File: SortedMerList.cpp

package info (click to toggle)
libmems 1.6.0%2B4725-9
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye
  • size: 2,120 kB
  • sloc: cpp: 21,579; ansic: 4,312; xml: 115; makefile: 103; sh: 26
file content (826 lines) | stat: -rw-r--r-- 23,061 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
/*******************************************************************************
 * $Id: SortedMerList.cpp,v 1.23 2004/03/01 02:40:08 darling Exp $
 * This file is copyright 2002-2007 Aaron Darling and authors listed in the AUTHORS file.
 * Please see the file called COPYING for licensing, copying, and modification
 * Please see the file called COPYING for licensing details.
 * **************
 ******************************************************************************/

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include "libMems/SortedMerList.h"

using namespace std;
using namespace genome;
namespace mems {

const uint8* SortedMerList::BasicDNATable(){
	static const uint8* const bdt = SortedMerList::CreateBasicDNATable();
	return bdt;
}

const uint8* SortedMerList::ProteinTable(){
	static const uint8* const bdt = SortedMerList::CreateProteinTable();
	return bdt;
}

const uint8* SortedMerList::CreateBasicDNATable(){
	uint8* bdt = new uint8[UINT8_MAX];
	memset(bdt, 0, UINT8_MAX);
	bdt['c'] = 1;
	bdt['C'] = 1;
	bdt['b'] = 1;
	bdt['B'] = 1;
	bdt['y'] = 1;
	bdt['Y'] = 1;
	bdt['g'] = 2;
	bdt['G'] = 2;
	bdt['s'] = 2;
	bdt['S'] = 2;
	bdt['k'] = 2;
	bdt['K'] = 2;
	bdt['t'] = 3;
	bdt['T'] = 3;
	return bdt;
}

const uint8* SortedMerList::CreateProteinTable(){
	uint8* pt = new uint8[UINT8_MAX];
	memset(pt, 0, UINT8_MAX);
	pt['A'] = 0;
	pt['R'] = 1;
	pt['N'] = 2;
	pt['D'] = 3;
	pt['C'] = 4;
	pt['Q'] = 5;
	pt['E'] = 6;
	pt['G'] = 7;
	pt['H'] = 8;
	pt['I'] = 9;
	pt['L'] = 10;
	pt['K'] = 11;
	pt['M'] = 12;
	pt['F'] = 13;
	pt['P'] = 14;
	pt['S'] = 15;
	pt['T'] = 16;
	pt['W'] = 17;
	pt['Y'] = 18;
	pt['V'] = 19;
	
	pt['a'] = 0;
	pt['r'] = 1;
	pt['n'] = 2;
	pt['d'] = 3;
	pt['c'] = 4;
	pt['q'] = 5;
	pt['e'] = 6;
	pt['g'] = 7;
	pt['h'] = 8;
	pt['i'] = 9;
	pt['l'] = 10;
	pt['k'] = 11;
	pt['m'] = 12;
	pt['f'] = 13;
	pt['p'] = 14;
	pt['s'] = 15;
	pt['t'] = 16;
	pt['w'] = 17;
	pt['y'] = 18;
	pt['v'] = 19;
	return pt;
}

SortedMerList::SortedMerList(){
	//default to BasicDNA settings
	header.length = 0;
	header.alphabet_bits = 2;
	header.unique_mers = NO_UNIQUE_COUNT;
	memcpy(header.translation_table, BasicDNATable(), UINT8_MAX);
	header.description[0] = 0;
	header.seed_length = DNA_MER_SIZE;
	header.id = 0;
	header.circular = false;
	mask_size = DNA_MER_SIZE;
	mer_mask = 0;
	seed_mask = 0;
	// init sequence data to null
	sequence = NULL;
	binary_seq_len = 0;
}

SortedMerList::SortedMerList( const SortedMerList& sa ){
	sequence = NULL;
	*this = sa;
}

SortedMerList& SortedMerList::operator=(const SortedMerList& sa)
{
	header = sa.header;
	mer_mask = sa.mer_mask;
	seed_mask = sa.seed_mask;
	mask_size = sa.mask_size;
	binary_seq_len = sa.binary_seq_len;

	// copy binary sequence data
	if( sa.sequence != NULL ){
		if( sequence != NULL )
			delete[] sequence;
		sequence = new uint32[binary_seq_len];
		memcpy(sequence, sa.sequence, sizeof(uint32) * binary_seq_len);
	}else
		sequence = NULL;

	return *this;
}

SortedMerList::~SortedMerList(){
	if( sequence != NULL )
		delete[] sequence;
}

void SortedMerList::Clear(){
	//default to BasicDNA settings
	header.length = 0;
	header.alphabet_bits = 2;
	header.unique_mers = NO_UNIQUE_COUNT;
	memcpy(header.translation_table, BasicDNATable(), UINT8_MAX);
	header.description[0] = 0;
	header.seed_length = DNA_MER_SIZE;
	header.id = 0;
	header.circular = false;
	mask_size = DNA_MER_SIZE;
	mer_mask = 0;
	seed_mask = 0;
	// delete sequence data
	if( sequence != NULL ){
		delete[] sequence;
		sequence = NULL;
	}
	binary_seq_len = 0;
}

uint32 SortedMerList::CalculateMaxMerSize() const{
	bmer tmp;
	return (sizeof(tmp.mer) * 8) / header.alphabet_bits;
}

boolean SortedMerList::FindMer(const uint64 query_mer, gnSeqI& result){
	bmer merle;
	merle.mer = query_mer;
	gnSeqI last_pos = Length();
	if( last_pos == 0 || (last_pos < header.seed_length && !header.circular) )
		return false;
	last_pos -= header.circular ? 1 : header.seed_length;
	result = bsearch(merle, 0, last_pos );
	return ((*this)[result].mer == merle.mer);
}

boolean SortedMerList::Find(const string& query_seq, gnSeqI& result) {
	struct bmer merle;
	merle.mer = 0;

	//check the length to make sure it is small enough
	gnSeqI len = query_seq.length() * header.alphabet_bits < 64 ? 
		query_seq.length() : 64 / header.alphabet_bits;
		
	translate((uint8*)&merle.mer, query_seq.c_str(), len);
	return FindMer( merle.mer, result );
}

void SortedMerList::FindAll(const string& query_seq, vector<gnSeqI> result) {
	struct bmer merle;
	merle.mer = 0;

	//check the length to make sure it is small enough
	gnSeqI len = query_seq.length() * header.alphabet_bits < 64 ? 
		query_seq.length() : 64 / header.alphabet_bits;
		
	translate((uint8*)&merle.mer, query_seq.c_str(), len);
	
	//find the first match then start filling forward.
	gnSeqI matchI = 0;
	gnSeqI last_pos = Length();
	last_pos -= header.circular ? 1 : header.seed_length;
	bmer matchmer;
	matchI = bsearch(merle, 0, last_pos);

	//first seek backwards
	int64 cur_matchI = matchI;
	matchmer = (*this)[matchI];
	while(cur_matchI >= 0 && matchmer.mer == merle.mer){
		cur_matchI--;
		matchmer = (*this)[cur_matchI];
	}
	int64 first_matchI = cur_matchI+1;

	//now seek forwards
	cur_matchI = matchI+1;
	matchmer = (*this)[cur_matchI];
	while(cur_matchI < GNSEQI_END && matchmer.mer == merle.mer){
		cur_matchI++;
		matchmer = (*this)[cur_matchI];
	}
	//fill the result array
	for(matchI = first_matchI; matchI < cur_matchI; matchI++)
		result.push_back(matchI);
}

string SortedMerList::Description() const{
	return header.description;
}

void SortedMerList::SetDescription(const string& d){
	strncpy(header.description, d.c_str(), DESCRIPTION_SIZE-1);
}

uint SortedMerList::SeedLength() const{
	return header.seed_length;
}
/**
 * Returns the weight of the seed that this SML was sorted on.
 */
uint SortedMerList::SeedWeight() const{
	return header.seed_weight;
}
/**
 * Returns the seed pattern that this SML was sorted on.
 */
uint64 SortedMerList::Seed() const{
	return header.seed;
}

boolean SortedMerList::IsCircular() const{
	return header.circular;
}

uint64 SortedMerList::GetMerMask() const{
	return mer_mask;
}

uint64 SortedMerList::GetSeedMask() const{
	return seed_mask;
}

uint32 SortedMerList::GetMerMaskSize() const{
	return mask_size;
}

void SortedMerList::SetMerMaskSize(uint32 mer_size){
	if(mer_size > header.seed_length)
		mask_size = header.seed_length;
	else
		mask_size = mer_size;

	// calculate the mer mask
	mer_mask = UINT32_MAX;
	mer_mask <<= 32;
	mer_mask |= UINT32_MAX;
	mer_mask <<= (64 - header.alphabet_bits * mer_size);
}

gnSeqI SortedMerList::Length() const{
	return header.length;
}

gnSeqI SortedMerList::SMLLength() const{
	// make sure there was at least one seed
	if( header.length < header.seed_length )
		return 0;
	if( !header.circular )
		return header.length - header.seed_length + 1;
	return header.length;
}

sarID_t SortedMerList::GetID() const{
	return header.id;
}
void SortedMerList::SetID(const sarID_t d){
	header.id = d;
}

#define OPT_HEADER_ALPHABET_BITS DNA_ALPHA_BITS

void SortedMerList::SetSequence(gnSeqC* seq_buf, gnSeqI seq_len){
	binary_seq_len = (seq_len * header.alphabet_bits) / 32;
	if((seq_len * header.alphabet_bits) % 32 != 0)
		binary_seq_len++;

	binary_seq_len+=2;	// zero-pad the end for extra working room

	if( sequence != NULL )
		delete[] sequence;
	sequence = new uint32[binary_seq_len];
	translate32(sequence, seq_buf, seq_len);
}

// this should return a mer containing all characters covered by the
// spaced seed
uint64 SortedMerList::GetMer(gnSeqI position) const
{
	//check this for access violations.
	uint64 mer_a;
	gnSeqI mer_word, mer_bit;
	uint32 merle;
	//get mer_a
	mer_a = 0;
	mer_word = (position * (gnSeqI)OPT_HEADER_ALPHABET_BITS) / (gnSeqI)32;
	mer_bit = (position * (gnSeqI)OPT_HEADER_ALPHABET_BITS) % (gnSeqI)32;
	mer_a |= sequence[mer_word++];
	mer_a <<= 32;
	mer_a |= sequence[mer_word++];
	if(mer_bit > 0){
		merle = sequence[mer_word];
		merle >>= 32 - mer_bit;
		mer_a <<= mer_bit;
		mer_a |= merle;
	}
	mer_a &= mer_mask;
	return mer_a;
}

//potential buffer overflows here.  make dest extra big.
void SortedMerList::GetBSequence(uint32* dest, const gnSeqI len, const gnSeqI offset){
	//first determine the byte offset of the sequence within the file.
	if(offset >= header.length){
		Throw_gnEx( IndexOutOfBounds() );
	}
	uint64 startpos = (offset * OPT_HEADER_ALPHABET_BITS) / 32;
	int begin_remainder = (offset * OPT_HEADER_ALPHABET_BITS) % 32;
	uint64 readlen = offset + len < header.length ? len : header.length - offset;

	gnSeqI word_read_len = (readlen * OPT_HEADER_ALPHABET_BITS) / 32;
	int end_remainder = (readlen * OPT_HEADER_ALPHABET_BITS) % 32;
	if(begin_remainder + (readlen * OPT_HEADER_ALPHABET_BITS) > 32
	   && end_remainder > 0)
		word_read_len++;
	if(begin_remainder > 0)
		word_read_len++;
	
	//now do the actual read
	memcpy((char*)dest, (char*)sequence + (startpos * 4), word_read_len * 4);
	
	//now shift if needed
	ShiftWords(dest, word_read_len, -begin_remainder);
	
	//now mask if needed
	if(end_remainder > begin_remainder){
		uint32 mask = 0xFFFFFFFF;
		mask <<= 32 - (end_remainder - begin_remainder);
		dest[word_read_len-1] &= mask;
	}else if(end_remainder < begin_remainder){
		uint32 mask = 0xFFFFFFFF;
		mask <<= (begin_remainder - end_remainder);
		dest[word_read_len-2] &= mask;
	}
}

gnSeqI SortedMerList::bsearch(const struct bmer& query_mer, const gnSeqI start, const gnSeqI end) {

	gnSeqI middle = (start + end) / 2;
	struct bmer midmer = (*this)[middle];
	if(midmer.mer == query_mer.mer)
		return middle;
	else if((midmer.mer < query_mer.mer) && (middle < end))
		return bsearch(query_mer, middle + 1, end);
	else if((midmer.mer > query_mer.mer) && (start < middle))
		return bsearch(query_mer, start, middle - 1);
	
	//if we get here then the mer was not found.
	//return where it would be if it existed.
	return middle;
}

//translate the character sequence to binary form based on the
//translation table.
void SortedMerList::translate(uint8* dest, const gnSeqC* src, const gnSeqI len) const{
	uint8 start_bit = 0;
	gnSeqI cur_byte = 0;
	const uint32 alpha_bits = OPT_HEADER_ALPHABET_BITS;
	dest[cur_byte] = 0;
	for(uint32 i=0; i < len; i++){
		uint8 tmp = header.translation_table[src[i]];
		if(start_bit + alpha_bits <= 8){
			tmp <<= 8 - start_bit - alpha_bits;
			dest[cur_byte] |= tmp;
		}else{
			uint8 over_bits = (start_bit + alpha_bits) % 8;
			uint8 tmp2 = tmp;
			tmp2 <<= 8 - over_bits;
			tmp >>= over_bits;
			dest[cur_byte] |= tmp;
			dest[cur_byte+1] |= tmp2;
		}
		start_bit += alpha_bits;
		if(start_bit >= 8){
			start_bit %= 8;
			cur_byte++;
			dest[cur_byte] = 0;
		}
	}
}

void SortedMerList::translate32(uint32* dest, const gnSeqC* src, const gnSeqI len) const{
	if( len == 0 )
		return;
	uint8 start_bit = 0;
	gnSeqI cur_word = 0;
	const uint32 alpha_bits = OPT_HEADER_ALPHABET_BITS;
	dest[cur_word] = 0;
	for(uint32 i=0; i < len; i++){
		if(src[i]=='-'){
			cerr << "ERROR! gap character encountered at genome sequence position " << i << std::endl;
			cerr << "Input sequences must be unaligned and ungapped!\n";
			throw "Gap in genome sequence\n";
		}
		uint32 tmp = header.translation_table[src[i]];
		if(start_bit + alpha_bits <= 32){
			tmp <<= 32 - start_bit - alpha_bits;
			dest[cur_word] |= tmp;
			start_bit += alpha_bits;
			if(start_bit >= 32 && i < len - 1){
				start_bit %= 32;
				cur_word++;
				dest[cur_word] = 0;
			}
		}else{
			uint8 over_bits = (start_bit + alpha_bits) % 32;
			uint32 tmp2 = tmp;
			tmp2 <<= 32 - over_bits;
			tmp >>= over_bits;
			dest[cur_word] |= tmp;
			cur_word++;
			dest[cur_word] = 0;
			dest[cur_word] |= tmp2;
			start_bit = over_bits;
		}
	}
}
SMLHeader SortedMerList::GetHeader() const{
	return header;
}

gnSeqI SortedMerList::UniqueMerCount(){
	if(header.unique_mers != NO_UNIQUE_COUNT)
		return header.unique_mers;

	uint32 MER_BUFFER_SIZE = 16384;  //not quite arbitrary (2^14)
	gnSeqI cur_pos = 0;
	vector<bmer> mer_vector;
	bmer prev_mer;
	gnSeqI m_unique = 0;
	gnSeqI report_interval = MER_BUFFER_SIZE * 212;
	while(cur_pos < header.length){
		if(!Read(mer_vector, MER_BUFFER_SIZE, cur_pos)){
			break;
//			DebugMsg("SortedMerList::UniqueMerCount: Error reading bmer vector.");
//			return NO_UNIQUE_COUNT;
		}
		uint32 mer_count = mer_vector.size();
		if(mer_count == 0)
			break;
		if(cur_pos > 0 && prev_mer.mer != mer_vector[0].mer)
			m_unique++;
		
		//count them up.
		uint32 i = 0;
		for(uint32 j = 1; j < mer_count; j++){
			if((mer_vector[i].mer & mer_mask) != (mer_vector[j].mer & mer_mask) )
				m_unique++;
			i++;
		}
		prev_mer = mer_vector[i];
		cur_pos += mer_count;
		if( cur_pos % report_interval == 0 ){
//			cout << "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b";
			cout << m_unique << "/" << cur_pos << endl;
		}
	}
	cout << endl;
	m_unique++;
	header.unique_mers = m_unique;
	return header.unique_mers;
}

//will not handle more than 8GB sequence on 32-bit systems
void SortedMerList::ShiftWords(unsigned int* data, uint32 length, int32 bits)
{
	int32 word_bits = 8 * sizeof(unsigned int);
	if(bits > 0 && bits < word_bits){
		//shift everything right starting at the end
		data[length - 1] >>= bits;
		for(int i=length-2; i >= 0; i--){
			uint32 tmp = data[i];
			tmp <<= word_bits - bits;
			data[i+1] |= tmp;
			data[i] >>= bits;
		}
	}else if(bits < 0 && bits > (-1)*word_bits){
		bits *= -1;
		//shift everything left
		data[0] <<= bits;
		for(uint32 i=0; i < length; i++){
			uint32 tmp = data[i+1];
			tmp >>= word_bits - bits;
			data[i] |= tmp;
			data[i+1] <<= bits;
		}
	}
}

void SortedMerList::FillSML(gnSeqC* seq_buf, gnSeqI seq_len, boolean circular, vector<bmer>& sml_array){
	const uint32 alpha_bits = OPT_HEADER_ALPHABET_BITS;
	const uint32 mer_size = header.seed_length;
	gnSeqI sar_len = seq_len;
	if(!circular)
		sar_len -= header.seed_length - 1;
	sml_array.reserve(sar_len);

	bmer cur_suffix;
	cur_suffix.mer = 0;
	cur_suffix.position = 0;

	/* now fill in the suffix array with the forward sequence*/
	for(gnSeqI i=0; i < mer_size; i++){
		cur_suffix.mer <<= alpha_bits;
		cur_suffix.mer |= header.translation_table[seq_buf[i]];
	}
	uint8 dead_bits = 64 - (mer_size * alpha_bits);
	cur_suffix.mer <<= dead_bits;

	sml_array.push_back(cur_suffix);

	//fill sml_array with mers
	for(gnSeqI seqI = 1; seqI < sar_len; seqI++){//already added the
													//first one
		cur_suffix.position++;
		cur_suffix.mer <<= alpha_bits;
		uint64 new_mer = header.translation_table[seq_buf[seqI+(mer_size-1)]];
		new_mer <<= dead_bits;
		cur_suffix.mer |= new_mer;
		sml_array.push_back(cur_suffix);
	}
}

void SortedMerList::FillSML(const gnSequence& seq, vector<bmer>& sml_array){
	gnSeqI seq_len = seq.length();
	Array<gnSeqC> seq_buf( seq_len );
	seq.ToArray(seq_buf.data, seq_len);
	FillSML(seq_buf.data, seq_len, seq.isCircular(), sml_array);
}

void SortedMerList::FillSML(gnSeqI seq_len, vector<gnSeqI>& pos_array){
	pos_array.clear();
	pos_array.reserve( seq_len );
	for(gnSeqI seqI = 0; seqI < seq_len; seqI++ )
		pos_array.push_back(seqI);
}

uint64 SortedMerList::GetDnaMer(gnSeqI offset) const
{
	// get the forward orientation mer
	uint64 mer_a = SortedMerList::GetMer( offset );
	//find the reverse complement of mer_a and return it if it's
	//smaller
	uint64 mer_c = RevCompMer( mer_a, header.seed_length );	//mer_c will be the reverse complement
	
	// for debugging
//	if( mer_c < mer_a )
//		return mer_c;
	return mer_a < mer_c ? mer_a : mer_c;
}

#define OPT_ALPHA_MASQ 0x00000003

uint64 SortedMerList::RevCompMer( uint64 mer_a, int mer_length ) const
{
	//find the reverse complement of mer_a and return it if it's
	//smaller
	uint64 mer_b, mer_c = 0;	//mer_c will be the reverse complement
	mer_b = ~mer_a;
//	uint32 masq = 0xffffffff;
//	masq >>= 32 - header.alphabet_bits;
	for(uint32 i = 0; i < 64; i += OPT_HEADER_ALPHABET_BITS){
		mer_c |= mer_b & OPT_ALPHA_MASQ;
//		mer_c |= mer_b & masq;
		mer_b >>= OPT_HEADER_ALPHABET_BITS;
		mer_c <<= OPT_HEADER_ALPHABET_BITS;
	}
	mer_c <<= 64 - (OPT_HEADER_ALPHABET_BITS * (mer_length+1));
	mer_c |= 1;
	return mer_c;
}


void SortedMerList::FillDnaSML(const gnSequence& seq, vector<bmer>& sml_array){
	/* now fill in the suffix array with the forward sequence*/
	const uint32 alpha_bits = OPT_HEADER_ALPHABET_BITS;
	const uint32 mer_size = header.seed_length;
	gnSeqI sar_len = seq.length();
	if( sar_len < header.seed_length )
		return;	// can't have an sml if there ain't enough sequence
	if( !seq.isCircular() )
		sar_len -= ( header.seed_length - 1);
	sml_array.reserve(sar_len);

	uint32 dead_bits = 64 - (mer_size * alpha_bits);
	uint64 create_mask = UINT32_MAX;
	create_mask <<= 32;
	create_mask |= UINT32_MAX;
	create_mask <<= dead_bits;

	bmer cur_suffix, rcur_suffix;
	cur_suffix.mer = sequence[0];
	cur_suffix.mer <<= 32;
	cur_suffix.mer |= sequence[1];
	cur_suffix.mer &= create_mask;
	cur_suffix.position = 0;
	rcur_suffix.mer = 0;
	rcur_suffix.position = 0;
	
	//find the reverse complement of cur_suffix.mer and return it if it's
	//smaller
	uint64 mer_b = 0;
	mer_b = ~cur_suffix.mer;
//	uint32 masq = 0xffffffff;
//	masq >>= 32 - alpha_bits;
	for(uint32 i = 0; i < 64; i += alpha_bits){
//		rcur_suffix.mer |= mer_b & masq;
		rcur_suffix.mer |= mer_b & OPT_ALPHA_MASQ;
		mer_b >>= alpha_bits;
		rcur_suffix.mer <<= alpha_bits;
	}
	rcur_suffix.mer <<= dead_bits - alpha_bits;
	rcur_suffix.mer |= 1;

	//add the first mer
	if(cur_suffix.mer < rcur_suffix.mer)
		sml_array.push_back(cur_suffix);
	else
		sml_array.push_back(rcur_suffix);

	//fill sml_array with mers
	gnSeqI 	endI = sar_len + mer_size;
	if(seq.isCircular())
		endI += mer_size;

	uint32 rdead_bits = 64 - alpha_bits - dead_bits;
	uint64 tmp_rseq = 0;
	uint32 seqI = (mer_size * alpha_bits) / 32;
	int32 cur_bit = 32 - alpha_bits - ((mer_size * alpha_bits) % 32);
	uint32 cur_seq = sequence[seqI];
	uint64 tmp_seq;
//	uint32 alpha_mask = 0xFFFFFFFF;
//	alpha_mask >>= 32 - alpha_bits;
	uint64 revalpha_mask = OPT_ALPHA_MASQ;
	revalpha_mask <<= dead_bits;

	//which is slower? a memory operation or a conditional?
	//probably a memory operation.
	for(gnSeqI cur_pos = mer_size + 1; cur_pos < endI; cur_pos++){//already added the
													//first one
		//increment positions
		cur_suffix.position++;
		rcur_suffix.position++;
		//extract the next character
		tmp_seq = cur_seq;
		tmp_seq >>= cur_bit;
		tmp_seq &= OPT_ALPHA_MASQ;
		tmp_seq <<= dead_bits;
		
		//add it to the forward mer
		cur_suffix.mer <<= alpha_bits;
		cur_suffix.mer |= tmp_seq;

		//do the reverse complement mer
		tmp_seq = ~tmp_seq;
		tmp_seq &= revalpha_mask;
		tmp_rseq = tmp_seq;
		tmp_rseq <<= rdead_bits;
		rcur_suffix.mer >>= alpha_bits;
		rcur_suffix.mer |= tmp_rseq;
		rcur_suffix.mer &= create_mask;
		rcur_suffix.mer |= 1;
		if(cur_suffix.mer < rcur_suffix.mer)
			sml_array.push_back(cur_suffix);
		else
			sml_array.push_back(rcur_suffix);

		cur_bit -= alpha_bits;
		if(cur_bit < 0){
			cur_bit += alpha_bits;
			cur_seq <<= 16;		//trade bitwise ops for conditional
			cur_seq <<= 16 - (cur_bit);
			seqI++;
			tmp_seq = sequence[seqI];
			tmp_seq >>= cur_bit;
			cur_seq |= tmp_seq;
			cur_bit += 32 - alpha_bits;
		}
	}
}


uint64 SortedMerList::GetSeedMer( gnSeqI offset ) const
{
	//check this for access violations.
	uint64 mer_a = SortedMerList::GetMer( offset );
	uint64 mer_b = SortedMerList::GetMer( offset + 1 );
	uint64 seed_mer = 0;
	uint64 alpha_mask = 1;
	alpha_mask <<= OPT_HEADER_ALPHABET_BITS;
	alpha_mask--;
	alpha_mask <<= 62;
	uint64 cur_alpha_mask = alpha_mask;
	uint64 char_mask = 1;
	char_mask <<= header.seed_length - 1;
	uint64 cur_mer = mer_a;
	const int mer_transition = 64 / OPT_HEADER_ALPHABET_BITS;
	int patternI = 0;
	int rshift_amt = 64 - OPT_HEADER_ALPHABET_BITS;
	for( ; patternI < header.seed_length; patternI++ ){
		if( patternI == mer_transition ){
			cur_mer = mer_b;
			cur_alpha_mask = alpha_mask;
			rshift_amt = 64 - OPT_HEADER_ALPHABET_BITS;
		}
		if( (header.seed & char_mask) != 0 ){
			uint64 char_tmp = cur_mer & cur_alpha_mask;
			char_tmp >>= rshift_amt;
			seed_mer <<= OPT_HEADER_ALPHABET_BITS;
			seed_mer |= char_tmp;
		}
		cur_alpha_mask >>= OPT_HEADER_ALPHABET_BITS;
		char_mask >>= 1;
		rshift_amt -= OPT_HEADER_ALPHABET_BITS;
	}

	seed_mer <<= 64 - (OPT_HEADER_ALPHABET_BITS * header.seed_weight);
	return seed_mer;
}

uint64 SortedMerList::GetDnaSeedMer( gnSeqI offset ) const
{
	uint64 seed_mer = SortedMerList::GetSeedMer( offset );
	uint64 rev_mer = RevCompMer( seed_mer, header.seed_weight );
	return seed_mer < rev_mer ? seed_mer : rev_mer;
}

void SortedMerList::FillDnaSeedSML(const gnSequence& seq, vector<bmer>& sml_array){
	// first get the length of the sequence
	gnSeqI sar_len = SMLLength();
	if( sar_len == 0 )
		return;	// can't have an sml if there ain't enough sequence
	sml_array.resize(sar_len);
	
	/* now fill in the sml_array with the forward sequence */
	for( gnSeqI seedI = 0; seedI < sar_len; seedI++ ){
		sml_array[seedI].mer = GetDnaSeedMer( seedI );
		sml_array[seedI].position = seedI;
	}
}


void SortedMerList::Create(const gnSequence& seq, const uint64 seed){
	
	if(CalculateMaxMerSize() == 0)
		Throw_gnExMsg( SMLCreateError(), "Alphabet size is too large" );

	int seed_length = getSeedLength( seed );
	int seed_weight = getSeedWeight( seed );
	
	if(seed_length > CalculateMaxMerSize())
		Throw_gnExMsg( SMLCreateError(), "Mer size is too large" );

	if(seed_length == 0)
		Throw_gnExMsg( SMLCreateError(), "Can't have 0 seed length" );

	//determine sequence and sar length and read in sequence
	gnSeqI seq_len = seq.length();
	if(!seq.isCircular()){
		header.circular = false;
	}else
		header.circular = true;
	// use the nifty Array class as a wrapper for the buffer to ensure correct deallocation
	gnSeqI buf_len = seq.isCircular() ? seq_len + seed_length : seq_len;
	Array<gnSeqC> seq_buf( buf_len );
	seq.ToArray(seq_buf.data, seq_len);
	if( seq.isCircular() )
		seq.ToArray(seq_buf.data + seq_len, seed_length-1);

	// set header information
	header.length = seq_len;
	header.seed_length = seed_length;
	header.seed_weight = seed_weight;
	header.seed = seed;

	SetMerMaskSize( seed_weight );
	seed_mask = mer_mask;
	SetMerMaskSize( seed_length );

	SetSequence( seq_buf.data, buf_len );
}

} // namespace mems