1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
|
//===----- RISCVCodeGenPrepare.cpp ----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This is a RISCV specific version of CodeGenPrepare.
// It munges the code in the input function to better prepare it for
// SelectionDAG-based code generation. This works around limitations in it's
// basic-block-at-a-time approach.
//
//===----------------------------------------------------------------------===//
#include "RISCV.h"
#include "RISCVTargetMachine.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/InstVisitor.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
using namespace llvm;
#define DEBUG_TYPE "riscv-codegenprepare"
#define PASS_NAME "RISCV CodeGenPrepare"
STATISTIC(NumZExtToSExt, "Number of SExt instructions converted to ZExt");
namespace {
class RISCVCodeGenPrepare : public FunctionPass,
public InstVisitor<RISCVCodeGenPrepare, bool> {
const DataLayout *DL;
const RISCVSubtarget *ST;
public:
static char ID;
RISCVCodeGenPrepare() : FunctionPass(ID) {}
bool runOnFunction(Function &F) override;
StringRef getPassName() const override { return PASS_NAME; }
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesCFG();
AU.addRequired<TargetPassConfig>();
}
bool visitInstruction(Instruction &I) { return false; }
bool visitZExtInst(ZExtInst &I);
bool visitAnd(BinaryOperator &BO);
};
} // end anonymous namespace
bool RISCVCodeGenPrepare::visitZExtInst(ZExtInst &ZExt) {
if (!ST->is64Bit())
return false;
Value *Src = ZExt.getOperand(0);
// We only care about ZExt from i32 to i64.
if (!ZExt.getType()->isIntegerTy(64) || !Src->getType()->isIntegerTy(32))
return false;
// Look for an opportunity to replace (i64 (zext (i32 X))) with a sext if we
// can determine that the sign bit of X is zero via a dominating condition.
// This often occurs with widened induction variables.
if (isImpliedByDomCondition(ICmpInst::ICMP_SGE, Src,
Constant::getNullValue(Src->getType()), &ZExt,
*DL).value_or(false)) {
auto *SExt = new SExtInst(Src, ZExt.getType(), "", &ZExt);
SExt->takeName(&ZExt);
SExt->setDebugLoc(ZExt.getDebugLoc());
ZExt.replaceAllUsesWith(SExt);
ZExt.eraseFromParent();
++NumZExtToSExt;
return true;
}
// Convert (zext (abs(i32 X, i1 1))) -> (sext (abs(i32 X, i1 1))). If abs of
// INT_MIN is poison, the sign bit is zero.
using namespace PatternMatch;
if (match(Src, m_Intrinsic<Intrinsic::abs>(m_Value(), m_One()))) {
auto *SExt = new SExtInst(Src, ZExt.getType(), "", &ZExt);
SExt->takeName(&ZExt);
SExt->setDebugLoc(ZExt.getDebugLoc());
ZExt.replaceAllUsesWith(SExt);
ZExt.eraseFromParent();
++NumZExtToSExt;
return true;
}
return false;
}
// Try to optimize (i64 (and (zext/sext (i32 X), C1))) if C1 has bit 31 set,
// but bits 63:32 are zero. If we can prove that bit 31 of X is 0, we can fill
// the upper 32 bits with ones. A separate transform will turn (zext X) into
// (sext X) for the same condition.
bool RISCVCodeGenPrepare::visitAnd(BinaryOperator &BO) {
if (!ST->is64Bit())
return false;
if (!BO.getType()->isIntegerTy(64))
return false;
// Left hand side should be sext or zext.
Instruction *LHS = dyn_cast<Instruction>(BO.getOperand(0));
if (!LHS || (!isa<SExtInst>(LHS) && !isa<ZExtInst>(LHS)))
return false;
Value *LHSSrc = LHS->getOperand(0);
if (!LHSSrc->getType()->isIntegerTy(32))
return false;
// Right hand side should be a constant.
Value *RHS = BO.getOperand(1);
auto *CI = dyn_cast<ConstantInt>(RHS);
if (!CI)
return false;
uint64_t C = CI->getZExtValue();
// Look for constants that fit in 32 bits but not simm12, and can be made
// into simm12 by sign extending bit 31. This will allow use of ANDI.
// TODO: Is worth making simm32?
if (!isUInt<32>(C) || isInt<12>(C) || !isInt<12>(SignExtend64<32>(C)))
return false;
// If we can determine the sign bit of the input is 0, we can replace the
// And mask constant.
if (!isImpliedByDomCondition(ICmpInst::ICMP_SGE, LHSSrc,
Constant::getNullValue(LHSSrc->getType()),
LHS, *DL).value_or(false))
return false;
// Sign extend the constant and replace the And operand.
C = SignExtend64<32>(C);
BO.setOperand(1, ConstantInt::get(LHS->getType(), C));
return true;
}
bool RISCVCodeGenPrepare::runOnFunction(Function &F) {
if (skipFunction(F))
return false;
auto &TPC = getAnalysis<TargetPassConfig>();
auto &TM = TPC.getTM<RISCVTargetMachine>();
ST = &TM.getSubtarget<RISCVSubtarget>(F);
DL = &F.getParent()->getDataLayout();
bool MadeChange = false;
for (auto &BB : F)
for (Instruction &I : llvm::make_early_inc_range(BB))
MadeChange |= visit(I);
return MadeChange;
}
INITIALIZE_PASS_BEGIN(RISCVCodeGenPrepare, DEBUG_TYPE, PASS_NAME, false, false)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_END(RISCVCodeGenPrepare, DEBUG_TYPE, PASS_NAME, false, false)
char RISCVCodeGenPrepare::ID = 0;
FunctionPass *llvm::createRISCVCodeGenPreparePass() {
return new RISCVCodeGenPrepare();
}
|