1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
|
#! /usr/bin/env python
# This file is part of khmer, https://github.com/dib-lab/khmer/, and is
# Copyright (C) 2014-2015, Michigan State University.
# Copyright (C) 2015, The Regents of the University of California.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following
# disclaimer in the documentation and/or other materials provided
# with the distribution.
#
# * Neither the name of the Michigan State University nor the names
# of its contributors may be used to endorse or promote products
# derived from this software without specific prior written
# permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
# Contact: khmer-project@idyll.org
# pylint: disable=invalid-name,missing-docstring,no-member
"""
Estimate number of unique k-mers, with precision <= ERROR_RATE.
% python scripts/unique-kmers.py [ -k <k size> ] [ -e <ERROR_RATE> ] <data1>
<data2> ...
Use '-h' for parameter help.
"""
from __future__ import print_function
import argparse
import os
import sys
import textwrap
import khmer
from khmer.khmer_args import DEFAULT_K, sanitize_help, KhmerArgumentParser
from khmer.khmer_args import graphsize_args_report
def get_parser():
descr = "Estimate number of unique k-mers, with precision <= ERROR_RATE."
epilog = """\
A HyperLogLog counter is used to do cardinality estimation. Since this
counter is based on a tradeoff between precision and memory consumption,
the :option:`-e`/:option:`--error-rate` can be used to control how much
memory will be used. In practice the memory footprint is small even
at low error rates (< 0.01).
:option:`-k`/:option:`--ksize` should be set to the desired k-mer size.
Informational output is sent to STDERR, but a report file can be generated
with :option:`-R`/:option:`--report`.
:option:`--stream-records` will write the sequences taken in to STDOUT.
This is useful for workflows: count unique kmers in a stream, then do
digital normalization.
:option:`--diagnostics` will provide detailed options for tablesize
and memory limitations for various false positive rates. This is useful for
configuring other khmer scripts. This will be written to STDERR.
Example::
unique-kmers.py -k 17 tests/test-data/test-abund-read{,-2,-3}.fa
Example::
unique-kmers.py -k 17 --diagnostics tests/test-data/test-abund-read.fa
Example::
unique-kmers.py --stream-records -k 17 tests/test-data/test-reads.fa | \\
normalize-by-median.py -k 17 -o normalized /dev/stdin
Example::
unique-kmers.py -R unique_count -k 30 \\
tests/test-data/test-abund-read-paired.fa""" # noqa
parser = KhmerArgumentParser(
description=descr, epilog=textwrap.dedent(epilog),
citations=['SeqAn', 'hll'])
env_ksize = os.environ.get('KHMER_KSIZE', DEFAULT_K)
parser.add_argument('-q', '--quiet', dest='quiet', default=False,
action='store_true')
parser.add_argument('-k', '--ksize', type=int, default=env_ksize,
help='k-mer size to use')
parser.add_argument('-e', '--error-rate', type=float, default=0.01,
help='Acceptable error rate')
parser.add_argument('-R', '--report',
metavar='filename', type=argparse.FileType('w'),
help='generate informational report and write to'
' filename')
parser.add_argument('-S', '--stream-records', default=False,
action='store_true',
help='write input sequences to STDOUT')
parser.add_argument('--diagnostics', default=False, action='store_true',
help='print out recommended tablesize arguments and '
'restrictions')
parser.add_argument('input_filenames', metavar='input_sequence_filename',
help='Input FAST[AQ] sequence filename(s).', nargs='+')
return parser
def main():
args = sanitize_help(get_parser()).parse_args()
total_hll = khmer.HLLCounter(args.error_rate, args.ksize)
report_fp = args.report
input_filename = None
for _, input_filename in enumerate(args.input_filenames):
hllcpp = khmer.HLLCounter(args.error_rate, args.ksize)
hllcpp.consume_seqfile(input_filename,
stream_records=args.stream_records)
cardinality = hllcpp.estimate_cardinality()
print('Estimated number of unique {0}-mers in {1}: {2}'.format(
args.ksize, input_filename, cardinality), file=sys.stderr)
if report_fp:
print(cardinality, args.ksize, '(total)', file=report_fp)
report_fp.flush()
total_hll.merge(hllcpp)
cardinality = total_hll.estimate_cardinality()
print('Total estimated number of unique {0}-mers: {1}'.format(
args.ksize, cardinality), file=sys.stderr)
to_print = graphsize_args_report(cardinality, args.error_rate)
if args.diagnostics:
print(to_print, file=sys.stderr)
if report_fp:
print(cardinality, args.ksize, 'total', file=report_fp)
print(to_print, file=report_fp)
report_fp.flush()
if __name__ == "__main__":
main()
|