1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
|
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "libMems/GreedyBreakpointElimination.h"
#include "libMems/ProgressiveAligner.h"
#include "libMems/Aligner.h"
#include "libMems/Islands.h"
#include "libMems/DNAFileSML.h"
#include "libMems/MuscleInterface.h" // it's the default gapped aligner
#include "libGenome/gnRAWSource.h"
#include "libMems/gnAlignedSequences.h"
#include "libMems/CompactGappedAlignment.h"
#include "libMems/MatchProjectionAdapter.h"
#include "libMems/PairwiseMatchFinder.h"
#include "libMems/TreeUtilities.h"
#include "libMems/PairwiseMatchAdapter.h"
#include <boost/dynamic_bitset.hpp>
#include <boost/tuple/tuple.hpp>
#include <map>
#include <fstream> // for debugging
#include <sstream>
#include <stack>
#include <algorithm>
#include <limits>
#include <iomanip>
using namespace std;
using namespace genome;
namespace mems {
// working in mems
bool penalize_repeats = false;
void printProgress( uint prev_prog, uint cur_prog, ostream& os )
{
if( prev_prog != cur_prog )
{
if( cur_prog / 10 != prev_prog / 10 )
os << endl;
os << cur_prog << "%..";
os.flush();
}
}
void getPairwiseLCBs(
uint nI,
uint nJ,
uint dI,
uint dJ,
vector< TrackingMatch* >& tracking_matches,
vector< TrackingLCB<TrackingMatch*> >& t_lcbs,
boost::multi_array< double, 3 >& tm_score_array,
boost::multi_array< size_t, 3 >& tm_lcb_id_array )
{
// make a set of projection matches
vector< AbstractMatch* > pair_matches;
for( size_t mI = 0; mI < tracking_matches.size(); ++mI )
{
if( tracking_matches[mI]->node_match->LeftEnd(nI) == NO_MATCH ||
tracking_matches[mI]->node_match->LeftEnd(nJ) == NO_MATCH )
continue;
PairwiseMatchAdapter pma(tracking_matches[mI]->node_match, nI, nJ );
pma.tm = tracking_matches[mI];
if( pma.Orientation(0) == AbstractMatch::reverse )
pma.Invert();
pair_matches.push_back(pma.Copy());
}
// find LCBs...
vector< gnSeqI > breakpoints;
IdentifyBreakpoints( pair_matches, breakpoints );
vector< vector< AbstractMatch* > > LCB_list;
ComputeLCBs_v2( pair_matches, breakpoints, LCB_list );
//
// now compute scores on them
//
vector< double > lcb_scores(LCB_list.size());
for( size_t lcbI = 0; lcbI < LCB_list.size(); ++lcbI )
{
double lcb_score = 0;
for( size_t mI = 0; mI < LCB_list[lcbI].size(); ++mI )
{
PairwiseMatchAdapter* pma = (PairwiseMatchAdapter*)LCB_list[lcbI][mI];
lcb_score += tm_score_array[pma->tm->match_id][dI][dJ];
}
lcb_scores[lcbI] = lcb_score;
}
// and build the pairwise adjacency list
vector< LCB > adjacencies;
computeLCBAdjacencies_v3( LCB_list, lcb_scores, adjacencies );
t_lcbs.resize(adjacencies.size());
for( size_t lcbI = 0; lcbI < adjacencies.size(); ++lcbI )
{
t_lcbs[lcbI] = adjacencies[lcbI];
t_lcbs[lcbI].matches.resize(LCB_list[lcbI].size());
for( size_t mI = 0; mI < LCB_list[lcbI].size(); ++mI )
t_lcbs[lcbI].matches[mI] = ((PairwiseMatchAdapter*)LCB_list[lcbI][mI])->tm;
// sort them by ptr
sort( t_lcbs[lcbI].matches.begin(), t_lcbs[lcbI].matches.end() );
// set the match LCB ids appropriately
for( size_t mI = 0; mI < t_lcbs[lcbI].matches.size(); ++mI )
tm_lcb_id_array[t_lcbs[lcbI].matches[mI]->match_id][dI][dJ] = lcbI;
}
// free the memory used by pairwise matches
for( size_t mI = 0; mI < pair_matches.size(); ++mI )
pair_matches[mI]->Free();
}
/** creates an appropriately sized matrix for mapping individual TrackingMatches to their containing LCBs */
void initTrackingMatchLCBTracking(
const std::vector< TrackingMatch >& tracking_matches,
size_t n1_count,
size_t n2_count,
boost::multi_array< size_t, 3 >& tm_lcb_id_array )
{
tm_lcb_id_array.resize( boost::extents[tracking_matches.size()][n1_count][n2_count] );
for( size_t mI = 0; mI < tracking_matches.size(); ++mI )
{
for( size_t nI = 0; nI < n1_count; ++nI )
for( size_t nJ = 0; nJ < n2_count; ++nJ )
tm_lcb_id_array[mI][nI][nJ] = LCB_UNASSIGNED;
}
}
/** removes an LCB from an LCB list and coalesces surrounding LCBs. Returns the number of LCBs removed
* After LCBs are removed, the adjacency list should be processed with filterLCBs()
* @param id_remaps This is populated with a list of LCB ids that were deleted or coalesced and now have a new LCB id
* for each coalesced LCB, an entry of the form <old id, new id> is added, deleted LCBs have
* entries of the form <deleted, -1>. Entries appear in the order operations were performed
* and the function undoLcbRemoval() can undo these operations in reverse order
*/
template< class LcbVector >
uint RemoveLCBandCoalesce( size_t lcbI, uint seq_count, LcbVector& adjacencies, std::vector< double >& scores, std::vector< std::pair< uint, uint > >& id_remaps, std::vector< uint >& impact_list )
{
uint removed_count = 0;
vector< uint > imp_tmp(seq_count * (2 + seq_count * 4), LCB_UNASSIGNED);
swap(impact_list, imp_tmp);
size_t impactI = 0;
id_remaps.clear();
adjacencies[ lcbI ].lcb_id = -2;
// update adjacencies
uint seqI;
uint left_adj;
uint right_adj;
for( seqI = 0; seqI < seq_count; seqI++ ){
left_adj = adjacencies[ lcbI ].left_adjacency[ seqI ];
right_adj = adjacencies[ lcbI ].right_adjacency[ seqI ];
if( left_adj != -1 )
adjacencies[ left_adj ].right_adjacency[ seqI ] = right_adj;
if( right_adj != -1 && right_adj != adjacencies.size() )
adjacencies[ right_adj ].left_adjacency[ seqI ] = left_adj;
}
// populate the impact list -- LCBs whose removal scores may change due to this one's removal
for( seqI = 0; seqI < seq_count; seqI++ ){
left_adj = adjacencies[ lcbI ].left_adjacency[ seqI ];
right_adj = adjacencies[ lcbI ].right_adjacency[ seqI ];
impact_list[impactI++] = left_adj;
impact_list[impactI++] = right_adj;
for( uint seqJ = 0; seqJ < seq_count; seqJ++ ){
if( left_adj != -1 )
{
impact_list[impactI++] = adjacencies[ left_adj ].left_adjacency[ seqJ ];
impact_list[impactI++] = adjacencies[ left_adj ].right_adjacency[ seqJ ];
}
if( right_adj != -1 )
{
impact_list[impactI++] = adjacencies[ right_adj ].left_adjacency[ seqJ ];
impact_list[impactI++] = adjacencies[ right_adj ].right_adjacency[ seqJ ];
}
}
}
// just deleted an lcb...
id_remaps.push_back( make_pair( lcbI, -1 ) );
removed_count++;
// check for collapse
for( seqI = 0; seqI < seq_count; seqI++ ){
left_adj = adjacencies[ lcbI ].left_adjacency[ seqI ];
right_adj = adjacencies[ lcbI ].right_adjacency[ seqI ];
// find the real slim shady
while( left_adj != -1 && adjacencies[ left_adj ].lcb_id != left_adj )
left_adj = adjacencies[ left_adj ].left_adjacency[ seqI ];
while( right_adj != -1 && adjacencies[ right_adj ].lcb_id != right_adj )
right_adj = adjacencies[ right_adj ].right_adjacency[ seqI ];
if( left_adj == -1 || right_adj == -1 )
continue; // can't collapse with a non-existant LCB!
if( adjacencies[ left_adj ].lcb_id != left_adj ||
adjacencies[ right_adj ].lcb_id != right_adj )
if( seqI > 0 )
continue; // already coalesced
else
cerr << "trouble on down street\n";
// check whether the two LCBs are adjacent in each sequence
boolean orientation = adjacencies[ left_adj ].left_end[ seqI ] > 0 ? true : false;
uint seqJ;
for( seqJ = 0; seqJ < seq_count; seqJ++ ){
boolean j_orientation = adjacencies[ left_adj ].left_end[ seqJ ] > 0;
if( j_orientation == orientation &&
adjacencies[ left_adj ].right_adjacency[ seqJ ] != right_adj )
break;
if( j_orientation != orientation &&
adjacencies[ left_adj ].left_adjacency[ seqJ ] != right_adj )
break;
// check that they are both in the same orientation
if( adjacencies[ right_adj ].left_end[ seqJ ] > 0 != j_orientation )
break;
}
if( seqJ != seq_count ||
adjacencies[ left_adj ].to_be_deleted ||
adjacencies[ right_adj ].to_be_deleted )
continue; // if these two aren't collinear, or one or both will get deleted, then don't coalesce
// these two can be coalesced
// do it. do it now.
id_remaps.push_back( make_pair( adjacencies[ right_adj ].lcb_id, left_adj ) );
adjacencies[ right_adj ].lcb_id = left_adj;
scores[ left_adj ] += scores[ right_adj ];
adjacencies[ left_adj ].weight += adjacencies[ right_adj ].weight;
// unlink right_adj from the adjacency list and
// update left and right ends of left_adj
for( seqJ = 0; seqJ < seq_count; seqJ++ ){
boolean j_orientation = adjacencies[ left_adj ].left_end[ seqJ ] > 0;
uint rr_adj = adjacencies[ right_adj ].right_adjacency[ seqJ ];
uint rl_adj = adjacencies[ right_adj ].left_adjacency[ seqJ ];
if( j_orientation == orientation ){
adjacencies[ left_adj ].right_end[ seqJ ] = adjacencies[ right_adj ].right_end[ seqJ ];
adjacencies[ left_adj ].right_adjacency[ seqJ ] = rr_adj;
if( rr_adj != -1 )
adjacencies[ rr_adj ].left_adjacency[ seqJ ] = left_adj;
}else{
adjacencies[ left_adj ].left_end[ seqJ ] = adjacencies[ right_adj ].left_end[ seqJ ];
adjacencies[ left_adj ].left_adjacency[ seqJ ] = rl_adj;
if( rl_adj != -1 )
adjacencies[ rl_adj ].right_adjacency[ seqJ ] = left_adj;
}
}
// just coalesced two LCBs...
removed_count++;
}
// uniquify the impact list and get rid of empty entries
std::sort( impact_list.begin(), impact_list.end() );
vector< uint >::iterator imp_end = std::unique( impact_list.begin(), impact_list.end() );
vector< uint >::iterator imp_preend = std::lower_bound( impact_list.begin(), imp_end, LCB_UNASSIGNED );
impact_list.erase( imp_preend, impact_list.end() );
return removed_count;
}
template< class LcbVector >
void undoLcbRemoval( uint seq_count, LcbVector& adjs, std::vector< std::pair< uint, uint > >& id_remaps )
{
for( size_t rI = id_remaps.size(); rI > 0; --rI )
{
if( id_remaps[rI-1].second == -1 )
{
// this one was deleted
// revert adjacencies
uint lcbI = id_remaps[rI-1].first;
for( uint seqI = 0; seqI < seq_count; seqI++ )
{
uint left_adj = adjs[ lcbI ].left_adjacency[ seqI ];
uint right_adj = adjs[ lcbI ].right_adjacency[ seqI ];
if( left_adj != -1 )
adjs[ left_adj ].right_adjacency[ seqI ] = lcbI;
if( right_adj != -1 && right_adj != adjs.size() )
adjs[ right_adj ].left_adjacency[ seqI ] = lcbI;
}
adjs[lcbI].lcb_id = lcbI; // reset the lcb id
adjs[lcbI].to_be_deleted = false; // no longer TBD
}else{
// this one was coalesced
// uncoalesce it
uint lcbI = id_remaps[rI-1].first;
uint lcbJ = id_remaps[rI-1].second;
adjs[lcbI].lcb_id = lcbI;
adjs[lcbJ].weight -= adjs[lcbI].weight;
// link lcbI back in
// TODO: fix right end and left end coordinates
for( uint seqI = 0; seqI < seq_count; ++seqI )
{
uint ladj = adjs[lcbI].left_adjacency[seqI];
uint radj = adjs[lcbI].right_adjacency[seqI];
if( ladj == lcbJ )
{
adjs[lcbJ].right_adjacency[seqI] = lcbI;
if( radj != -1 && radj != adjs.size())
adjs[radj].left_adjacency[seqI] = lcbI;
}else
if( radj == lcbJ )
{
adjs[lcbJ].left_adjacency[seqI] = lcbI;
if( ladj != -1 && ladj != adjs.size())
adjs[ladj].right_adjacency[seqI] = lcbI;
}
}
}
}
}
EvenFasterSumOfPairsBreakpointScorer::EvenFasterSumOfPairsBreakpointScorer(
double breakpoint_penalty,
double minimum_breakpoint_penalty,
boost::multi_array<double,2> bp_weight_matrix,
boost::multi_array<double,2> conservation_weight_matrix,
vector< TrackingMatch* > tracking_match,
PairwiseLCBMatrix& pairwise_adjacency_matrix,
vector<node_id_t>& n1_descendants,
vector<node_id_t>& n2_descendants,
boost::multi_array< double, 3 >& tm_score_array,
boost::multi_array< size_t, 3 >& tm_lcb_id_array,
size_t seqI_begin,
size_t seqI_end,
size_t seqJ_begin,
size_t seqJ_end
) :
bp_penalty( breakpoint_penalty ),
min_breakpoint_penalty( minimum_breakpoint_penalty ),
bp_weights( bp_weight_matrix ),
conservation_weights( conservation_weight_matrix ),
tracking_matches( tracking_match ),
pairwise_adjacencies( pairwise_adjacency_matrix ),
n1_des(n1_descendants),
n2_des(n2_descendants),
tm_score_array(tm_score_array),
tm_lcb_id_array(tm_lcb_id_array),
seqI_count(pairwise_adjacencies.shape()[0]),
seqJ_count(pairwise_adjacencies.shape()[1]),
seqI_first(seqI_begin),
seqI_last(seqI_end),
seqJ_first(seqJ_begin),
seqJ_last(seqJ_end),
first_time(true)
{
std::sort(tracking_matches.begin(), tracking_matches.end());
pairwise_lcb_count.resize( boost::extents[pairwise_adjacencies.shape()[0]][pairwise_adjacencies.shape()[1]] );
pairwise_lcb_score.resize( boost::extents[pairwise_adjacencies.shape()[0]][pairwise_adjacencies.shape()[1]] );;
all_id_remaps.resize( boost::extents[pairwise_lcb_count.shape()[0]][pairwise_lcb_count.shape()[1]] );
full_impact_list.resize( boost::extents[pairwise_lcb_count.shape()[0]][pairwise_lcb_count.shape()[1]] );
my_del_lcbs.resize(100); // buffer for use during lcb removal score computation
for( size_t i = 0; i < 3; ++i )
{
internal_lcb_score_diff[i].resize( boost::extents[pairwise_adjacencies.shape()[0]][pairwise_adjacencies.shape()[1]] );
internal_lcb_removed_count[i].resize( boost::extents[pairwise_adjacencies.shape()[0]][pairwise_adjacencies.shape()[1]] );
}
lsd_zeros.resize( internal_lcb_score_diff[0].num_elements(), 0 );
lrc_zeros.resize( internal_lcb_removed_count[0].num_elements(), 0 );
using_lsd = -1;
size_t max_pair_adj_size = 0;
for( size_t i = 0; i < seqI_count; ++i )
{
for( size_t j = 0; j < seqJ_count; ++j )
{
pairwise_lcb_count[i][j] = pairwise_adjacencies[i][j].size();
pairwise_lcb_score[i][j] = 0;
max_pair_adj_size = (std::max)(max_pair_adj_size, pairwise_adjacencies[i][j].size());
for( size_t lcbI = 0; lcbI < pairwise_adjacencies[i][j].size(); ++lcbI )
pairwise_lcb_score[i][j] += pairwise_adjacencies[i][j][lcbI].weight;
}
}
bogus_scores.resize(max_pair_adj_size+10);
};
/**
* Returns the number of possible moves a search algorithm may make from the current
* location in LCB search space. In this case it's simply the total number of pairwise LCBs
*/
size_t EvenFasterSumOfPairsBreakpointScorer::getMoveCount()
{
size_t move_count = 0;
for( size_t i = seqI_first; i < seqI_last; ++i )
for( size_t j = seqJ_first; j < seqJ_last; ++j )
move_count += pairwise_adjacencies[i][j].size();
return move_count;
}
/** returns the score of the current state */
double EvenFasterSumOfPairsBreakpointScorer::score()
{
// score is the sum of all pairwise LCB scores,
// minus the sum of all pairwise breakpoint penalties
double score = 0;
for( size_t seqI = seqI_first; seqI < seqI_last; ++seqI )
{
for( size_t seqJ = seqJ_first; seqJ < seqJ_last; ++seqJ )
{
const double pw_lcb_score = pairwise_lcb_score[seqI][seqJ];
// add LCB scores
score += pairwise_lcb_score[seqI][seqJ];
// subtract breakpoint penalty
// subtract 1 from number of LCBs so that a single circular LCB doesn't get penalized
double cweights = 1 - conservation_weights[seqI][seqJ];
double bweights = 1 - bp_weights[seqI][seqJ];
double penalty = max( bp_penalty * cweights * cweights * cweights * cweights * bweights * bweights, min_breakpoint_penalty );
if(first_time)
cout << "Scoring with scaled breakpoint penalty: " << penalty << endl;
first_time = false;
score -= ( penalty * (pairwise_lcb_count[seqI][seqJ]-1));
if( !(score > -1e200 && score < 1e200) )
{
genome::breakHere();
cerr << "bp_weights[seqI][seqJ] " << bp_weights[seqI][seqJ] << endl;
cerr << "conservation_weights[seqI][seqJ] " << conservation_weights[seqI][seqJ] << endl;
cerr << "pairwise_lcb_count[seqI][seqJ] " << pairwise_lcb_count[seqI][seqJ] << endl;
cerr << "pairwise_lcb_score[seqI][seqJ] " << pw_lcb_score << endl;
cerr << "Invalid score!!\n";
}
}
}
return score;
}
/** scores a move */
double EvenFasterSumOfPairsBreakpointScorer::operator()( pair< double, size_t >& the_move )
{
size_t new_move_count;
vector< pair< double, size_t > > new_move_list;
using_lsd++;
std::copy(lsd_zeros.begin(),lsd_zeros.end(),internal_lcb_score_diff[using_lsd].data());
std::copy(lrc_zeros.begin(),lrc_zeros.end(),internal_lcb_removed_count[using_lsd].data());
remove( the_move, false, internal_lcb_score_diff[using_lsd], internal_lcb_removed_count[using_lsd], false, new_move_list, new_move_count );
applyScoreDifference( internal_lcb_score_diff[using_lsd], internal_lcb_removed_count[using_lsd] );
double m_score = score();
undoScoreDifference( internal_lcb_score_diff[using_lsd], internal_lcb_removed_count[using_lsd] );
using_lsd--;
return m_score;
}
bool EvenFasterSumOfPairsBreakpointScorer::isValid( pair< double, size_t >& the_move )
{
using_lsd++;
std::copy(lsd_zeros.begin(),lsd_zeros.end(),internal_lcb_score_diff[using_lsd].data());
std::copy(lrc_zeros.begin(),lrc_zeros.end(),internal_lcb_removed_count[using_lsd].data());
vector< pair< double, size_t > > new_move_list;
size_t new_move_count;
bool success = remove( the_move, false, internal_lcb_score_diff[using_lsd], internal_lcb_removed_count[using_lsd], false, new_move_list, new_move_count );
using_lsd--;
return success;
}
bool EvenFasterSumOfPairsBreakpointScorer::remove( pair< double, size_t >& the_move, vector< pair< double, size_t > >& new_move_list, size_t& new_move_count )
{
using_lsd++;
std::copy(lsd_zeros.begin(),lsd_zeros.end(),internal_lcb_score_diff[using_lsd].data());
std::copy(lrc_zeros.begin(),lrc_zeros.end(),internal_lcb_removed_count[using_lsd].data());
bool success = remove( the_move, true, internal_lcb_score_diff[using_lsd], internal_lcb_removed_count[using_lsd], true, new_move_list, new_move_count );
if( success )
applyScoreDifference( internal_lcb_score_diff[using_lsd], internal_lcb_removed_count[using_lsd] );
using_lsd--;
return success;
}
void EvenFasterSumOfPairsBreakpointScorer::applyScoreDifference( boost::multi_array< double, 2 >& lcb_score_diff, boost::multi_array< size_t, 2 >& lcb_removed_count )
{
size_t nelems = pairwise_lcb_count.num_elements();
for( size_t elemI = 0; elemI < nelems; elemI++ )
{
if( !(lcb_score_diff.data()[elemI] > -1e200 && lcb_score_diff.data()[elemI] < 1e200) )
{
genome::breakHere();
cerr << "Invalid score!!\n";
}
pairwise_lcb_count.data()[elemI] -= lcb_removed_count.data()[elemI];
pairwise_lcb_score.data()[elemI] -= lcb_score_diff.data()[elemI];
if( !(pairwise_lcb_score.data()[elemI] > -1e200 && pairwise_lcb_score.data()[elemI] < 1e200) )
{
genome::breakHere();
cerr << "Invalid score!!\n";
}
}
}
void EvenFasterSumOfPairsBreakpointScorer::undoScoreDifference( boost::multi_array< double, 2 >& lcb_score_diff, boost::multi_array< size_t, 2 >& lcb_removed_count )
{
size_t nelems = pairwise_lcb_count.num_elements();
for( size_t elemI = 0; elemI < nelems; elemI++ )
{
if( !(lcb_score_diff.data()[elemI] > -1e200 && lcb_score_diff.data()[elemI] < 1e200) )
{
genome::breakHere();
cerr << "Invalid score!!\n";
}
pairwise_lcb_count.data()[elemI] += lcb_removed_count.data()[elemI];
pairwise_lcb_score.data()[elemI] += lcb_score_diff.data()[elemI];
if( !(pairwise_lcb_score.data()[elemI] > -1e200 && pairwise_lcb_score.data()[elemI] < 1e200) )
{
genome::breakHere();
cerr << "Invalid score!!\n";
}
}
}
size_t EvenFasterSumOfPairsBreakpointScorer::getMaxNewMoveCount()
{
return 20 * seqI_count * seqJ_count;
}
/** call to indicate that the given LCB has been removed
* returns false if the move was invalid
*/
bool EvenFasterSumOfPairsBreakpointScorer::remove( pair< double, size_t >& the_move, bool really_remove, boost::multi_array< double, 2 >& lcb_score_diff, boost::multi_array< size_t, 2 >& lcb_removed_count, bool score_new_moves, vector< pair< double, size_t > >& new_move_list, size_t& new_move_count )
{
if( score_new_moves && !really_remove )
{
cerr << "Error: Incompatible options in the breakpoint scorer!!!\n";
throw "oh shit!";
}
new_move_count = 0;
// figure out which lcb we're being asked to delete
size_t moveI = the_move.second;
size_t move_count = 0;
size_t move_base = 0;
size_t seqI = 0;
size_t seqJ = 0;
for( seqI = seqI_first; seqI < seqI_last; ++seqI )
{
for( seqJ = seqJ_first; seqJ < seqJ_last; ++seqJ )
{
all_id_remaps[seqI][seqJ].clear();
full_impact_list[seqI][seqJ].clear();
}
}
for( seqI = seqI_first; seqI < seqI_last; ++seqI )
{
for( seqJ = seqJ_first; seqJ < seqJ_last; ++seqJ )
{
move_count += pairwise_adjacencies[seqI][seqJ].size();
if( move_count > moveI )
break;
move_base = move_count;
}
if( move_count > moveI )
break;
}
// score deletion of the LCB at (moveI - move_base) from the pairwise alignment of seqI and seqJ
size_t del_lcb = moveI - move_base;
if( pairwise_adjacencies[seqI][seqJ][del_lcb].lcb_id != del_lcb && really_remove )
{
if( pairwise_adjacencies[seqI][seqJ][del_lcb].lcb_id == LCB_UNASSIGNED )
cerr << "bad movement, dirty dancing\n";
return false; // this is an invalid move -- already deleted or coalesced with another
}
if( pairwise_adjacencies[seqI][seqJ][del_lcb].lcb_id != del_lcb )
{
return false; // this is an invalid move -- already deleted
}
vector< TrackingMatch* > matches(pairwise_adjacencies[seqI][seqJ][del_lcb].matches);
double cur_score = score();
if( really_remove )
{
deleted_tracking_matches.insert( deleted_tracking_matches.end(), matches.begin(), matches.end() );
}
for( size_t i = seqI_first; i < seqI_last; ++i )
{
for( size_t j = seqJ_first; j < seqJ_last; ++j )
{
lcb_score_diff[i][j] = 0;
vector< TrackingLCB< TrackingMatch* > >& adjs = pairwise_adjacencies[i][j];
// create a list of LCBs affected by deletion of this match
// check whether any of them will have all of their matches removed
if( lcb_ids.size() < matches.size() )
lcb_ids.resize( matches.size() + 100 );
for( size_t mI = 0; mI < matches.size(); ++mI )
lcb_ids[mI] = tm_lcb_id_array[matches[mI]->match_id][i][j];
size_t lcb_id_count = matches.size();
std::sort(lcb_ids.begin(), lcb_ids.begin()+lcb_id_count);
vector< size_t >::iterator last = std::unique(lcb_ids.begin(), lcb_ids.begin()+lcb_id_count);
lcb_id_count = last - lcb_ids.begin();
// delete the last one if its unassigned
if( lcb_ids[lcb_id_count-1] == LCB_UNASSIGNED )
lcb_id_count--;
vector< pair< size_t, vector< TrackingMatch* > > > aff_lcbs(lcb_id_count);
for( size_t lI = 0; lI < lcb_id_count; ++lI )
aff_lcbs[lI].first = lcb_ids[lI];
// organize the deleted matches
for( size_t mI = 0; mI < matches.size(); ++mI )
{
size_t id = tm_lcb_id_array[matches[mI]->match_id][i][j];
if( id == LCB_UNASSIGNED )
continue;
vector< pair< size_t, vector< TrackingMatch* > > >::iterator iter = std::lower_bound( aff_lcbs.begin(), aff_lcbs.end(), make_pair(id,vector< TrackingMatch* >() ) );
iter->second.push_back( matches[mI] );
}
// actually delete the matches and keep a list of LCBs that get completely deleted
size_t my_del_count = 0;
for( size_t lI = 0; lI < aff_lcbs.size(); ++lI )
{
vector< TrackingMatch* >& cur_matches = adjs[lcb_ids[lI]].matches;
size_t diff = cur_matches.size() - aff_lcbs[lI].second.size();
if( diff == 0 )
{
if( my_del_count + 1 >= my_del_lcbs.size() )
my_del_lcbs.resize(2*my_del_lcbs.size());
my_del_lcbs[my_del_count++] = lcb_ids[lI];
adjs[lcb_ids[lI]].to_be_deleted = true;
lcb_score_diff[i][j] += adjs[lcb_ids[lI]].weight;
if( really_remove )
{
adjs[lcb_ids[lI]].weight = 0;
cur_matches.clear();
}
continue;
}
// update the LCB score
double del_score_sum = 0;
for( size_t mI = 0; mI < aff_lcbs[lI].second.size(); ++mI )
del_score_sum += tm_score_array[aff_lcbs[lI].second[mI]->match_id][i][j];
lcb_score_diff[i][j] += del_score_sum;
full_impact_list[i][j].push_back( aff_lcbs[lI].first );
if( really_remove )
{
adjs[lcb_ids[lI]].weight -= del_score_sum;
// remove the deleted matches
vector< TrackingMatch* > dest( diff );
std::set_difference( cur_matches.begin(), cur_matches.end(),
aff_lcbs[lI].second.begin(), aff_lcbs[lI].second.end(), dest.begin() );
swap( dest, cur_matches );
}
}
lcb_removed_count[i][j] = 0;
// now remove each LCB that needs to be deleted
std::vector< std::pair< uint, uint > >& fid_remaps = all_id_remaps[i][j];
std::vector< uint >& fimp_list = full_impact_list[i][j];
for( size_t delI = 0; delI < my_del_count; ++delI )
{
if( adjs[my_del_lcbs[delI]].lcb_id != my_del_lcbs[delI] )
continue; // skip this one if it's already been deleted
std::vector< std::pair< uint, uint > > id_remaps;
std::vector< uint > impact_list;
uint removed_count = RemoveLCBandCoalesce( my_del_lcbs[delI], 2, adjs, bogus_scores, id_remaps, impact_list );
fid_remaps.insert( fid_remaps.end(), id_remaps.begin(), id_remaps.end() );
fimp_list.insert( fimp_list.end(), impact_list.begin(), impact_list.end() );
lcb_removed_count[i][j] += removed_count;
// only do this part if we're really deleting
if( really_remove )
{
// move all matches to the new LCB
for( size_t rI = 0; rI < id_remaps.size(); ++rI )
{
if( id_remaps[rI].second == -1 )
continue; // deletion
vector< TrackingMatch* >& src_matches = adjs[id_remaps[rI].first].matches;
vector< TrackingMatch* >& dest_matches = adjs[id_remaps[rI].second].matches;
for( size_t mI = 0; mI < src_matches.size(); ++mI )
tm_lcb_id_array[src_matches[mI]->match_id][i][j] = id_remaps[rI].second;
dest_matches.insert( dest_matches.end(), src_matches.begin(), src_matches.end() );
std::sort( dest_matches.begin(), dest_matches.end() );
src_matches.clear();
}
}
}
}
}
// will be undone later
applyScoreDifference( lcb_score_diff, lcb_removed_count );
double new_score = score();
if( score_new_moves )
{
size_t mbase = 0;
for( size_t i = seqI_first; i < seqI_last; ++i )
{
for( size_t j = seqJ_first; j < seqJ_last; ++j )
{
vector< TrackingLCB< TrackingMatch* > >& adjs = pairwise_adjacencies[i][j];
std::vector< uint >& fimp_list = full_impact_list[i][j];
sort( fimp_list.begin(), fimp_list.end() );
vector< uint >::iterator iter = std::unique( fimp_list.begin(), fimp_list.end() );
fimp_list.erase( iter, fimp_list.end() );
for( size_t fI = 0; fI < fimp_list.size(); fI++ )
{
if( adjs[fimp_list[fI]].lcb_id != fimp_list[fI] )
{
new_move_list[new_move_count++] = make_pair( -(std::numeric_limits<double>::max)(), mbase + fimp_list[fI] );
continue; // this one got trashed
}
// score removal of this block
pair< double, size_t > p( 0, mbase + fimp_list[fI] );
double scorediff = (*this)(p) - new_score;
p.first = scorediff;
new_move_list[new_move_count++] = p;
}
mbase += adjs.size();
}
}
}
// if we're not really removing, undo all the removals
if( !really_remove )
for( size_t i = seqI_first; i < seqI_last; ++i )
for( size_t j = seqJ_first; j < seqJ_last; ++j )
undoLcbRemoval( 2, pairwise_adjacencies[i][j], all_id_remaps[i][j] );
undoScoreDifference( lcb_score_diff, lcb_removed_count );
// if the change in score doesn't match then this is an invalid move!!
// allow for some numerical instability
bool valid = true;
if( new_score - cur_score < the_move.first - 0.00001 ||
new_score - cur_score > the_move.first + 0.00001 )
valid = false;
return valid;
}
vector< TrackingMatch* > EvenFasterSumOfPairsBreakpointScorer::getResults()
{
std::sort(deleted_tracking_matches.begin(), deleted_tracking_matches.end());
vector< TrackingMatch* > result_matches(tracking_matches.size()-deleted_tracking_matches.size());
std::set_difference( tracking_matches.begin(), tracking_matches.end(), deleted_tracking_matches.begin(), deleted_tracking_matches.end(), result_matches.begin() );
return result_matches;
}
bool EvenFasterSumOfPairsBreakpointScorer::validate()
{
vector< TrackingMatch* > trams = getResults(); // need to apply any deletions...
bool success = true; // be optimistic!
// make sure all the tracking matches point to the right LCBs
for( size_t tmI = 0; tmI < trams.size(); tmI++ )
{
TrackingMatch* tm = trams[tmI];
for( size_t i = 0; i < tm_lcb_id_array.shape()[1]; ++i )
for( size_t j = 0; j < tm_lcb_id_array.shape()[2]; ++j )
{
// skip this match if it's not defined
if( tm->node_match->LeftEnd(n1_des[i]) == NO_MATCH ||
tm->node_match->LeftEnd(n2_des[j]) == NO_MATCH ||
tm_lcb_id_array[tm->match_id][i][j] == LCB_UNASSIGNED)
continue;
// find the tracking match in this LCB
size_t id = tm_lcb_id_array[tm->match_id][i][j];
vector< TrackingMatch* >& matches = pairwise_adjacencies[i][j][id].matches;
vector< TrackingMatch* >::iterator iter = std::lower_bound( matches.begin(), matches.end(), tm );
if( iter == matches.end() || *iter != tm )
{
cerr << "Missing match!!\n";
cerr << "lcb_id: " << id << endl;
cerr << "match: " << tm << endl;
genome::breakHere();
success = false;
}
}
}
// make sure all the LCBs point to valid tracking matches
for( size_t i = 0; i < pairwise_adjacencies.shape()[0]; ++i )
for( size_t j = 0; j < pairwise_adjacencies.shape()[1]; ++j )
{
vector< TrackingLCB< TrackingMatch* > >& adjs = pairwise_adjacencies[i][j];
for( size_t lcbI = 0; lcbI < adjs.size(); lcbI++ )
{
for( size_t mI = 0; mI < adjs[lcbI].matches.size(); ++mI )
{
vector< TrackingMatch* >::iterator iter = std::lower_bound( trams.begin(), trams.end(), adjs[lcbI].matches[mI] );
if( *iter != adjs[lcbI].matches[mI] )
{
cerr << "Missing match: in adjacencies but not tracking_matches!!\n";
cerr << "lcb_id: " << tm_lcb_id_array[adjs[lcbI].matches[mI]->match_id][i][j] << endl;
genome::breakHere();
success = false;
}
}
}
}
// make sure that the number of breakpoints matches up with what tracking_matches suggests
vector< TrackingMatch* > final = trams;
// convert back to an LCB list
vector< AbstractMatch* > new_matches(final.size());
for( size_t mI = 0; mI < final.size(); ++mI )
new_matches[mI] = final[mI]->original_match;
vector< gnSeqI > breakpoints;
IdentifyBreakpoints( new_matches, breakpoints );
vector< vector< AbstractMatch* > > LCB_list;
IdentifyBreakpoints( new_matches, breakpoints );
ComputeLCBs_v2( new_matches, breakpoints, LCB_list );
cout << "breakpoints.size(): " << breakpoints.size() << "\tpairwise_lcb_count[0][0]: " << pairwise_lcb_count[0][0] << endl;
if( breakpoints.size() != pairwise_lcb_count[0][0] )
success = false;
size_t adjI = 0;
vector< TrackingLCB< TrackingMatch* > >& adjs = pairwise_adjacencies[0][0];
for( size_t lcbI = 0; lcbI < LCB_list.size(); ++lcbI )
{
// make sure each LCB exists...
while( adjI != -1 && adjI != adjs[adjI].lcb_id )
adjI++;
// compare matches...
vector< AbstractMatch* > ms(adjs[adjI].matches.size()+LCB_list[lcbI].size(), (AbstractMatch*)NULL);
std::sort( LCB_list[lcbI].begin(), LCB_list[lcbI].end() );
vector< AbstractMatch* > asdf(adjs[adjI].matches.size());
for( size_t mI = 0; mI < adjs[adjI].matches.size(); ++mI )
asdf[mI] = adjs[adjI].matches[mI]->original_match;
std::sort( asdf.begin(), asdf.end() );
std::set_symmetric_difference( LCB_list[lcbI].begin(), LCB_list[lcbI].end(), asdf.begin(), asdf.end(), ms.begin() );
// this should throw a fit if the sets aren't equal.
if( ms[0] != NULL )
{
cerr << "In adjacencies:\n";
for( size_t asdfI = 0; asdfI < asdf.size(); asdfI++ )
{
printMatch(asdf[asdfI], cerr);
cerr << endl;
}
cerr << "\nIn LCB_list:\n";
for( size_t mI = 0; mI < LCB_list[lcbI].size(); mI++ )
{
printMatch(LCB_list[lcbI][mI], cerr);
cerr << endl;
}
cerr << "\nAll matches ssc1\n";
SingleStartComparator<AbstractMatch> ssc1(1);
std::sort(new_matches.begin(), new_matches.end(), ssc1);
for( size_t mI = 0; mI < new_matches.size(); mI++ )
{
printMatch(new_matches[mI], cerr);
cerr << endl;
}
cerr << "\nAll matches ssc0\n";
SingleStartComparator<AbstractMatch> ssc0(0);
std::sort(new_matches.begin(), new_matches.end(), ssc0);
for( size_t mI = 0; mI < new_matches.size(); mI++ )
{
printMatch(new_matches[mI], cerr);
cerr << endl;
}
genome::breakHere();
}
adjI++;
}
return success;
}
SimpleBreakpointScorer::SimpleBreakpointScorer( std::vector< LCB >& adjacencies, double breakpoint_penalty, bool collinear ) :
adjs( adjacencies ),
bp_penalty( breakpoint_penalty ),
collinear( collinear )
{
scores = std::vector< double >(adjs.size(), 0);
total_weight = 0;
bp_count = adjs.size();
for( size_t lcbI = 0; lcbI < adjs.size(); lcbI++ )
total_weight += adjs[lcbI].weight;
}
size_t SimpleBreakpointScorer::getMoveCount()
{
return adjs.size();
}
double SimpleBreakpointScorer::score()
{
double bp_score = (double)bp_count * bp_penalty;
return total_weight - bp_score;
}
bool SimpleBreakpointScorer::isValid( size_t lcbI, double move_score )
{
if( adjs[lcbI].lcb_id != lcbI )
return false;
return (*this)(lcbI) == move_score;
}
/** return the relative change in score if lcbI were to be removed */
double SimpleBreakpointScorer::operator()( size_t lcbI )
{
double cur_score = score();
std::vector< std::pair< uint, uint > > id_remaps;
std::vector< uint > impact_list;
uint bp_removed = RemoveLCBandCoalesce( lcbI, adjs[0].left_adjacency.size(), adjs, scores, id_remaps, impact_list );
undoLcbRemoval( adjs[0].left_adjacency.size(), adjs, id_remaps );
double bp_score = (double)(bp_count - bp_removed) * bp_penalty;
double move_score = total_weight - adjs[lcbI].weight - bp_score;
double score_diff = move_score - cur_score;
if( collinear && bp_count - bp_removed > 0 && score_diff < 0 )
return 1/(-score_diff); // ensure that we continue removing blocks until only one is left
return move_score - cur_score;
}
/** call to indicate that the given LCB has been removed */
void SimpleBreakpointScorer::remove( uint lcbI, vector< pair< double, size_t > >& new_moves )
{
std::vector< std::pair< uint, uint > > id_remaps;
std::vector< uint > impact_list;
uint bp_removed = RemoveLCBandCoalesce( lcbI, adjs[0].left_adjacency.size(), adjs, scores, id_remaps, impact_list );
total_weight -= adjs[lcbI].weight;
bp_count -= bp_removed;
for( size_t impI = 0; impI < impact_list.size(); impI++ )
{
if( adjs[impact_list[impI]].lcb_id != impact_list[impI] )
continue;
double scorediff = (*this)(impact_list[impI]);
new_moves.push_back(make_pair(scorediff, impact_list[impI]));
}
}
GreedyRemovalScorer::GreedyRemovalScorer( std::vector< LCB >& adjacencies, double minimum_weight ) :
adjs( adjacencies ),
min_weight( minimum_weight )
{
scores = std::vector< double >(adjs.size(), 0);
total_weight = 0;
for( size_t lcbI = 0; lcbI < adjs.size(); lcbI++ )
total_weight += adjs[lcbI].weight - min_weight;
}
size_t GreedyRemovalScorer::getMoveCount()
{
return adjs.size();
}
double GreedyRemovalScorer::score()
{
return total_weight;
}
bool GreedyRemovalScorer::isValid( size_t lcbI, double move_score )
{
if( adjs[lcbI].lcb_id != lcbI )
return false;
return (*this)(lcbI) == move_score;
}
/** return the relative change in score if lcbI were to be removed */
double GreedyRemovalScorer::operator()( size_t lcbI )
{
return -(adjs[lcbI].weight-min_weight);
}
/** call to indicate that the given LCB has been removed */
void GreedyRemovalScorer::remove( uint lcbI, vector< pair< double, size_t > >& new_moves )
{
std::vector< std::pair< uint, uint > > id_remaps;
std::vector< uint > impact_list;
uint bp_removed = RemoveLCBandCoalesce( lcbI, adjs[0].left_adjacency.size(), adjs, scores, id_remaps, impact_list );
total_weight -= (adjs[lcbI].weight-min_weight);
for( size_t impI = 0; impI < impact_list.size(); impI++ )
{
if( adjs[impact_list[impI]].lcb_id != impact_list[impI] )
continue;
double scorediff = (*this)(impact_list[impI]);
new_moves.push_back(make_pair(scorediff, impact_list[impI]));
}
}
} // namespace mems
|