1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
|
/*******************************************************************************
* $Id: ClustalInterface.cpp,v 1.27 2004/03/01 02:40:08 darling Exp $
* This file is copyright 2002-2007 Aaron Darling and authors listed in the AUTHORS file.
* Please see the file called COPYING for licensing, copying, and modification
* Please see the file called COPYING for licensing details.
* **************
******************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "libMems/ClustalInterface.h"
#include <sstream>
#include "libGenome/gnFilter.h"
#include <fstream>
extern "C" {
#include "libClustalW/clustalw.h"
extern sint max_names;
extern Boolean usemenu, dnaflag, explicit_dnaflag;
extern Boolean interactive;
extern char *seqname;
extern sint nseqs;
extern sint *seqlen_array;
extern char **names,**titles;
extern char **seq_array;
//extern Boolean profile1_empty, profile2_empty;
extern sint max_aln_length;
//extern char *gap_penalty_mask, *sec_struct_mask;
//extern sint struct_penalties;
extern float gap_open, gap_extend;
extern float dna_gap_open, dna_gap_extend;
//extern char *gap_penalty_mask1,*gap_penalty_mask2;
//extern char *sec_struct_mask1,*sec_struct_mask2;
//extern sint struct_penalties1,struct_penalties2;
//extern char *ss_name1,*ss_name2;
extern float pw_go_penalty, pw_ge_penalty;
extern float dna_pw_go_penalty, dna_pw_ge_penalty;
//extern sint wind_gap,ktup,window,signif;
//extern sint dna_wind_gap, dna_ktup, dna_window, dna_signif;
extern Boolean output_clustal, output_nbrf, output_phylip, output_gcg, output_gde, output_nexus;
extern FILE *clustal_outfile, *gcg_outfile, *nbrf_outfile, *phylip_outfile, *nexus_outfile;
//extern char clustal_outname[FILENAMELEN+1], gcg_outname[FILENAMELEN+1];
extern char* amino_acid_codes;
extern sint max_aa;
//extern short blosum45mt[];
//extern short def_aa_xref[];
extern sint gap_pos1;
extern double** tmat;
extern Boolean use_endgaps;
extern Boolean endgappenalties;
extern sint output_order;
extern Boolean no_weights;
}
using namespace std;
using namespace genome;
namespace mems {
/**
* When performing progressive alignment, clustalW misaligns the first sequence for
* some reason. define MISALIGNMENT_WORKAROUND to enable a workaround for this bug.
* The workaround adds an additional copy of the first sequence to each alignment
* then removes the misaligned copy of the first sequence.
*/
#define MISALIGNMENT_WORKAROUND
lint get_aln_score(void);
ClustalInterface& ClustalInterface::getClustalInterface()
{
static ClustalInterface m_ci;
return m_ci;
}
ClustalInterface::ClustalInterface(){
// some defaults can't hurt
max_alignment_length = 10000;
min_flank_size = 3;
clustal_score_cutoff = 0;
// shut off end gaps...
use_endgaps = FALSE;
// enable end gap penalties
endgappenalties = TRUE;
// force same input/output order
output_order = INPUT;
no_weights = FALSE; // TRUE;
init_amenu();
init_interface();
init_matrix();
fill_chartab();
allocated_aln = false;
// shut off end gaps...
use_endgaps = FALSE;
// enable end gap penalties
endgappenalties = TRUE;
}
ClustalInterface& ClustalInterface::operator=( const ClustalInterface& ci )
{
GappedAligner::operator=( ci );
min_flank_size = ci.min_flank_size;
clustal_score_cutoff = ci.clustal_score_cutoff;
distance_matrix = ci.distance_matrix;
allocated_aln = ci.allocated_aln;
return *this;
}
void ClustalInterface::SetDistanceMatrix( NumericMatrix< double >& distance_matrix, string& tree_filename ){
SetDistanceMatrix( distance_matrix, tree_filename, false );
}
void ClustalInterface::SetDistanceMatrix( NumericMatrix< double >& distance_matrix, string& tree_filename, boolean reread_tree ){
char* phylip_name;
uint seqI, seqJ;
#ifdef MISALIGNMENT_WORKAROUND
if( reread_tree == false ){
NumericMatrix< double > dist_plus_matrix( distance_matrix.cols() + 1, distance_matrix.cols() + 1 );
for( seqI = 0; seqI < dist_plus_matrix.cols(); seqI++ ){
for( seqJ = 0; seqJ < dist_plus_matrix.cols(); seqJ++ ){
double new_val = 0;
if( seqI == 0 ){
if( seqJ == 0 )
new_val = 0;
else
new_val = distance_matrix( seqI, seqJ - 1 );
}else{
if( seqJ == 0 )
new_val = distance_matrix( seqI - 1, seqJ );
else
new_val = distance_matrix( seqI - 1, seqJ - 1 );
}
dist_plus_matrix( seqI, seqJ ) = new_val;
}
}
SetDistanceMatrix( dist_plus_matrix, tree_filename, true );
}
#else
reread_tree = true;
#endif
if( reread_tree )
this->distance_matrix = distance_matrix;
free_aln( nseqs );
nseqs = distance_matrix.cols();
alloc_aln( nseqs );
allocated_aln = true;
for( seqI = 1; seqI <= distance_matrix.cols(); seqI++ ){
ostringstream ss;
ss << "seq" << seqI;
int namelen = MAXNAMES < ss.str().size() ? MAXNAMES : ss.str().size();
strncpy( names[ seqI ], ss.str().c_str(), namelen); /* " " name */
strncpy( titles[ seqI ], ss.str().c_str(), namelen); /* " " title */
alloc_seq( seqI, 1 );
// set max_names and max_aln_length
if( strlen( names[ seqI ] ) > max_names )
max_names = strlen( names[ seqI ] );
}
// copy phylo tree name
phylip_name = (char * ) ckalloc( tree_filename.length() + 1);
strcpy( phylip_name, tree_filename.c_str() );
// copy tmat entries
for( seqI = 0; seqI < nseqs; seqI++ )
for( uint seqJ = 0; seqJ < nseqs; seqJ++ )
tmat[ seqI + 1][ seqJ + 1 ] = distance_matrix( seqI, seqJ );
FILE* tree;
if((tree = open_explicit_file( phylip_name ))==NULL) return;
if (nseqs >= 2) {
guide_tree(tree,1,nseqs);
}
// read the tree back in
if( reread_tree )
int status = read_tree(phylip_name, (sint)0, nseqs);
phylip_name = (char*)ckfree( phylip_name );
allocated_aln = false;
}
// tries to read in a guide tree from a particular file,
// throws an exception if it doesn't work out
void ClustalInterface::setGuideTree( string& tree_filename, NumericMatrix< double >& dist_mat, uint seq_count ){
#ifdef MISALIGNMENT_WORKAROUND
seq_count++;
#endif
distance_matrix = dist_mat;
// check whether the file exists
ifstream guide_file( tree_filename.c_str() );
if( guide_file.is_open() )
guide_file.close(); // success
else
throw( "Unable to open guide tree file" );
char* phylip_name;
uint seqI;
free_aln( nseqs );
nseqs = seq_count;
alloc_aln( nseqs );
allocated_aln = true;
for( seqI = 1; seqI <= seq_count; seqI++ ){
ostringstream ss;
ss << "seq" << seqI;
int namelen = MAXNAMES < ss.str().size() ? MAXNAMES : ss.str().size();
strncpy( names[ seqI ], ss.str().c_str(), namelen); /* " " name */
strncpy( titles[ seqI ], ss.str().c_str(), namelen); /* " " title */
alloc_seq( seqI, 1 );
// set max_names and max_aln_length
if( strlen( names[ seqI ] ) > max_names )
max_names = strlen( names[ seqI ] );
}
// copy tmat entries
for( seqI = 0; seqI < nseqs; seqI++ )
for( uint seqJ = 0; seqJ < nseqs; seqJ++ )
tmat[ seqI + 1][ seqJ + 1 ] = 1 - distance_matrix( seqI, seqJ );
// copy phylo tree name
phylip_name = (char * ) ckalloc( tree_filename.length() + 1);
strcpy( phylip_name, tree_filename.c_str() );
int success = read_tree(phylip_name, (sint)0, nseqs);
phylip_name = (char*)ckfree( phylip_name );
allocated_aln = false;
if( !success )
throw "Error loading guide tree\n";
}
boolean ClustalInterface::Align( GappedAlignment& cr, Match* r_begin, Match* r_end, vector< gnSequence* >& seq_table ){
boolean flank = false;
gnSeqI gap_size = 0;
boolean create_ok = true;
uint seq_count = seq_table.size();
uint seqI;
uint align_seqs = 0;
//
// get the size of the largest intervening gap
// also do some sanity checking while we're at it.
//
try{
for( seqI = 0; seqI < seq_count; seqI++ ){
int64 gap_start = 0;
int64 gap_end = 0;
create_ok = getInterveningCoordinates( seq_table, r_begin, r_end, seqI, gap_start, gap_end );
// skip this sequence if it's undefined
if( gap_start == NO_MATCH || gap_end == NO_MATCH )
continue;
if( !create_ok )
break;
int64 diff = gap_end - gap_start;
if( diff <= 0 ){
continue; // can't align nothing
}
if( diff > max_alignment_length ){
cout << "gap from " << gap_start << " to " << gap_end << " is too big for ClustalW\n";
continue; // can't align if it's too big
}
gap_size = diff < gap_size ? gap_size : diff;
align_seqs++;
}
if( align_seqs <= 1 )
create_ok = false;
//
// Get the sequence in the intervening gaps between these two matches
// Include a flank of matching sequence on either side
//
vector< string > seq_data;
vector< int64 > starts;
gnSeqI left_flank, right_flank;
const gnFilter* rc_filter = gnFilter::DNAComplementFilter();
if( create_ok ){
// left_flank = min( r_begin->Length(), max( gap_size, min_flank_size ) );
// right_flank = min( r_end->Length(), max( gap_size, min_flank_size ) );
left_flank = 0;
right_flank = 0;
for( seqI = 0; seqI < seq_count; seqI++ ){
// cheap hack to avoid mysterious clustalW misalignment
#ifdef MISALIGNMENT_WORKAROUND
if( seqI == 1 )
seq_data.push_back( seq_data[ 0 ] );
#endif
// skip this sequence if it's undefined
if( (r_end != NULL && r_end->Start( seqI ) == NO_MATCH ) ||
(r_begin != NULL && r_begin->Start( seqI ) == NO_MATCH) ){
starts.push_back( NO_MATCH );
seq_data.push_back( "" );
continue;
}
// determine the size of the gap
int64 gap_start = 0;
int64 gap_end = 0;
getInterveningCoordinates( seq_table, r_begin, r_end, seqI, gap_start, gap_end );
int64 diff = gap_end - gap_start;
if( diff <= 0 || diff > max_alignment_length ){
starts.push_back( NO_MATCH );
seq_data.push_back( "" );
continue;
}
// calculate flank size and extract sequence data
if( r_end == NULL || r_end->Start( seqI ) > 0 ){
starts.push_back( gap_start );
seq_data.push_back( seq_table[ seqI ]->ToString( left_flank + diff + right_flank, gap_start - left_flank ) );
}else{
// reverse complement the sequence data.
starts.push_back( -gap_start );
string cur_seq_data = seq_table[ seqI ]->ToString( left_flank + diff + right_flank, gap_start - right_flank );
rc_filter->ReverseFilter( cur_seq_data );
seq_data.push_back( cur_seq_data );
}
}
}
if( create_ok ){
if( !CallClustal( seq_data ) ){
cout << "Clustal was unable to align:\n";
cout << "Left match: " << *r_begin << endl;
cout << "Right match: " << *r_end << endl;
return false;
}
// ensure that the flanks were successfully aligned
boolean good_alignment = true;
gnSeqI flankI = 0;
gnSeqI align_length=0;
for( seqI = 1; seqI <= seq_count; seqI++ )
if( align_length < ( seqlen_array[seqI] < 0 ? 0 : (gnSeqI)seqlen_array[seqI] ))
align_length = seqlen_array[seqI];
if( !good_alignment ){
// just align without the flanking regions for now??
return false;
}else{
// now extract the alignment from clustal's global variables
cr = GappedAlignment( seq_count, align_length );
vector< string > align_array;
int64 last_residue = -1; // tracks the right-most residue in the alignment
int64 first_residue = align_length + 2; // tracks the left-most residue in the alignment
#ifdef MISALIGNMENT_WORKAROUND
for( seqI = 2; seqI <= seq_count + 1; seqI++ ){
#else
for( seqI = 1; seqI <= seq_count; seqI++ ){
#endif
string new_seq = string( seqlen_array[ seqI ] - left_flank - right_flank, '-' );
uint new_seq_charI = 0;
uint cur_seq_len = 0;
for( uint charJ = left_flank + 1; charJ <= seqlen_array[ seqI ] - right_flank; charJ++ ){
char val = seq_array[ seqI ][ charJ ];
if( val >= 0 && val <= max_aa ){
if( charJ > last_residue )
last_residue = charJ;
if( charJ < first_residue )
first_residue = charJ;
new_seq[ new_seq_charI ]= amino_acid_codes[ val ];
cur_seq_len++;
}
new_seq_charI++;
}
align_array.push_back( new_seq );
// cerr << "new_seq.size() is: " << new_seq.size() << endl;
#ifdef MISALIGNMENT_WORKAROUND
cr.SetStart( seqI - 2, starts[ seqI - 2 ] );
cr.SetLength( cur_seq_len, seqI - 2 );
#else
cr.SetStart( seqI - 1, starts[ seqI - 1 ] );
cr.SetLength( cur_seq_len, seqI - 1 );
#endif
}
int64 end_gap_count = align_array[ 0 ].size() - (last_residue - left_flank);
if( last_residue != -1 && end_gap_count > 0 ){
for( seqI = 0; seqI < align_array.size(); seqI++ ){
align_array[ seqI ] = align_array[ seqI ].substr( 0, align_array[ seqI ].size() - end_gap_count );
}
}
int64 start_gap_count = left_flank + 1 - first_residue;
if( first_residue != align_length && start_gap_count > 0 ){
for( seqI = 0; seqI < align_array.size(); seqI++ ){
align_array[ seqI ] = align_array[ seqI ].substr( start_gap_count, align_array[ seqI ].size() - start_gap_count );
}
}
cr.SetAlignment( align_array );
}
return true;
}
}catch(exception& e){
cerr << "At: " << __FILE__ << ":" << __LINE__ << endl;
cerr << e.what();
}
return false;
}
boolean ClustalInterface::CallClustal( vector< string >& seq_table ){
char* phylip_name;
// if( allocated_aln )
free_aln( nseqs );
alloc_aln( seq_table.size() );
allocated_aln = true;
if( distance_matrix.cols() == seq_table.size() ){
// copy tmat entries
for( uint seqI = 0; seqI < nseqs; seqI++ )
for( uint seqJ = 0; seqJ < nseqs; seqJ++ )
tmat[ seqI + 1][ seqJ + 1 ] = 1 - distance_matrix( seqI, seqJ );
}else{
// prepare to infer a phylo tree
phylip_name = (char * ) ckalloc( strlen( "tmp_tree.txt" ) + 1);
strcpy( phylip_name, "tmp_tree.txt" );
}
uint seqI;
max_aln_length = 0;
max_names = 0;
for( seqI = 1; seqI <= seq_table.size(); seqI++ ){
seqlen_array[ seqI ] = seq_table[ seqI - 1 ].length(); /* store the length */
ostringstream ss;
ss << "seq" << seqI;
int namelen = ss.str().size();
names[ seqI ] = (char * ) ckalloc( namelen + 1 );
titles[ seqI ] = (char * ) ckalloc( namelen + 1 );
strcpy( names[ seqI ], ss.str().c_str()); /* " " name */
strcpy( titles[ seqI ], ss.str().c_str()); /* " " title */
// set max_names and max_aln_length
if( (int)strlen( names[ seqI ] ) > max_names )
max_names = strlen( names[ seqI ] );
if( seqlen_array[ seqI ] > max_aln_length )
max_aln_length = seqlen_array[ seqI ];
}
for( seqI = 1; seqI <= seq_table.size(); seqI++ ){
alloc_seq( seqI, max_aln_length );
char* seq_char_array = new char[ seq_table[ seqI - 1 ].length() + 2];
uint copyI = 0;
string& dna_seq = seq_table[ seqI - 1 ];
for( ; copyI < dna_seq.length(); copyI++ )
seq_char_array[ copyI + 1 ] = toupper( dna_seq[ copyI ] );
seq_char_array[ 0 ] = '-'; // silly clustal ignores the first character.
seq_char_array[ copyI + 1 ] = 0;
n_encode( seq_char_array, seq_array[ seqI ], dna_seq.length() );
delete[] seq_char_array;
}
max_aln_length *= 2;
/* struct_penalties1 = struct_penalties2 = NONE;
if (sec_struct_mask1 != NULL) sec_struct_mask1=( char* )ckfree(sec_struct_mask1);
if (sec_struct_mask2 != NULL) sec_struct_mask2=( char* )ckfree(sec_struct_mask2);
if (gap_penalty_mask1 != NULL) gap_penalty_mask1=( char* )ckfree(gap_penalty_mask1);
if (gap_penalty_mask2 != NULL) gap_penalty_mask2=( char* )ckfree(gap_penalty_mask2);
if (ss_name1 != NULL) ss_name1=( char* )ckfree(ss_name1);
if (ss_name2 != NULL) ss_name2=( char* )ckfree(ss_name2);
*/
nseqs = seq_table.size();
gap_open = dna_gap_open;
gap_extend = dna_gap_extend;
pw_go_penalty = dna_pw_go_penalty;
pw_ge_penalty = dna_pw_ge_penalty;
/* ktup = dna_ktup;
window = dna_window;
signif = dna_signif;
wind_gap = dna_wind_gap;
*/ dnaflag = TRUE;
output_clustal = FALSE;
int retval = 0;
if( distance_matrix.cols() == seq_table.size() ){
// char* dump_file = "clustalout.txt";
// output_clustal = TRUE;
// if((clustal_outfile = open_explicit_file( dump_file ))==NULL) return false;
retval = malign_nofiles( 0, false );
// create_alignment_output( 1, nseqs );
// fclose( clustal_outfile ); // this is done by the clustal output function
}else{
pairalign((sint)0,nseqs,(sint)0,nseqs);
FILE* tree;
if((tree = open_explicit_file( phylip_name ))==NULL) return false;
if (nseqs >= 2) {
guide_tree(tree,1,nseqs);
}
// char* dump_file = "clustalout.txt";
// if((clustal_outfile = open_explicit_file( dump_file ))==NULL) return false;
retval = malign( 0, phylip_name );
phylip_name = (char*)ckfree( phylip_name );
// fclose( clustal_outfile ); // this is done by the clustal output function
}
if( retval <= 0 )
return false;
return true;
}
/*
lint get_aln_score(void)
{
static short *mat_xref, *matptr;
static sint maxres;
static sint s1,s2,c1,c2;
static sint ngaps;
static sint i,l1,l2;
static lint score;
static sint matrix[NUMRES][NUMRES];
matptr = blosum45mt;
mat_xref = def_aa_xref;
maxres = get_matrix(matptr, mat_xref, matrix, TRUE, 100);
if (maxres == 0)
{
fprintf(stdout,"Error: matrix blosum30 not found\n");
return -1;
}
score=0;
for (s1=1;s1<=nseqs;s1++)
{
for (s2=1;s2<s1;s2++)
{
l1 = seqlen_array[s1];
l2 = seqlen_array[s2];
for (i=1;i<l1 && i<l2;i++)
{
c1 = seq_array[s1][i];
c2 = seq_array[s2][i];
if ((c1>=0) && (c1<=max_aa) && (c2>=0) && (c2<=max_aa))
score += matrix[c1][c2];
}
ngaps = count_gaps(s1, s2, l1);
score -= (int)(100 * gap_open * ngaps);
}
}
score /= 100;
return score;
}
*/
}
|