1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826
|
/*******************************************************************************
* $Id: SortedMerList.cpp,v 1.23 2004/03/01 02:40:08 darling Exp $
* This file is copyright 2002-2007 Aaron Darling and authors listed in the AUTHORS file.
* Please see the file called COPYING for licensing, copying, and modification
* Please see the file called COPYING for licensing details.
* **************
******************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "libMems/SortedMerList.h"
using namespace std;
using namespace genome;
namespace mems {
const uint8* SortedMerList::BasicDNATable(){
static const uint8* const bdt = SortedMerList::CreateBasicDNATable();
return bdt;
}
const uint8* SortedMerList::ProteinTable(){
static const uint8* const bdt = SortedMerList::CreateProteinTable();
return bdt;
}
const uint8* SortedMerList::CreateBasicDNATable(){
uint8* bdt = new uint8[UINT8_MAX];
memset(bdt, 0, UINT8_MAX);
bdt['c'] = 1;
bdt['C'] = 1;
bdt['b'] = 1;
bdt['B'] = 1;
bdt['y'] = 1;
bdt['Y'] = 1;
bdt['g'] = 2;
bdt['G'] = 2;
bdt['s'] = 2;
bdt['S'] = 2;
bdt['k'] = 2;
bdt['K'] = 2;
bdt['t'] = 3;
bdt['T'] = 3;
return bdt;
}
const uint8* SortedMerList::CreateProteinTable(){
uint8* pt = new uint8[UINT8_MAX];
memset(pt, 0, UINT8_MAX);
pt['A'] = 0;
pt['R'] = 1;
pt['N'] = 2;
pt['D'] = 3;
pt['C'] = 4;
pt['Q'] = 5;
pt['E'] = 6;
pt['G'] = 7;
pt['H'] = 8;
pt['I'] = 9;
pt['L'] = 10;
pt['K'] = 11;
pt['M'] = 12;
pt['F'] = 13;
pt['P'] = 14;
pt['S'] = 15;
pt['T'] = 16;
pt['W'] = 17;
pt['Y'] = 18;
pt['V'] = 19;
pt['a'] = 0;
pt['r'] = 1;
pt['n'] = 2;
pt['d'] = 3;
pt['c'] = 4;
pt['q'] = 5;
pt['e'] = 6;
pt['g'] = 7;
pt['h'] = 8;
pt['i'] = 9;
pt['l'] = 10;
pt['k'] = 11;
pt['m'] = 12;
pt['f'] = 13;
pt['p'] = 14;
pt['s'] = 15;
pt['t'] = 16;
pt['w'] = 17;
pt['y'] = 18;
pt['v'] = 19;
return pt;
}
SortedMerList::SortedMerList(){
//default to BasicDNA settings
header.length = 0;
header.alphabet_bits = 2;
header.unique_mers = NO_UNIQUE_COUNT;
memcpy(header.translation_table, BasicDNATable(), UINT8_MAX);
header.description[0] = 0;
header.seed_length = DNA_MER_SIZE;
header.id = 0;
header.circular = false;
mask_size = DNA_MER_SIZE;
mer_mask = 0;
seed_mask = 0;
// init sequence data to null
sequence = NULL;
binary_seq_len = 0;
}
SortedMerList::SortedMerList( const SortedMerList& sa ){
sequence = NULL;
*this = sa;
}
SortedMerList& SortedMerList::operator=(const SortedMerList& sa)
{
header = sa.header;
mer_mask = sa.mer_mask;
seed_mask = sa.seed_mask;
mask_size = sa.mask_size;
binary_seq_len = sa.binary_seq_len;
// copy binary sequence data
if( sa.sequence != NULL ){
if( sequence != NULL )
delete[] sequence;
sequence = new uint32[binary_seq_len];
memcpy(sequence, sa.sequence, sizeof(uint32) * binary_seq_len);
}else
sequence = NULL;
return *this;
}
SortedMerList::~SortedMerList(){
if( sequence != NULL )
delete[] sequence;
}
void SortedMerList::Clear(){
//default to BasicDNA settings
header.length = 0;
header.alphabet_bits = 2;
header.unique_mers = NO_UNIQUE_COUNT;
memcpy(header.translation_table, BasicDNATable(), UINT8_MAX);
header.description[0] = 0;
header.seed_length = DNA_MER_SIZE;
header.id = 0;
header.circular = false;
mask_size = DNA_MER_SIZE;
mer_mask = 0;
seed_mask = 0;
// delete sequence data
if( sequence != NULL ){
delete[] sequence;
sequence = NULL;
}
binary_seq_len = 0;
}
uint32 SortedMerList::CalculateMaxMerSize() const{
bmer tmp;
return (sizeof(tmp.mer) * 8) / header.alphabet_bits;
}
boolean SortedMerList::FindMer(const uint64 query_mer, gnSeqI& result){
bmer merle;
merle.mer = query_mer;
gnSeqI last_pos = Length();
if( last_pos == 0 || (last_pos < header.seed_length && !header.circular) )
return false;
last_pos -= header.circular ? 1 : header.seed_length;
result = bsearch(merle, 0, last_pos );
return ((*this)[result].mer == merle.mer);
}
boolean SortedMerList::Find(const string& query_seq, gnSeqI& result) {
struct bmer merle;
merle.mer = 0;
//check the length to make sure it is small enough
gnSeqI len = query_seq.length() * header.alphabet_bits < 64 ?
query_seq.length() : 64 / header.alphabet_bits;
translate((uint8*)&merle.mer, query_seq.c_str(), len);
return FindMer( merle.mer, result );
}
void SortedMerList::FindAll(const string& query_seq, vector<gnSeqI> result) {
struct bmer merle;
merle.mer = 0;
//check the length to make sure it is small enough
gnSeqI len = query_seq.length() * header.alphabet_bits < 64 ?
query_seq.length() : 64 / header.alphabet_bits;
translate((uint8*)&merle.mer, query_seq.c_str(), len);
//find the first match then start filling forward.
gnSeqI matchI = 0;
gnSeqI last_pos = Length();
last_pos -= header.circular ? 1 : header.seed_length;
bmer matchmer;
matchI = bsearch(merle, 0, last_pos);
//first seek backwards
int64 cur_matchI = matchI;
matchmer = (*this)[matchI];
while(cur_matchI >= 0 && matchmer.mer == merle.mer){
cur_matchI--;
matchmer = (*this)[cur_matchI];
}
int64 first_matchI = cur_matchI+1;
//now seek forwards
cur_matchI = matchI+1;
matchmer = (*this)[cur_matchI];
while(cur_matchI < GNSEQI_END && matchmer.mer == merle.mer){
cur_matchI++;
matchmer = (*this)[cur_matchI];
}
//fill the result array
for(matchI = first_matchI; matchI < cur_matchI; matchI++)
result.push_back(matchI);
}
string SortedMerList::Description() const{
return header.description;
}
void SortedMerList::SetDescription(const string& d){
strncpy(header.description, d.c_str(), DESCRIPTION_SIZE-1);
}
uint SortedMerList::SeedLength() const{
return header.seed_length;
}
/**
* Returns the weight of the seed that this SML was sorted on.
*/
uint SortedMerList::SeedWeight() const{
return header.seed_weight;
}
/**
* Returns the seed pattern that this SML was sorted on.
*/
uint64 SortedMerList::Seed() const{
return header.seed;
}
boolean SortedMerList::IsCircular() const{
return header.circular;
}
uint64 SortedMerList::GetMerMask() const{
return mer_mask;
}
uint64 SortedMerList::GetSeedMask() const{
return seed_mask;
}
uint32 SortedMerList::GetMerMaskSize() const{
return mask_size;
}
void SortedMerList::SetMerMaskSize(uint32 mer_size){
if(mer_size > header.seed_length)
mask_size = header.seed_length;
else
mask_size = mer_size;
// calculate the mer mask
mer_mask = UINT32_MAX;
mer_mask <<= 32;
mer_mask |= UINT32_MAX;
mer_mask <<= (64 - header.alphabet_bits * mer_size);
}
gnSeqI SortedMerList::Length() const{
return header.length;
}
gnSeqI SortedMerList::SMLLength() const{
// make sure there was at least one seed
if( header.length < header.seed_length )
return 0;
if( !header.circular )
return header.length - header.seed_length + 1;
return header.length;
}
sarID_t SortedMerList::GetID() const{
return header.id;
}
void SortedMerList::SetID(const sarID_t d){
header.id = d;
}
#define OPT_HEADER_ALPHABET_BITS DNA_ALPHA_BITS
void SortedMerList::SetSequence(gnSeqC* seq_buf, gnSeqI seq_len){
binary_seq_len = (seq_len * header.alphabet_bits) / 32;
if((seq_len * header.alphabet_bits) % 32 != 0)
binary_seq_len++;
binary_seq_len+=2; // zero-pad the end for extra working room
if( sequence != NULL )
delete[] sequence;
sequence = new uint32[binary_seq_len];
translate32(sequence, seq_buf, seq_len);
}
// this should return a mer containing all characters covered by the
// spaced seed
uint64 SortedMerList::GetMer(gnSeqI position) const
{
//check this for access violations.
uint64 mer_a;
gnSeqI mer_word, mer_bit;
uint32 merle;
//get mer_a
mer_a = 0;
mer_word = (position * (gnSeqI)OPT_HEADER_ALPHABET_BITS) / (gnSeqI)32;
mer_bit = (position * (gnSeqI)OPT_HEADER_ALPHABET_BITS) % (gnSeqI)32;
mer_a |= sequence[mer_word++];
mer_a <<= 32;
mer_a |= sequence[mer_word++];
if(mer_bit > 0){
merle = sequence[mer_word];
merle >>= 32 - mer_bit;
mer_a <<= mer_bit;
mer_a |= merle;
}
mer_a &= mer_mask;
return mer_a;
}
//potential buffer overflows here. make dest extra big.
void SortedMerList::GetBSequence(uint32* dest, const gnSeqI len, const gnSeqI offset){
//first determine the byte offset of the sequence within the file.
if(offset >= header.length){
Throw_gnEx( IndexOutOfBounds() );
}
uint64 startpos = (offset * OPT_HEADER_ALPHABET_BITS) / 32;
int begin_remainder = (offset * OPT_HEADER_ALPHABET_BITS) % 32;
uint64 readlen = offset + len < header.length ? len : header.length - offset;
gnSeqI word_read_len = (readlen * OPT_HEADER_ALPHABET_BITS) / 32;
int end_remainder = (readlen * OPT_HEADER_ALPHABET_BITS) % 32;
if(begin_remainder + (readlen * OPT_HEADER_ALPHABET_BITS) > 32
&& end_remainder > 0)
word_read_len++;
if(begin_remainder > 0)
word_read_len++;
//now do the actual read
memcpy((char*)dest, (char*)sequence + (startpos * 4), word_read_len * 4);
//now shift if needed
ShiftWords(dest, word_read_len, -begin_remainder);
//now mask if needed
if(end_remainder > begin_remainder){
uint32 mask = 0xFFFFFFFF;
mask <<= 32 - (end_remainder - begin_remainder);
dest[word_read_len-1] &= mask;
}else if(end_remainder < begin_remainder){
uint32 mask = 0xFFFFFFFF;
mask <<= (begin_remainder - end_remainder);
dest[word_read_len-2] &= mask;
}
}
gnSeqI SortedMerList::bsearch(const struct bmer& query_mer, const gnSeqI start, const gnSeqI end) {
gnSeqI middle = (start + end) / 2;
struct bmer midmer = (*this)[middle];
if(midmer.mer == query_mer.mer)
return middle;
else if((midmer.mer < query_mer.mer) && (middle < end))
return bsearch(query_mer, middle + 1, end);
else if((midmer.mer > query_mer.mer) && (start < middle))
return bsearch(query_mer, start, middle - 1);
//if we get here then the mer was not found.
//return where it would be if it existed.
return middle;
}
//translate the character sequence to binary form based on the
//translation table.
void SortedMerList::translate(uint8* dest, const gnSeqC* src, const gnSeqI len) const{
uint8 start_bit = 0;
gnSeqI cur_byte = 0;
const uint32 alpha_bits = OPT_HEADER_ALPHABET_BITS;
dest[cur_byte] = 0;
for(uint32 i=0; i < len; i++){
uint8 tmp = header.translation_table[src[i]];
if(start_bit + alpha_bits <= 8){
tmp <<= 8 - start_bit - alpha_bits;
dest[cur_byte] |= tmp;
}else{
uint8 over_bits = (start_bit + alpha_bits) % 8;
uint8 tmp2 = tmp;
tmp2 <<= 8 - over_bits;
tmp >>= over_bits;
dest[cur_byte] |= tmp;
dest[cur_byte+1] |= tmp2;
}
start_bit += alpha_bits;
if(start_bit >= 8){
start_bit %= 8;
cur_byte++;
dest[cur_byte] = 0;
}
}
}
void SortedMerList::translate32(uint32* dest, const gnSeqC* src, const gnSeqI len) const{
if( len == 0 )
return;
uint8 start_bit = 0;
gnSeqI cur_word = 0;
const uint32 alpha_bits = OPT_HEADER_ALPHABET_BITS;
dest[cur_word] = 0;
for(uint32 i=0; i < len; i++){
if(src[i]=='-'){
cerr << "ERROR! gap character encountered at genome sequence position " << i << std::endl;
cerr << "Input sequences must be unaligned and ungapped!\n";
throw "Gap in genome sequence\n";
}
uint32 tmp = header.translation_table[src[i]];
if(start_bit + alpha_bits <= 32){
tmp <<= 32 - start_bit - alpha_bits;
dest[cur_word] |= tmp;
start_bit += alpha_bits;
if(start_bit >= 32 && i < len - 1){
start_bit %= 32;
cur_word++;
dest[cur_word] = 0;
}
}else{
uint8 over_bits = (start_bit + alpha_bits) % 32;
uint32 tmp2 = tmp;
tmp2 <<= 32 - over_bits;
tmp >>= over_bits;
dest[cur_word] |= tmp;
cur_word++;
dest[cur_word] = 0;
dest[cur_word] |= tmp2;
start_bit = over_bits;
}
}
}
SMLHeader SortedMerList::GetHeader() const{
return header;
}
gnSeqI SortedMerList::UniqueMerCount(){
if(header.unique_mers != NO_UNIQUE_COUNT)
return header.unique_mers;
uint32 MER_BUFFER_SIZE = 16384; //not quite arbitrary (2^14)
gnSeqI cur_pos = 0;
vector<bmer> mer_vector;
bmer prev_mer;
gnSeqI m_unique = 0;
gnSeqI report_interval = MER_BUFFER_SIZE * 212;
while(cur_pos < header.length){
if(!Read(mer_vector, MER_BUFFER_SIZE, cur_pos)){
break;
// DebugMsg("SortedMerList::UniqueMerCount: Error reading bmer vector.");
// return NO_UNIQUE_COUNT;
}
uint32 mer_count = mer_vector.size();
if(mer_count == 0)
break;
if(cur_pos > 0 && prev_mer.mer != mer_vector[0].mer)
m_unique++;
//count them up.
uint32 i = 0;
for(uint32 j = 1; j < mer_count; j++){
if((mer_vector[i].mer & mer_mask) != (mer_vector[j].mer & mer_mask) )
m_unique++;
i++;
}
prev_mer = mer_vector[i];
cur_pos += mer_count;
if( cur_pos % report_interval == 0 ){
// cout << "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b";
cout << m_unique << "/" << cur_pos << endl;
}
}
cout << endl;
m_unique++;
header.unique_mers = m_unique;
return header.unique_mers;
}
//will not handle more than 8GB sequence on 32-bit systems
void SortedMerList::ShiftWords(unsigned int* data, uint32 length, int32 bits)
{
int32 word_bits = 8 * sizeof(unsigned int);
if(bits > 0 && bits < word_bits){
//shift everything right starting at the end
data[length - 1] >>= bits;
for(int i=length-2; i >= 0; i--){
uint32 tmp = data[i];
tmp <<= word_bits - bits;
data[i+1] |= tmp;
data[i] >>= bits;
}
}else if(bits < 0 && bits > (-1)*word_bits){
bits *= -1;
//shift everything left
data[0] <<= bits;
for(uint32 i=0; i < length; i++){
uint32 tmp = data[i+1];
tmp >>= word_bits - bits;
data[i] |= tmp;
data[i+1] <<= bits;
}
}
}
void SortedMerList::FillSML(gnSeqC* seq_buf, gnSeqI seq_len, boolean circular, vector<bmer>& sml_array){
const uint32 alpha_bits = OPT_HEADER_ALPHABET_BITS;
const uint32 mer_size = header.seed_length;
gnSeqI sar_len = seq_len;
if(!circular)
sar_len -= header.seed_length - 1;
sml_array.reserve(sar_len);
bmer cur_suffix;
cur_suffix.mer = 0;
cur_suffix.position = 0;
/* now fill in the suffix array with the forward sequence*/
for(gnSeqI i=0; i < mer_size; i++){
cur_suffix.mer <<= alpha_bits;
cur_suffix.mer |= header.translation_table[seq_buf[i]];
}
uint8 dead_bits = 64 - (mer_size * alpha_bits);
cur_suffix.mer <<= dead_bits;
sml_array.push_back(cur_suffix);
//fill sml_array with mers
for(gnSeqI seqI = 1; seqI < sar_len; seqI++){//already added the
//first one
cur_suffix.position++;
cur_suffix.mer <<= alpha_bits;
uint64 new_mer = header.translation_table[seq_buf[seqI+(mer_size-1)]];
new_mer <<= dead_bits;
cur_suffix.mer |= new_mer;
sml_array.push_back(cur_suffix);
}
}
void SortedMerList::FillSML(const gnSequence& seq, vector<bmer>& sml_array){
gnSeqI seq_len = seq.length();
Array<gnSeqC> seq_buf( seq_len );
seq.ToArray(seq_buf.data, seq_len);
FillSML(seq_buf.data, seq_len, seq.isCircular(), sml_array);
}
void SortedMerList::FillSML(gnSeqI seq_len, vector<gnSeqI>& pos_array){
pos_array.clear();
pos_array.reserve( seq_len );
for(gnSeqI seqI = 0; seqI < seq_len; seqI++ )
pos_array.push_back(seqI);
}
uint64 SortedMerList::GetDnaMer(gnSeqI offset) const
{
// get the forward orientation mer
uint64 mer_a = SortedMerList::GetMer( offset );
//find the reverse complement of mer_a and return it if it's
//smaller
uint64 mer_c = RevCompMer( mer_a, header.seed_length ); //mer_c will be the reverse complement
// for debugging
// if( mer_c < mer_a )
// return mer_c;
return mer_a < mer_c ? mer_a : mer_c;
}
#define OPT_ALPHA_MASQ 0x00000003
uint64 SortedMerList::RevCompMer( uint64 mer_a, int mer_length ) const
{
//find the reverse complement of mer_a and return it if it's
//smaller
uint64 mer_b, mer_c = 0; //mer_c will be the reverse complement
mer_b = ~mer_a;
// uint32 masq = 0xffffffff;
// masq >>= 32 - header.alphabet_bits;
for(uint32 i = 0; i < 64; i += OPT_HEADER_ALPHABET_BITS){
mer_c |= mer_b & OPT_ALPHA_MASQ;
// mer_c |= mer_b & masq;
mer_b >>= OPT_HEADER_ALPHABET_BITS;
mer_c <<= OPT_HEADER_ALPHABET_BITS;
}
mer_c <<= 64 - (OPT_HEADER_ALPHABET_BITS * (mer_length+1));
mer_c |= 1;
return mer_c;
}
void SortedMerList::FillDnaSML(const gnSequence& seq, vector<bmer>& sml_array){
/* now fill in the suffix array with the forward sequence*/
const uint32 alpha_bits = OPT_HEADER_ALPHABET_BITS;
const uint32 mer_size = header.seed_length;
gnSeqI sar_len = seq.length();
if( sar_len < header.seed_length )
return; // can't have an sml if there ain't enough sequence
if( !seq.isCircular() )
sar_len -= ( header.seed_length - 1);
sml_array.reserve(sar_len);
uint32 dead_bits = 64 - (mer_size * alpha_bits);
uint64 create_mask = UINT32_MAX;
create_mask <<= 32;
create_mask |= UINT32_MAX;
create_mask <<= dead_bits;
bmer cur_suffix, rcur_suffix;
cur_suffix.mer = sequence[0];
cur_suffix.mer <<= 32;
cur_suffix.mer |= sequence[1];
cur_suffix.mer &= create_mask;
cur_suffix.position = 0;
rcur_suffix.mer = 0;
rcur_suffix.position = 0;
//find the reverse complement of cur_suffix.mer and return it if it's
//smaller
uint64 mer_b = 0;
mer_b = ~cur_suffix.mer;
// uint32 masq = 0xffffffff;
// masq >>= 32 - alpha_bits;
for(uint32 i = 0; i < 64; i += alpha_bits){
// rcur_suffix.mer |= mer_b & masq;
rcur_suffix.mer |= mer_b & OPT_ALPHA_MASQ;
mer_b >>= alpha_bits;
rcur_suffix.mer <<= alpha_bits;
}
rcur_suffix.mer <<= dead_bits - alpha_bits;
rcur_suffix.mer |= 1;
//add the first mer
if(cur_suffix.mer < rcur_suffix.mer)
sml_array.push_back(cur_suffix);
else
sml_array.push_back(rcur_suffix);
//fill sml_array with mers
gnSeqI endI = sar_len + mer_size;
if(seq.isCircular())
endI += mer_size;
uint32 rdead_bits = 64 - alpha_bits - dead_bits;
uint64 tmp_rseq = 0;
uint32 seqI = (mer_size * alpha_bits) / 32;
int32 cur_bit = 32 - alpha_bits - ((mer_size * alpha_bits) % 32);
uint32 cur_seq = sequence[seqI];
uint64 tmp_seq;
// uint32 alpha_mask = 0xFFFFFFFF;
// alpha_mask >>= 32 - alpha_bits;
uint64 revalpha_mask = OPT_ALPHA_MASQ;
revalpha_mask <<= dead_bits;
//which is slower? a memory operation or a conditional?
//probably a memory operation.
for(gnSeqI cur_pos = mer_size + 1; cur_pos < endI; cur_pos++){//already added the
//first one
//increment positions
cur_suffix.position++;
rcur_suffix.position++;
//extract the next character
tmp_seq = cur_seq;
tmp_seq >>= cur_bit;
tmp_seq &= OPT_ALPHA_MASQ;
tmp_seq <<= dead_bits;
//add it to the forward mer
cur_suffix.mer <<= alpha_bits;
cur_suffix.mer |= tmp_seq;
//do the reverse complement mer
tmp_seq = ~tmp_seq;
tmp_seq &= revalpha_mask;
tmp_rseq = tmp_seq;
tmp_rseq <<= rdead_bits;
rcur_suffix.mer >>= alpha_bits;
rcur_suffix.mer |= tmp_rseq;
rcur_suffix.mer &= create_mask;
rcur_suffix.mer |= 1;
if(cur_suffix.mer < rcur_suffix.mer)
sml_array.push_back(cur_suffix);
else
sml_array.push_back(rcur_suffix);
cur_bit -= alpha_bits;
if(cur_bit < 0){
cur_bit += alpha_bits;
cur_seq <<= 16; //trade bitwise ops for conditional
cur_seq <<= 16 - (cur_bit);
seqI++;
tmp_seq = sequence[seqI];
tmp_seq >>= cur_bit;
cur_seq |= tmp_seq;
cur_bit += 32 - alpha_bits;
}
}
}
uint64 SortedMerList::GetSeedMer( gnSeqI offset ) const
{
//check this for access violations.
uint64 mer_a = SortedMerList::GetMer( offset );
uint64 mer_b = SortedMerList::GetMer( offset + 1 );
uint64 seed_mer = 0;
uint64 alpha_mask = 1;
alpha_mask <<= OPT_HEADER_ALPHABET_BITS;
alpha_mask--;
alpha_mask <<= 62;
uint64 cur_alpha_mask = alpha_mask;
uint64 char_mask = 1;
char_mask <<= header.seed_length - 1;
uint64 cur_mer = mer_a;
const int mer_transition = 64 / OPT_HEADER_ALPHABET_BITS;
int patternI = 0;
int rshift_amt = 64 - OPT_HEADER_ALPHABET_BITS;
for( ; patternI < header.seed_length; patternI++ ){
if( patternI == mer_transition ){
cur_mer = mer_b;
cur_alpha_mask = alpha_mask;
rshift_amt = 64 - OPT_HEADER_ALPHABET_BITS;
}
if( (header.seed & char_mask) != 0 ){
uint64 char_tmp = cur_mer & cur_alpha_mask;
char_tmp >>= rshift_amt;
seed_mer <<= OPT_HEADER_ALPHABET_BITS;
seed_mer |= char_tmp;
}
cur_alpha_mask >>= OPT_HEADER_ALPHABET_BITS;
char_mask >>= 1;
rshift_amt -= OPT_HEADER_ALPHABET_BITS;
}
seed_mer <<= 64 - (OPT_HEADER_ALPHABET_BITS * header.seed_weight);
return seed_mer;
}
uint64 SortedMerList::GetDnaSeedMer( gnSeqI offset ) const
{
uint64 seed_mer = SortedMerList::GetSeedMer( offset );
uint64 rev_mer = RevCompMer( seed_mer, header.seed_weight );
return seed_mer < rev_mer ? seed_mer : rev_mer;
}
void SortedMerList::FillDnaSeedSML(const gnSequence& seq, vector<bmer>& sml_array){
// first get the length of the sequence
gnSeqI sar_len = SMLLength();
if( sar_len == 0 )
return; // can't have an sml if there ain't enough sequence
sml_array.resize(sar_len);
/* now fill in the sml_array with the forward sequence */
for( gnSeqI seedI = 0; seedI < sar_len; seedI++ ){
sml_array[seedI].mer = GetDnaSeedMer( seedI );
sml_array[seedI].position = seedI;
}
}
void SortedMerList::Create(const gnSequence& seq, const uint64 seed){
if(CalculateMaxMerSize() == 0)
Throw_gnExMsg( SMLCreateError(), "Alphabet size is too large" );
int seed_length = getSeedLength( seed );
int seed_weight = getSeedWeight( seed );
if(seed_length > CalculateMaxMerSize())
Throw_gnExMsg( SMLCreateError(), "Mer size is too large" );
if(seed_length == 0)
Throw_gnExMsg( SMLCreateError(), "Can't have 0 seed length" );
//determine sequence and sar length and read in sequence
gnSeqI seq_len = seq.length();
if(!seq.isCircular()){
header.circular = false;
}else
header.circular = true;
// use the nifty Array class as a wrapper for the buffer to ensure correct deallocation
gnSeqI buf_len = seq.isCircular() ? seq_len + seed_length : seq_len;
Array<gnSeqC> seq_buf( buf_len );
seq.ToArray(seq_buf.data, seq_len);
if( seq.isCircular() )
seq.ToArray(seq_buf.data + seq_len, seed_length-1);
// set header information
header.length = seq_len;
header.seed_length = seed_length;
header.seed_weight = seed_weight;
header.seed = seed;
SetMerMaskSize( seed_weight );
seed_mask = mer_mask;
SetMerMaskSize( seed_length );
SetSequence( seq_buf.data, buf_len );
}
} // namespace mems
|