File: make-initial-stoptags.py

package info (click to toggle)
khmer 2.1.2%2Bdfsg-8
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 59,064 kB
  • sloc: cpp: 102,051; python: 19,654; ansic: 677; makefile: 578; sh: 167; xml: 19; javascript: 16
file content (154 lines) | stat: -rwxr-xr-x 6,293 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
#! /usr/bin/env python
# This file is part of khmer, https://github.com/dib-lab/khmer/, and is
# Copyright (C) 2011-2015, Michigan State University.
# Copyright (C) 2015-2016, The Regents of the University of California.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
#     * Redistributions of source code must retain the above copyright
#       notice, this list of conditions and the following disclaimer.
#
#     * Redistributions in binary form must reproduce the above
#       copyright notice, this list of conditions and the following
#       disclaimer in the documentation and/or other materials provided
#       with the distribution.
#
#     * Neither the name of the Michigan State University nor the names
#       of its contributors may be used to endorse or promote products
#       derived from this software without specific prior written
#       permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Contact: khmer-project@idyll.org
# pylint: disable=invalid-name,missing-docstring
"""
Find an initial set of highly connected k-mers, to save on repartitioning time.

% python scripts/make-initial-stoptags.py <base>
"""
from __future__ import print_function

import sys
import textwrap
import khmer
from khmer import khmer_args
from khmer.khmer_args import (build_counting_args, sanitize_help)
from khmer.kfile import check_input_files

DEFAULT_SUBSET_SIZE = int(1e4)
DEFAULT_COUNTING_HT_SIZE = 3e6                # number of bytes
DEFAULT_COUNTING_HT_N = 4                     # number of counting hash tables

# Lump removal parameters.  Probably shouldn't be changed, but who knows?
#
# explanation:
#
# We will walk EXCURSION_DISTANCE out from each tag; if we find more than
# EXCURSION_KMER_THRESHOLD kmers within that range, this will be a "big"
# excursion and we will track all k-mers visited.  If we find that any
# k-mer has been visited more than EXCURSION_KMER_COUNT_THRESHOLD times,
# we will mark it as BAD and make it a stop tag for traversal.

# don't change these!
EXCURSION_DISTANCE = 40
EXCURSION_KMER_THRESHOLD = 200
EXCURSION_KMER_COUNT_THRESHOLD = 5


def get_parser():
    epilog = """\
    Loads a k-mer nodegraph/tagset pair created by
    :program:`load-graph.py`, and
    does a small set of traversals from graph waypoints; on these traversals,
    looks for k-mers that are repeatedly traversed in high-density regions of
    the graph, i.e. are highly connected. Outputs those k-mers as an initial
    set of stoptags, which can be fed into :program:`partition-graph.py`,
    :program:`find-knots.py`, and :program:`filter-stoptags.py`.

    The k-mer countgraph size options parameters are for a k-mer countgraph
    to keep track of repeatedly-traversed k-mers. The subset size option
    specifies the number of waypoints from which to traverse; for highly
    connected data sets, the default (1000) is probably ok.
    """
    parser = build_counting_args(
        descr="Find an initial set of highly connected k-mers.",
        epilog=textwrap.dedent(epilog),
        citations=['graph'])
    parser.add_argument('-s', '--subset-size', default=DEFAULT_SUBSET_SIZE,
                        dest='subset_size', type=float,
                        help='Set subset size (default 1e4 is prob ok)')
    parser.add_argument('-S', '--stoptags', metavar='filename', default='',
                        help="Use stoptags in this file during partitioning")
    parser.add_argument('graphbase', help='basename for input and output '
                        'filenames')
    parser.add_argument('-f', '--force', default=False, action='store_true',
                        help='Overwrite output file if it exists')
    return parser


def main():
    args = sanitize_help(get_parser()).parse_args()

    graphbase = args.graphbase

    # @RamRS: This might need some more work
    infiles = [graphbase, graphbase + '.tagset']
    if args.stoptags:
        infiles.append(args.stoptags)
    for _ in infiles:
        check_input_files(_, args.force)

    print('loading nodegraph %s.pt' % graphbase, file=sys.stderr)
    nodegraph = khmer.load_nodegraph(graphbase)

    # do we want to load stop tags, and do they exist?
    if args.stoptags:
        print('loading stoptags from', args.stoptags, file=sys.stderr)
        nodegraph.load_stop_tags(args.stoptags)

    print('loading tagset %s.tagset...' % graphbase, file=sys.stderr)
    nodegraph.load_tagset(graphbase + '.tagset')

    counting = khmer_args.create_countgraph(args)

    # divide up into SUBSET_SIZE fragments
    divvy = nodegraph.divide_tags_into_subsets(args.subset_size)
    divvy = list(divvy)

    # pick off the first one
    if len(divvy) == 1:
        start, end = 0, 0
    else:
        start, end = divvy[:2]

    # partition!
    print('doing pre-partitioning from', start, 'to', end, file=sys.stderr)
    subset = nodegraph.do_subset_partition(start, end)

    # now, repartition...
    print('repartitioning to find HCKs.', file=sys.stderr)
    nodegraph.repartition_largest_partition(subset, counting,
                                            EXCURSION_DISTANCE,
                                            EXCURSION_KMER_THRESHOLD,
                                            EXCURSION_KMER_COUNT_THRESHOLD)

    print('saving stop tags', file=sys.stderr)
    nodegraph.save_stop_tags(graphbase + '.stoptags')
    print('wrote to:', graphbase + '.stoptags', file=sys.stderr)


if __name__ == '__main__':
    main()