgraph(args)
# divide up into SUBSET_SIZE fragments
divvy = nodegraph.divide_tags_into_subsets(args.subset_size)
divvy = list(divvy)
# pick off the first one
if len(divvy) == 1:
start, end = 0, 0
else:
start, end = divvy[:2]
# partition!
print('doing pre-partitioning from', start, 'to', end, file=sys.stderr)
subset = nodegraph.do_subset_partition(start, end)
# now, repartition...
print('repartitioning to find HCKs.', file=sys.stderr)
nodegraph.repartition_largest_partition(subset, counting,
EXCURSION_DISTANCE,
EXCURSION_KMER_THRESHOLD,
EXCURSION_KMER_COUNT_THRESHOLD)
print('saving stop tags', file=sys.stderr)
nodegraph.save_stop_tags(graphbase + '.stoptags')
print('wrote to:', graphbase + '.stoptags', file=sys.stderr)
if __name__ == '__main__':
main()
|