File: classifyseqscommand.cpp

package info (click to toggle)
mothur 1.48.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 13,692 kB
  • sloc: cpp: 161,866; makefile: 122; sh: 31
file content (610 lines) | stat: -rw-r--r-- 34,722 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
/*
 *  classifyseqscommand.cpp
 *  Mothur
 *
 *  Created by westcott on 11/2/09.
 *  Copyright 2009 Schloss Lab. All rights reserved.
 *
 */

#include "classifyseqscommand.h"



//**********************************************************************************************************************
vector<string> ClassifySeqsCommand::setParameters(){	
	try {
		CommandParameter ptaxonomy("taxonomy", "InputTypes", "", "", "none", "none", "none","",false,true,true); parameters.push_back(ptaxonomy);
		CommandParameter ptemplate("reference", "InputTypes", "", "", "none", "none", "none","",false,true,true); parameters.push_back(ptemplate);
		CommandParameter pfasta("fasta", "InputTypes", "", "", "none", "none", "none","taxonomy",false,true,true); parameters.push_back(pfasta);
        CommandParameter pname("name", "InputTypes", "", "", "NameCount", "none", "none","",false,false,true); parameters.push_back(pname);
        CommandParameter pcount("count", "InputTypes", "", "", "NameCount-CountGroup", "none", "none","",false,false,true); parameters.push_back(pcount);
		CommandParameter pgroup("group", "InputTypes", "", "", "CountGroup", "none", "none","",false,false,true); parameters.push_back(pgroup);
        CommandParameter poutput("output", "Multiple", "simple-detail", "detail", "", "", "","",false,false, true); parameters.push_back(poutput);
		CommandParameter psearch("search", "Multiple", "kmer-suffix-distance-align", "kmer", "", "", "","",false,false); parameters.push_back(psearch);
		CommandParameter pksize("ksize", "Number", "", "8", "", "", "","",false,false); parameters.push_back(pksize);
		CommandParameter pmethod("method", "Multiple", "wang-knn-zap", "wang", "", "", "","",false,false); parameters.push_back(pmethod);
		CommandParameter pprocessors("processors", "Number", "", "1", "", "", "","",false,false,true); parameters.push_back(pprocessors);
		CommandParameter pmatch("match", "Number", "", "1.0", "", "", "","",false,false); parameters.push_back(pmatch);
        CommandParameter pprintlevel("printlevel", "Number", "", "-1", "", "", "","",false,false); parameters.push_back(pprintlevel);
		CommandParameter pmismatch("mismatch", "Number", "", "-1.0", "", "", "","",false,false); parameters.push_back(pmismatch);
		CommandParameter pgapopen("gapopen", "Number", "", "-2.0", "", "", "","",false,false); parameters.push_back(pgapopen);
		CommandParameter pgapextend("gapextend", "Number", "", "-1.0", "", "", "","",false,false); parameters.push_back(pgapextend);
		CommandParameter pcutoff("cutoff", "Number", "", "80", "", "", "","",false,true); parameters.push_back(pcutoff);
		CommandParameter pprobs("probs", "Boolean", "", "T", "", "", "","",false,false); parameters.push_back(pprobs);
		CommandParameter piters("iters", "Number", "", "100", "", "", "","",false,true); parameters.push_back(piters);
        CommandParameter pshortcuts("shortcuts", "Boolean", "", "T", "", "", "","",false,false); parameters.push_back(pshortcuts);
        CommandParameter prelabund("relabund", "Boolean", "", "F", "", "", "","",false,false); parameters.push_back(prelabund);
		CommandParameter pnumwanted("numwanted", "Number", "", "10", "", "", "","",false,true); parameters.push_back(pnumwanted);
		CommandParameter pseed("seed", "Number", "", "0", "", "", "","",false,false); parameters.push_back(pseed);
        CommandParameter pinputdir("inputdir", "String", "", "", "", "", "","",false,false); parameters.push_back(pinputdir);
		CommandParameter poutputdir("outputdir", "String", "", "", "", "", "","",false,false); parameters.push_back(poutputdir);
        
        abort = false; calledHelp = false;
        
        vector<string> tempOutNames;
        outputTypes["taxonomy"] = tempOutNames;
        outputTypes["accnos"] = tempOutNames;
        outputTypes["taxsummary"] = tempOutNames;
        outputTypes["matchdist"] = tempOutNames;
		
		vector<string> myArray;
		for (int i = 0; i < parameters.size(); i++) {	myArray.push_back(parameters[i].name);		}
		return myArray;
	}
	catch(exception& e) {
		m->errorOut(e, "ClassifySeqsCommand", "setParameters");
		exit(1);
	}
}
//**********************************************************************************************************************
string ClassifySeqsCommand::getHelpString(){	
	try {
		string helpString = "";
		helpString += "The classify.seqs command reads a fasta file containing sequences and creates a .taxonomy file and a .tax.summary file.\n";
		helpString += "The classify.seqs command parameters are " + getCommandParameters() + ". The reference, fasta and taxonomy parameters are required.\n";
		helpString += "The search parameter allows you to specify the method to find most similar reference sequence.  Your options are: suffix, kmer, align and distance. The default is kmer.\n";
		helpString += "The name parameter allows you add a names file with your fasta file.\n";
		helpString += "The group parameter allows you add a group file so you can have the summary totals broken up by group.\n";
        helpString += "The count parameter allows you add a count file so you can have the summary totals broken up by group.\n";
		helpString += "The method parameter allows you to specify classification method to use.  Your options are: wang, knn and zap. The default is wang.\n";
		helpString += "The ksize parameter allows you to specify the kmer size for finding most similar template to candidate.  The default is 8.\n";
		helpString += "The processors parameter allows you to specify the number of processors to use. The default is all available.\n";
		helpString += "The match parameter allows you to specify the bonus for having the same base. The default is 1.0.\n";
		helpString += "The mistmatch parameter allows you to specify the penalty for having different bases.  The default is -1.0.\n";
		helpString += "The gapopen parameter allows you to specify the penalty for opening a gap in an alignment. The default is -2.0.\n";
		helpString += "The gapextend parameter allows you to specify the penalty for extending a gap in an alignment.  The default is -1.0.\n";
		helpString += "The numwanted parameter allows you to specify the number of sequence matches you want with the knn method.  The default is 10.\n";
		helpString += "The cutoff parameter allows you to specify a bootstrap confidence threshold for your taxonomy.  The default is 80.\n";
		helpString += "The probs parameter shuts off the bootstrapping results for the wang and zap method. The default is true, meaning you want the bootstrapping to be shown.\n";
        helpString += "The relabund parameter allows you to indicate you want the summary file values to be relative abundances rather than raw abundances. Default=F. \n";
		helpString += "The iters parameter allows you to specify how many iterations to do when calculating the bootstrap confidence score for your taxonomy with the wang method.  The default is 100.\n";
		helpString += "The output parameter allows you to specify format of your summary file. Options are simple and detail. The default is detail.\n";
        helpString += "The printlevel parameter allows you to specify taxlevel of your summary file to print to. Options are 1 to the max level in the file.  The default is the max level.  If you select a level greater than the level your sequences classify to, mothur will print all possible levels. \n";
		helpString += "The classify.seqs command should be in the following format: \n";
		helpString += "classify.seqs(reference=yourReferenceFile, fasta=yourFastaFile, taxonomy=yourTaxonomyFile) \n";
		helpString += "Example classify.seqs(fasta=amazon.fasta, reference=trainset9_032012.pds.fasta, taxonomy=trainset9_032012.pds.tax)\n";
		helpString += "The .taxonomy file consists of 2 columns: 1 = your sequence name, 2 = the taxonomy for your sequence. \n";
		helpString += "The .tax.summary is a summary of the different taxonomies represented in your fasta file. \n";
        
        getCommonQuestions();
		
		return helpString;
	}
	catch(exception& e) {
		m->errorOut(e, "ClassifySeqsCommand", "getHelpString");
		exit(1);
	}
}
//**********************************************************************************************************************
string ClassifySeqsCommand::getCommonQuestions(){
    try {
        vector<string> questions, issues, qanswers, ianswers, howtos, hanswers;
        
        string question = "Does the reference need to be aligned?"; questions.push_back(question);
        string qanswer = "\tFor wang, knn and zap methods, mothur does not require an aligned reference to assign a taxonomy. Wang use k-mers to find the probabilities of the taxonomic assignment. \n"; qanswers.push_back(qanswer);
        
        question = "What reference should I use to classify?"; questions.push_back(question);
        qanswer = "\tWe provide mothur formatted references on the wiki. https://www.mothur.org/wiki/RDP_reference_files https://mothur.org/wiki/Silva_reference_files https://www.mothur.org/wiki/Greengenes-formatted_databases Alternatively, mothur allows you to create your own references as long as they are in fasta and taxonomy file format. You can find mothur's files formats here, https://www.mothur.org/wiki/File_Types. \n"; qanswers.push_back(qanswer);
        
        string issue = "Why are my sequences 'unclassifed'?"; issues.push_back(issue);
        string ianswer = "\tWhen it comes to classification there are two things main things that effect the number of unclassified results: the quality of the reads and the reference files. The bayesian classifier calculates the probabilities of reference sequences kmers being in a given genus and then uses those probabilities to classify the sequences. The quality of the query sequences affects the ability of the classifier to find enough kmers to find a good classification. A poor quality sequence is like turning up the noise in a crowded restaurant and trying to hear your date's father's name. Was that John, Tom or Ron? Uh oh... A good reference is also needed for similar reasons.\n"; ianswers.push_back(ianswer);
        
        string howto = "How do you recommend classifying to the species level?"; howtos.push_back(howto);
        string hanswer = "\tUnfortunately I do not. You will never get species level classification if you are using the RDP or Silva references. They only go to the genus level. Even the greengenes database only has 10% or so of sequences with species level names (greengenes hasn’t been updated in quite a few years). I and many others would contend that using 16S and especially a fragment to get a species name is asking too much - you need a culture and genome sequencing to do that. If someone wanted to give it a shot, they would need to add the species level names to the taxonomy strings. Also, they would need to add many more sequences that represent each species. Outside of a few groups of bacteria where the researchers have carefully selected the region (e.g. Lactobacillus or Staphylococcus), I really think this would be a lot of work for little/no benefit.\n"; hanswers.push_back(hanswer);
        
        string commonQuestions = util.getFormattedHelp(questions, qanswers, issues, ianswers, howtos, hanswers);
        
        return commonQuestions;
    }
    catch(exception& e) {
        m->errorOut(e, "ClassifySeqsCommand", "getCommonQuestions");
        exit(1);
    }
}

//**********************************************************************************************************************
string ClassifySeqsCommand::getOutputPattern(string type) {
    try {
        string pattern = "";
        
        if (type == "taxonomy") {  pattern = "[filename],[tag],[tag2],taxonomy"; } 
        else if (type == "taxsummary") {  pattern = "[filename],[tag],[tag2],tax.summary"; } 
        else if (type == "accnos") {  pattern =  "[filename],[tag],[tag2],flip.accnos"; }
        else if (type == "matchdist") {  pattern =  "[filename],[tag],[tag2],match.dist"; }
        else { m->mothurOut("[ERROR]: No definition for type " + type + " output pattern.\n"); m->setControl_pressed(true);  }
        
        return pattern;
    }
    catch(exception& e) {
        m->errorOut(e, "ClassifySeqsCommand", "getOutputPattern");
        exit(1);
    }
}
//**********************************************************************************************************************
ClassifySeqsCommand::ClassifySeqsCommand(string option) : Command()  {
	try {
		hasName = false; hasCount=false;
		
		//allow user to run help
		if(option == "help") { help(); abort = true; calledHelp = true; }
		else if(option == "citation") { citation(); abort = true; calledHelp = true;}
        else if(option == "category") {  abort = true; calledHelp = true;  }
		
		else {
			OptionParser parser(option, setParameters());
			map<string, string> parameters = parser.getParameters(); 
			
			ValidParameters validParameter;
			
            fastafile = validParameter.validFile(parameters, "fasta");
            if (fastafile == "not found") {
                fastafile = current->getFastaFile();
                if (fastafile != "") { m->mothurOut("Using " + fastafile + " as input file for the fasta parameter.\n"); }
                else { 	m->mothurOut("[ERROR]: You have no current fasta file and the fasta parameter is required.\n");  abort = true; }
            }
            else if (fastafile == "not open") { abort = true; }
            else { current->setFastaFile(fastafile); }
            
            namefile = validParameter.validFile(parameters, "name");
            if (namefile == "not open") { namefile = ""; abort = true; }
            else if (namefile == "not found") {  namefile = "";  }
            else { current->setNameFile(namefile); }
            if (namefile != "") { hasName = true; }
            
            //check for required parameters
            countfile = validParameter.validFile(parameters, "count");
            if (countfile == "not open") { countfile = ""; abort = true; }
            else if (countfile == "not found") { countfile = "";  }
            else { current->setCountFile(countfile); }
            if (countfile != "") { hasCount = true; }
            
            //make sure there is at least one valid file left
            if (hasName && hasCount) { m->mothurOut("[ERROR]: You must enter ONLY ONE of the following: count or name.\n");  abort = true; }
            
            bool hasGroup = false;
            groupfile = validParameter.validFile(parameters, "group");
            if (groupfile == "not open") { abort = true; }
            else if (groupfile == "not found") {  groupfile = "";  }
            else { current->setGroupFile(groupfile); hasGroup = true; }
            
            if (hasGroup && hasCount) { m->mothurOut("[ERROR]: You must enter ONLY ONE of the following: count or group.\n");  abort = true; }
			
			//check for optional parameter and set defaults
			// ...at some point should added some additional type checking...
			string temp;
			temp = validParameter.valid(parameters, "processors");	if (temp == "not found"){	temp = current->getProcessors();	}
			processors = current->setProcessors(temp);

			//this has to go after save so that if the user sets save=t and provides no reference we abort
			templateFileName = validParameter.validFile(parameters, "reference");
			if (templateFileName == "not found") {
					m->mothurOut("[ERROR]: The reference parameter is a required for the classify.seqs command.\n"); abort = true;
			}else if (templateFileName == "not open") { abort = true; }
			
			
			//this has to go after save so that if the user sets save=t and provides no reference we abort
			taxonomyFileName = validParameter.validFile(parameters, "taxonomy");
			if (taxonomyFileName == "not found") {  m->mothurOut("[ERROR]: The taxonomy parameter is a required for the classify.seqs command.\n"); abort = true;
			}else if (taxonomyFileName == "not open") { abort = true; }
			
			search = validParameter.valid(parameters, "search");		if (search == "not found"){	search = "kmer";		}
			
			method = validParameter.valid(parameters, "method");		if (method == "not found"){	method = "wang";	}
            
            temp = validParameter.valid(parameters, "ksize");		if (temp == "not found"){	
                temp = "8";	
                if (method == "zap") { temp = "7"; }
            }
			util.mothurConvert(temp, kmerSize); 
			
			temp = validParameter.valid(parameters, "match");		if (temp == "not found"){	temp = "1.0";			}
			util.mothurConvert(temp, match);
            
            temp = validParameter.valid(parameters, "printlevel");		if (temp == "not found"){	temp = "-1";		}
            util.mothurConvert(temp, printlevel);
			
			temp = validParameter.valid(parameters, "mismatch");		if (temp == "not found"){	temp = "-1.0";			}
			util.mothurConvert(temp, misMatch);  
			
			temp = validParameter.valid(parameters, "gapopen");		if (temp == "not found"){	temp = "-2.0";			}
			util.mothurConvert(temp, gapOpen);  
			
			temp = validParameter.valid(parameters, "gapextend");	if (temp == "not found"){	temp = "-1.0";			}
			util.mothurConvert(temp, gapExtend); 
			
			temp = validParameter.valid(parameters, "numwanted");	if (temp == "not found"){	temp = "10";			}
			util.mothurConvert(temp, numWanted);
			
			temp = validParameter.valid(parameters, "cutoff");		if (temp == "not found"){	temp = "80";				}
			util.mothurConvert(temp, cutoff);
			
			temp = validParameter.valid(parameters, "probs");		if (temp == "not found"){	temp = "true";			}
			probs = util.isTrue(temp);
            
            temp = validParameter.valid(parameters, "relabund");		if (temp == "not found"){	temp = "false";			}
			relabund = util.isTrue(temp);
            
            temp = validParameter.valid(parameters, "shortcuts");	if (temp == "not found"){	temp = "true";			}
			writeShortcuts = util.isTrue(temp);
			
			flip = true;
			
			temp = validParameter.valid(parameters, "iters");		if (temp == "not found") { temp = "100";			}
			util.mothurConvert(temp, iters); 
            
            output = validParameter.valid(parameters, "output");		if(output == "not found"){	output = "detail"; }
			if ((output != "simple") && (output != "detail")) { m->mothurOut(output + " is not a valid output form. Options are simple and detail. I will use detail.\n"); output = "detail"; }
            
			if ((method == "wang") && (search != "kmer"))  { 
				m->mothurOut("The wang method requires the kmer search. " + search + " will be disregarded, and kmer will be used.\n" );
				search = "kmer";
			}
            
            if ((method == "zap") && ((search != "kmer") && (search != "align")))  { 
				m->mothurOut("The zap method requires the kmer or align search. " + search + " will be disregarded, and kmer will be used.\n" );
				search = "kmer";
			}
        }
	}
	catch(exception& e) {
		m->errorOut(e, "ClassifySeqsCommand", "ClassifySeqsCommand");
		exit(1);
	}
}

//**********************************************************************************************************************
ClassifySeqsCommand::~ClassifySeqsCommand(){}
//**********************************************************************************************************************

int ClassifySeqsCommand::execute(){
	try {
		if (abort) { if (calledHelp) { return 0; }  return 2;	}
        
        string outputMethodTag = method;
		if(method == "wang"){	classify = new Bayesian(taxonomyFileName, templateFileName, search, kmerSize, cutoff, iters, util.getRandomNumber(), flip, writeShortcuts, current->getVersion());	}
        else if(method == "knn"){	classify = new Knn(taxonomyFileName, templateFileName, search, kmerSize, gapOpen, gapExtend, match, misMatch, numWanted, util.getRandomNumber(), current->getVersion());				}
        else if(method == "zap"){	
            outputMethodTag = search + "_" + outputMethodTag;
            if (search == "kmer") {   classify = new KmerTree(templateFileName, taxonomyFileName, kmerSize, cutoff); }
            else {  classify = new AlignTree(templateFileName, taxonomyFileName, cutoff);  }
        }
		else {
			m->mothurOut(search + " is not a valid method option. I will run the command using wang.\n");
			classify = new Bayesian(taxonomyFileName, templateFileName, search, kmerSize, cutoff, iters, util.getRandomNumber(), flip, writeShortcuts, current->getVersion());
		}
		
		if (m->getControl_pressed()) { delete classify; return 0; }
				
        m->mothurOut("Classifying sequences from " + fastafile + " ...\n" );
        
        string baseTName = util.getSimpleName(taxonomyFileName);
        
        //set rippedTaxName to
        string RippedTaxName = "";
        bool foundDot = false;
        for (int i = baseTName.length()-1; i >= 0; i--) {
            if (foundDot && (baseTName[i] != '.')) {  RippedTaxName = baseTName[i] + RippedTaxName; }
            else if (foundDot && (baseTName[i] == '.')) {  break; }
            else if (!foundDot && (baseTName[i] == '.')) {  foundDot = true; }
        }
        
        if (outputdir == "") { outputdir += util.hasPath(fastafile); }
        map<string, string> variables;
        variables["[filename]"] = outputdir + util.getRootName(util.getSimpleName(fastafile));
        variables["[tag]"] = RippedTaxName;
        variables["[tag2]"] = outputMethodTag;
        string newTaxonomyFile = getOutputFileName("taxonomy", variables);
        string newaccnosFile = getOutputFileName("accnos", variables);
        string tempTaxonomyFile = outputdir + util.getRootName(util.getSimpleName(fastafile)) + "taxonomy.temp";
        string taxSummary = getOutputFileName("taxsummary", variables);
        
        if ((method == "knn") && (search == "distance")) {
            string DistName = getOutputFileName("matchdist", variables);
            classify->setDistName(DistName);  outputNames.push_back(DistName); outputTypes["matchdist"].push_back(DistName);
        }
        
        outputNames.push_back(newTaxonomyFile); outputTypes["taxonomy"].push_back(newTaxonomyFile);
        outputNames.push_back(taxSummary);	outputTypes["taxsummary"].push_back(taxSummary);
        
        long start = time(nullptr);
        int numFastaSeqs = createProcesses(newTaxonomyFile, tempTaxonomyFile, newaccnosFile, fastafile);
        
        if (!util.isBlank(newaccnosFile)) { m->mothurOut("\n[WARNING]: mothur reversed some your sequences for a better classification.  If you would like to take a closer look, please check " + newaccnosFile + " for the list of the sequences.\n");
            outputNames.push_back(newaccnosFile); outputTypes["accnos"].push_back(newaccnosFile);
        }else { util.mothurRemove(newaccnosFile); }
        
        m->mothurOut("\nIt took " + toString(time(nullptr) - start) + " secs to classify " + toString(numFastaSeqs) + " sequences.\n\n");
        start = time(nullptr);
        
        //read namefile
        map<string, vector<string> > nameMap;
        map<string,  vector<string> >::iterator itNames;
        if(namefile != "") {
            m->mothurOut("Reading " + namefile + "..."); cout.flush();
            nameMap.clear(); //remove old names
            util.readNames(namefile, nameMap);
            m->mothurOut("  Done.\n");
        }
        
        //output taxonomy with the unclassified bins added
        ifstream inTax;
        util.openInputFile(newTaxonomyFile, inTax);
        
        ofstream outTax;
        string unclass = newTaxonomyFile + ".unclass.temp";
        util.openOutputFile(unclass, outTax);
        
        //get maxLevel from phylotree so you know how many 'unclassified's to add
        int maxLevel = classify->getMaxLevel();
        
        //read taxfile - this reading and rewriting is done to preserve the confidence scores.
        string name, taxon;
        GroupMap* groupMap = nullptr;
        CountTable* ct = nullptr;
        PhyloSummary* taxaSum;
        
        if (hasCount) {
            ct = new CountTable();
            ct->readTable(countfile, true, false);
            taxaSum = new PhyloSummary(ct, relabund, printlevel);
        }else {
            if (groupfile != "") {  groupMap = new GroupMap(groupfile); groupMap->readMap(); }
            taxaSum = new PhyloSummary(groupMap, relabund, printlevel);
        }
        
        while (!inTax.eof()) {
            if (m->getControl_pressed()) { outputTypes.clear(); if (ct != nullptr) { delete ct; }  if (groupMap != nullptr) { delete groupMap; } delete taxaSum; for (int i = 0; i < outputNames.size(); i++) {	util.mothurRemove(outputNames[i]);	} delete classify; return 0; }
            
            inTax >> name; gobble(inTax);
            taxon = util.getline(inTax); gobble(inTax);
            
            string newTax = util.addUnclassifieds(taxon, maxLevel, probs);
            
            outTax << name << '\t' << newTax << endl;
            
            if (namefile != "") {
                itNames = nameMap.find(name);
                
                if (itNames == nameMap.end()) {
                    m->mothurOut(name + " is not in your name file please correct.\n");  exit(1);
                }else{
                    //add it as many times as there are identical seqs
                    for (int i = 0; i < itNames->second.size(); i++) { taxaSum->addSeqToTree(itNames->second[i], newTax); }
                    itNames->second.clear();
                    nameMap.erase(itNames->first);
                }
            }else { taxaSum->addSeqToTree(name, newTax); }
        }
        inTax.close();
        outTax.close();
        
        util.mothurRemove(newTaxonomyFile);
        util.renameFile(unclass, newTaxonomyFile);
        
        if (m->getControl_pressed()) {  outputTypes.clear(); if (ct != nullptr) { delete ct; } if (groupMap != nullptr) { delete groupMap; } for (int i = 0; i < outputNames.size(); i++) {	util.mothurRemove(outputNames[i]);	} delete classify; delete taxaSum;  return 0; }
        
        //print summary file
        ofstream outTaxTree;
        util.openOutputFile(taxSummary, outTaxTree);
        taxaSum->print(outTaxTree, output);
        outTaxTree.close();
        
        if (ct != nullptr) { delete ct; }
        if (groupMap != nullptr) { delete groupMap; } delete taxaSum;
        util.mothurRemove(tempTaxonomyFile);
        delete classify;
        
        m->mothurOut("\nIt took " + toString(time(nullptr) - start) + " secs to create the summary file for " + toString(numFastaSeqs) + " sequences.\n\n");

        m->mothurOut("\nOutput File Names: \n");
        for (int i = 0; i < outputNames.size(); i++) {	m->mothurOut(outputNames[i]); m->mothurOutEndLine();	}
        m->mothurOutEndLine();
		
		//set taxonomy file as new current taxonomyfile
		string currentName = "";
		itTypes = outputTypes.find("taxonomy");
		if (itTypes != outputTypes.end()) { if ((itTypes->second).size() != 0) { currentName = (itTypes->second)[0]; current->setTaxonomyFile(currentName); } }
		
		currentName = "";
		itTypes = outputTypes.find("accnos");
		if (itTypes != outputTypes.end()) { if ((itTypes->second).size() != 0) { currentName = (itTypes->second)[0]; current->setAccnosFile(currentName); } }

		return 0;
	}
	catch(exception& e) {
		m->errorOut(e, "ClassifySeqsCommand", "execute");
		exit(1);
	}
}
/**************************************************************************************************/
struct classifyData {
    OutputWriter* taxTWriter;
    OutputWriter* taxWriter;
    OutputWriter* accnosWriter;
    string search, taxonomyFileName, templateFileName, method, filename;
    unsigned long long start;
    unsigned long long end;
    MothurOut* m;
    Classify* classify;
    float match, misMatch, gapOpen, gapExtend;
    int count, kmerSize, threadID, cutoff, iters, numWanted;
    bool probs, flip, writeShortcuts;
    Utils util;
    
    classifyData(){}
    classifyData(OutputWriter* acc, bool p, OutputWriter* a, OutputWriter* r, string f, unsigned long long st, unsigned long long en, bool fli, Classify* c) {
        accnosWriter = acc;
        taxWriter = a;
        taxTWriter = r;
        filename = f;
        m = MothurOut::getInstance();
        start = st;
        end = en;
        probs = p;
        flip = fli;
        count = 0;
        classify = c;
    }
};
//**********************************************************************************************************************
void driverClassifier(classifyData* params){
    try {
        ifstream inFASTA; params->util.openInputFile(params->filename, inFASTA); inFASTA.seekg(params->start);
        
        string taxonomy;
        bool done = false;
        string taxBuffer = ""; string taxTBuffer = ""; string accnosBuffer = "";
        while (!done) {
            if (params->m->getControl_pressed()) { break; }
            
            Sequence* candidateSeq = new Sequence(inFASTA); gobble(inFASTA);
            
            if (candidateSeq->getName() != "") {
                
                string simpleTax = ""; bool flipped = false;
                taxonomy = params->classify->getTaxonomy(candidateSeq, simpleTax, flipped);
                
                if (params->m->getControl_pressed()) { delete candidateSeq; break; }
                
                if (taxonomy == "unknown;") { params->m->mothurOut("[WARNING]: " + candidateSeq->getName() + " could not be classified. You can use the remove.lineage command with taxon=unknown; to remove such sequences.\n");  }
                
                //output confidence scores or not
                if (params->probs)  { taxBuffer += candidateSeq->getName() + '\t' + taxonomy + '\n';    }
                else                { taxBuffer += candidateSeq->getName() + '\t' + simpleTax + '\n';   }
                
                if (flipped) { accnosBuffer += candidateSeq->getName() + '\n'; }
                
                taxTBuffer = candidateSeq->getName() + '\t' + simpleTax + '\n';
                
                params->count++;
            }
            delete candidateSeq;
            
            //report progress
            if((params->count) % 100 == 0){
                params->m->mothurOutJustToScreen(toString(params->count) +"\n");
                params->taxTWriter->write(taxTBuffer); taxTBuffer = "";
                params->taxWriter->write(taxBuffer); taxBuffer = "";
                if (accnosBuffer != "") { params->accnosWriter->write(accnosBuffer); accnosBuffer = ""; }
            }
            
#if defined NON_WINDOWS
            unsigned long long pos = inFASTA.tellg();
            if ((pos == -1) || (pos >= params->end)) { break; }
#else
            if (params->count == params->end) { break; }
#endif
            
    }
        //report progress
        if((params->count) % 100 != 0){
            params->m->mothurOutJustToScreen(toString(params->count)+"\n");
            params->taxTWriter->write(taxTBuffer); taxTBuffer = "";
            params->taxWriter->write(taxBuffer); taxBuffer = "";
            if (accnosBuffer != "") { params->accnosWriter->write(accnosBuffer); accnosBuffer = ""; }
        }
        
        inFASTA.close();
    }
    catch(exception& e) {
        params->m->errorOut(e, "ClassifySeqsCommand", "driver");
        exit(1);
    }
}
/**************************************************************************************************/

int ClassifySeqsCommand::createProcesses(string taxFileName, string tempTaxFile, string accnos, string filename) {
	try {
        //create array of worker threads
        vector<std::thread*> workerThreads;
        vector<classifyData*> data;
        
        long long num = 0;

        vector<double> positions;
        vector<linePair> lines;
#if defined NON_WINDOWS
        positions = util.divideFile(filename, processors);
        for (int i = 0; i < (positions.size()-1); i++) {	lines.push_back(linePair(positions[i], positions[(i+1)]));	}
#else
        positions = util.setFilePosFasta(filename, num);
        if (num < processors) { processors = num; }
            
        //figure out how many sequences you have to process
        int numSeqsPerProcessor = num / processors;
        for (int i = 0; i < processors; i++) {
            int startIndex =  i * numSeqsPerProcessor;
            if(i == (processors - 1)){	numSeqsPerProcessor = num - i * numSeqsPerProcessor; 	}
            lines.push_back(linePair(positions[startIndex], numSeqsPerProcessor));
        }
#endif
        auto synchronizedAccnosFile = std::make_shared<SynchronizedOutputFile>(accnos);
        auto synchronizedTaxFile = std::make_shared<SynchronizedOutputFile>(taxFileName);
        auto synchronizedTaxTFile = std::make_shared<SynchronizedOutputFile>(tempTaxFile);

        //Lauch worker threads
        for (int i = 0; i < processors-1; i++) {
            OutputWriter* threadTaxWriter = new OutputWriter(synchronizedTaxFile);
            OutputWriter* threadTaxTWriter = new OutputWriter(synchronizedTaxTFile);
            OutputWriter* threadAccnosWriter = new OutputWriter(synchronizedAccnosFile);
            
            classifyData* dataBundle = new classifyData(threadAccnosWriter, probs, threadTaxWriter, threadTaxTWriter, filename, lines[i+1].start, lines[i+1].end, flip, classify);
            data.push_back(dataBundle);
            
            workerThreads.push_back(new std::thread(driverClassifier, dataBundle));
        }
        
        OutputWriter* threadTaxWriter = new OutputWriter(synchronizedTaxFile);
        OutputWriter* threadTaxTWriter = new OutputWriter(synchronizedTaxTFile);
        OutputWriter* threadAccnosWriter = new OutputWriter(synchronizedAccnosFile);
        
        classifyData* dataBundle = new classifyData(threadAccnosWriter, probs, threadTaxWriter, threadTaxTWriter, filename, lines[0].start, lines[0].end, flip, classify);
        driverClassifier(dataBundle);
        num = dataBundle->count;
        
        for (int i = 0; i < processors-1; i++) {
            workerThreads[i]->join();
            num += data[i]->count;
            
            delete data[i]->taxTWriter;
            delete data[i]->taxWriter;
            delete data[i]->accnosWriter;

            delete data[i];
            delete workerThreads[i];
        }
        synchronizedTaxTFile->close(); synchronizedTaxFile->close(); synchronizedAccnosFile->close();
        delete threadTaxWriter; delete threadTaxTWriter; delete threadAccnosWriter;
        delete dataBundle;
        
        return num;
	}
	catch(exception& e) {
		m->errorOut(e, "ClassifySeqsCommand", "createProcesses");
		exit(1);
	}
}
/**************************************************************************************************/