1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
|
//
// classifysvmsharedcommand.cpp
// Mothur
//
// Created by Joshua Lynch on 6/28/2013.
// Copyright (c) 2013 Schloss Lab. All rights reserved.
//
#include "classifysvmsharedcommand.h"
//**********************************************************************************************************************
vector<string> ClassifySvmSharedCommand::setParameters() {
try {
//CommandParameter pprocessors("processors", "Number", "", "1", "", "", "",false,false); parameters.push_back(pprocessors);
CommandParameter pshared("shared", "InputTypes", "", "", "none", "none", "none", "summary", false, true, true);
parameters.push_back(pshared);
CommandParameter pdesign("design", "InputTypes", "", "", "none", "none", "none", "", false, true, true);
parameters.push_back(pdesign);
// RFE or classification?
// mode should be either 'rfe' or 'classify'
CommandParameter mode("mode", "String", "", "", "", "", "", "", false, false);
parameters.push_back(mode);
// cross validation parameters
CommandParameter evaluationFoldCountParam("evaluationfolds", "Number", "", "3", "", "", "", "", false, false);
parameters.push_back(evaluationFoldCountParam);
CommandParameter trainingFoldCountParam("trainingfolds", "Number", "", "10", "", "", "", "", false, false);
parameters.push_back(trainingFoldCountParam);
CommandParameter smoc("smoc", "Number", "", "3", "", "", "", "", false, false);
parameters.push_back(smoc);
// Support Vector Machine parameters
CommandParameter kernelParam("kernel", "String", "", "", "", "", "", "", false, false);
parameters.push_back(kernelParam);
// data transformation parameters
// transform should be 'zeroone' or 'zeromean' ('zeromean' is default)
CommandParameter transformParam("transform", "String", "", "", "", "", "", "", false, false);
parameters.push_back(transformParam);
CommandParameter verbosityParam("verbose", "Number", "", "0", "", "", "", "", false, false);
parameters.push_back(verbosityParam);
// want this parameter to behave like the one in classify.rf
CommandParameter pstdthreshold("stdthreshold", "Number", "", "0.0", "", "", "", "", false, false);
parameters.push_back(pstdthreshold);
// pruning params end
CommandParameter pgroups("groups", "String", "", "", "", "", "", "", false, false);
parameters.push_back(pgroups);
CommandParameter plabel("label", "String", "", "", "", "", "", "", false, false);
parameters.push_back(plabel);
CommandParameter pinputdir("inputdir", "String", "", "", "", "", "", "", false, false);
parameters.push_back(pinputdir);
CommandParameter poutputdir("outputdir", "String", "", "", "", "", "", "", false, false);
parameters.push_back(poutputdir);
abort = false; calledHelp = false;
vector<string> tempOutNames;
outputTypes["summary"] = tempOutNames;
vector<string> myArray;
for (int i = 0; i < parameters.size(); i++) { myArray.push_back(parameters[i].name); }
return myArray;
}
catch (exception& e) {
m->errorOut(e, "ClassifySvmSharedCommand", "setParameters");
exit(1);
}
}
//**********************************************************************************************************************
string ClassifySvmSharedCommand::getHelpString() {
try {
string helpString = "";
helpString += "The classifysvm.shared command allows you to ....\n";
helpString += "The classifysvm.shared command parameters are: shared, design, label, groups.\n";
helpString += "The label parameter is used to analyze specific labels in your input.\n";
helpString +=
"The groups parameter allows you to specify which of the groups in your designfile you would like analyzed.\n";
helpString += "The classifysvm.shared should be in the following format: \n";
helpString += "classifysvm.shared(shared=yourSharedFile, design=yourDesignFile)\n";
return helpString;
}
catch (exception& e) {
m->errorOut(e, "ClassifySvmSharedCommand", "getHelpString");
exit(1);
}
}
//**********************************************************************************************************************
string ClassifySvmSharedCommand::getOutputPattern(string type) {
try {
string pattern = "";
if (type == "summary") {
pattern = "[filename],[distance],summary";
} //makes file like: amazon.0.03.fasta
else {
m->mothurOut("[ERROR]: No definition for type " + type + " output pattern.\n");
m->setControl_pressed(true);
}
return pattern;
}
catch (exception& e) {
m->errorOut(e, "ClassifySvmSharedCommand", "getOutputPattern");
exit(1);
}
}
//**********************************************************************************************************************
ClassifySvmSharedCommand::ClassifySvmSharedCommand(string option) : Command() {
try {
allLines = true;
//allow user to run help
if (option == "help") { help(); abort = true; calledHelp = true; }
else if (option == "citation") { citation(); abort = true; calledHelp = true; }
else if(option == "category") { abort = true; calledHelp = true; }
else {
OptionParser parser(option, setParameters());
map<string, string> parameters = parser.getParameters();
ValidParameters validParameter;
sharedfile = validParameter.validFile(parameters, "shared");
if (sharedfile == "not open") { sharedfile = ""; abort = true; }
else if (sharedfile == "not found") {
//if there is a current shared file, use it
sharedfile = current->getSharedFile();
if (sharedfile != "") {
m->mothurOut("Using " + sharedfile + " as input file for the shared parameter.\n");
}
else { m->mothurOut("You have no current sharedfile and the shared parameter is required.\n"); abort = true; }
}
else { current->setSharedFile(sharedfile); }
//get design file, it is required
designfile = validParameter.validFile(parameters, "design");
if (designfile == "not open") { designfile = ""; abort = true; }
else if (designfile == "not found") {
//if there is a current shared file, use it
designfile = current->getDesignFile();
if (designfile != "") {
m->mothurOut("Using " + designfile + " as input file for the design parameter.\n");
}
else {
m->mothurOut("You have no current designfile and the design parameter is required.\n"); abort = true;
}
} else { current->setDesignFile(designfile); }
if (outputdir == "") {
outputdir = util.hasPath(sharedfile);
}
//Groups must be checked later to make sure they are valid.
//SharedUtilities has functions of check the validity, just make to so m->setGroups() after the checks.
//If you are using these with a shared file no need to check the SharedRAbundVector class will call SharedUtilites for you,
//kinda nice, huh?
string groups = validParameter.valid(parameters, "groups");
if (groups == "not found") { groups = ""; }
else { util.splitAtDash(groups, Groups); if (Groups.size() != 0) { if (Groups[0]== "all") { Groups.clear(); } } }
//Commonly used to process list, rabund, sabund, shared and relabund files.
//Look at "smart distancing" examples below in the execute function.
string label = validParameter.valid(parameters, "label");
if (label == "not found") { label = ""; }
else {
if (label != "all") { util.splitAtDash(label, labels); allLines = false; }
else { allLines = true; }
}
string modeOption = validParameter.valid(parameters, "mode");
if ( modeOption == "not found" || modeOption == "rfe" ) { mode = "rfe"; }
else if ( modeOption == "classify" ) { mode = "classify"; }
else {
m->mothurOut("the mode option " + modeOption + " is not recognized -- must be 'rfe' or 'classify'\n"); abort = true;
}
string ef = validParameter.valid(parameters, "evaluationfolds");
if ( ef == "not found") { evaluationFoldCount = 3; }
else { util.mothurConvert(ef, evaluationFoldCount); }
string tf = validParameter.valid(parameters, "trainingfolds");
if ( tf == "not found") { trainingFoldCount = 5; }
else { util.mothurConvert(tf, trainingFoldCount); }
string smocOption = validParameter.valid(parameters, "smoc");
smocList.clear();
if ( smocOption == "not found" ) {
//smocOption = "0.001,0.01,0.1,1.0,10.0,100.0,1000.0";
}
else {
vector<string> smocOptionList;
//split(smocOption, ';', smocOptionList);
util.splitAtDash(smocOption, smocOptionList);
for (vector<string>::iterator i = smocOptionList.begin(); i != smocOptionList.end(); i++) {
smocList.push_back(atof(i->c_str()));
}
}
// kernel specification
// start with default parameter ranges for all kernels
kernelParameterRangeMap.clear();
getDefaultKernelParameterRangeMap(kernelParameterRangeMap);
// get the kernel option
string kernelOption = validParameter.valid(parameters, "kernel");
// if the kernel option is "not found" then use all kernels with default parameter ranges
// otherwise use only kernels listed in the kernelOption string
if ( kernelOption == "not found" ) {
}
else {
// if the kernel option has been specified then
// remove kernel parameters from the kernel parameter map if
// they are not listed in the kernel option
// at this point the kernelParameterRangeMap looks like this:
// linear_key : [
// smoc_key : smoc parameter range
// linear_constant_key : linear constant range
// ]
// rbf_key : [
// smoc_key : smoc parameter range
// rbf_gamma_key : rbf gamma range
// ]
// polynomial_key : [
// smoc_key : smoc parameter range
// polynomial_degree_key : polynomial degree range
// polynomial_constant_key : polynomial constant range
// ]
vector<string> kernelList;
vector<string> unspecifiedKernelList;
//split(kernelOption, '-', kernelList);
util.splitAtDash(kernelOption, kernelList);
set<string> kernelSet(kernelList.begin(), kernelList.end());
// make a list of strings that are keys in the kernel parameter range map
// but are not in the kernel list
for (KernelParameterRangeMap::iterator i = kernelParameterRangeMap.begin(); i != kernelParameterRangeMap.end(); i++) {
//should be kernelList here
string kernelKey = i->first;
if ( kernelSet.find(kernelKey) == kernelSet.end() ) {
unspecifiedKernelList.push_back(kernelKey);
}
}
for (vector<string>::iterator i = unspecifiedKernelList.begin(); i != unspecifiedKernelList.end(); i++) {
m->mothurOut("removing kernel " + *i ); m->mothurOutEndLine();
kernelParameterRangeMap.erase(*i);
}
}
// go through the kernel parameter range map and check for options for each kernel
for (KernelParameterRangeMap::iterator i = kernelParameterRangeMap.begin(); i != kernelParameterRangeMap.end(); i++) {
string kernelKey = i->first;
ParameterRangeMap& kernelParameters = i->second;
for (ParameterRangeMap::iterator j = kernelParameters.begin(); j != kernelParameters.end(); j++) {
string parameterKey = j->first;
ParameterRange& kernelParameterRange = j->second;
// has an option for this kernel parameter been specified?
string kernelParameterKey = kernelKey + parameterKey;
//m->mothurOut("looking for option " << kernelParameterKey << endl;
string kernelParameterOption = validParameter.valid(parameters, kernelParameterKey);
if (kernelParameterOption == "not found") {
// we already have default values in the kernel parameter map
}
else {
// replace the default parameters with the specified parameters
kernelParameterRange.clear();
vector<string> parameterList;
//split(kernelParameterOption, ';', parameterList);
util.splitAtDash(kernelParameterOption, parameterList);
for (vector<string>::iterator k = parameterList.begin(); k != parameterList.end(); k++) {
kernelParameterRange.push_back(atof(k->c_str()));
}
}
}
}
// get the normalization option
string transformOption = validParameter.valid(parameters, "transform");
if ( transformOption == "not found" || transformOption == "unitmean") { transformName = "unitmean"; }
else if ( transformOption == "zeroone" ) { transformName = "zeroone"; }
else {
m->mothurOut("the transform option " + transformOption + " is not recognized -- must be 'unitmean' or 'zeroone'\n"); abort = true;
}
// get the verbosity option
string verbosityOption = validParameter.valid(parameters, "verbose");
if ( verbosityOption == "not found") { verbosity = 0; }
else {
util.mothurConvert(tf, verbosity);
if (verbosity < OutputFilter::QUIET || verbosity > OutputFilter::TRACE) {
m->mothurOut("verbose set to unsupported value " + verbosityOption + " -- must be between 0 and 3");
}
}
// get the std threshold option
string stdthresholdOption = validParameter.valid(parameters, "stdthreshold");
if ( stdthresholdOption == "not found" ) { stdthreshold = -1.0; }
else {
util.mothurConvert(stdthresholdOption, stdthreshold);
if ( stdthreshold <= 0.0 ) {
m->mothurOut("stdthreshold set to unsupported value " + stdthresholdOption + " -- must be greater than 0.0");
}
}
}
}
catch (exception& e) {
m->errorOut(e, "ClassifySvmSharedCommand", "ClassifySvmSharedCommand");
exit(1);
}
}
//**********************************************************************************************************************
int ClassifySvmSharedCommand::execute() {
try {
if (abort) { if (calledHelp) { return 0; } return 2; }
InputData input(sharedfile, "sharedfile", Groups);
set<string> processedLabels;
set<string> userLabels = labels;
string lastLabel = "";
SharedRAbundVectors* lookup = util.getNextShared(input, allLines, userLabels, processedLabels, lastLabel);
Groups = lookup->getNamesGroups();
vector<string> currentLabels = lookup->getOTUNames();
//read design file
designMap.read(designfile);
while (lookup != nullptr) {
if (m->getControl_pressed()) { delete lookup; break; }
vector<SharedRAbundVector*> data = lookup->getSharedRAbundVectors();
processSharedAndDesignData(data, currentLabels);
for (int i = 0; i < data.size(); i++) { delete data[i]; } data.clear();
delete lookup;
lookup = util.getNextShared(input, allLines, userLabels, processedLabels, lastLabel);
}
m->mothurOutEndLine();
m->mothurOut("Output File Names:\n");
for (int i = 0; i < outputNames.size(); i++) { m->mothurOut(outputNames[i]+"\n"); } m->mothurOutEndLine();
return 0;
}
catch(exception& e) {
m->errorOut(e, "ClassifySharedCommand", "execute");
exit(1);
}
}
//**********************************************************************************************************************
// This static function is intended to read all the necessary information from
// a pair of shared and design files needed for SVM classification. This information
// is used to build a LabeledObservationVector. Each element of the LabeledObservationVector
// looks like this:
// LabeledObservationVector[0] = pair("label 0", &vector[10.0, 21.0, 13.0])
// where the vector in the second position of the pair records OTU abundances.
void ClassifySvmSharedCommand::readSharedAndDesignFiles(const string& sharedFilePath, const string& designFilePath, LabeledObservationVector& labeledObservationVector, FeatureVector& featureVector) {
InputData input(sharedFilePath, "sharedfile", Groups);
SharedRAbundVectors* lookup = input.getSharedRAbundVectors();
Groups = lookup->getNamesGroups();
DesignMap designMap;
designMap.read(designFilePath); if (m->getControl_pressed()) { return ; }
while ( lookup != nullptr ) {
vector<SharedRAbundVector*> data = lookup->getSharedRAbundVectors();
readSharedRAbundVectors(data, designMap, labeledObservationVector, featureVector, lookup->getOTUNames());
for (int i = 0; i < data.size(); i++) { delete data[i]; } data.clear();
delete lookup;
lookup = input.getSharedRAbundVectors();
}
}
void ClassifySvmSharedCommand::readSharedRAbundVectors(vector<SharedRAbundVector*>& lookup, DesignMap& designMap, LabeledObservationVector& labeledObservationVector, FeatureVector& featureVector, vector<string> currentLabels) {
for ( int j = 0; j < lookup.size(); j++ ) {
//i++;
//vector<individual> data = lookup[j]->getData();
Observation* observation = new Observation(lookup[j]->getNumBins(), 0.0);
string sharedGroupName = lookup[j]->getGroup();
string treatmentName = designMap.get(sharedGroupName);
//labeledObservationVector.push_back(make_pair(treatmentName, observation));
labeledObservationVector.push_back(LabeledObservation(j, treatmentName, observation));
for (int k = 0; k < lookup[j]->size(); k++) {
observation->at(k) = double(lookup[j]->get(k));
if ( j == 0) {
featureVector.push_back(Feature(k, currentLabels[k]));
}
}
// let this happen later?
//delete lookup[j];
}
}
void printPerformanceSummary(MultiClassSVM* s, ostream& output) {
output << "multiclass SVM accuracy: " << s->getAccuracy() << endl;
output << "two-class SVM performance" << endl;
int labelFieldWidth = 2 + max_element(s->getLabels().begin(), s->getLabels().end())->size();
int performanceFieldWidth = 10;
int performancePrecision = 3;
output << setw(labelFieldWidth) << "class 1"
<< setw(labelFieldWidth) << "class 2"
<< setw(performanceFieldWidth) << "precision"
<< setw(performanceFieldWidth) << "recall"
<< setw(performanceFieldWidth) << "f"
<< setw(performanceFieldWidth) << "accuracy" << endl;
for ( SvmVector::const_iterator svm = s->getSvmList().begin(); svm != s->getSvmList().end(); svm++ ) {
SvmPerformanceSummary sps = s->getSvmPerformanceSummary(**svm);
output << setw(labelFieldWidth) << setprecision(performancePrecision) << sps.getPositiveClassLabel()
<< setw(labelFieldWidth) << setprecision(performancePrecision) << sps.getNegativeClassLabel()
<< setw(performanceFieldWidth) << setprecision(performancePrecision) << sps.getPrecision()
<< setw(performanceFieldWidth) << setprecision(performancePrecision) << sps.getRecall()
<< setw(performanceFieldWidth) << setprecision(performancePrecision) << sps.getF()
<< setw(performanceFieldWidth) << setprecision(performancePrecision) << sps.getAccuracy() << endl;
}
}
//**********************************************************************************************************************
void ClassifySvmSharedCommand::processSharedAndDesignData(vector<SharedRAbundVector*> lookup, vector<string> currentLabels) {
try {
OutputFilter outputFilter(verbosity);
LabeledObservationVector labeledObservationVector;
FeatureVector featureVector;
readSharedRAbundVectors(lookup, designMap, labeledObservationVector, featureVector, currentLabels);
// optionally remove features with low standard deviation
if ( stdthreshold > 0.0 ) {
FeatureVector removedFeatureVector = applyStdThreshold(stdthreshold, labeledObservationVector, featureVector);
if (removedFeatureVector.size() > 0) {
m->mothurOut(toString(removedFeatureVector.size()) + " OTUs were below the stdthreshold of " + toString(stdthreshold) + " and were removed\n");
if ( outputFilter.debug() ) {
m->mothurOut("the following OTUs were below the standard deviation threshold of " + toString(stdthreshold) ); m->mothurOutEndLine();
for (FeatureVector::iterator i = removedFeatureVector.begin(); i != removedFeatureVector.end(); i++) {
m->mothurOut(" " + toString(i->getFeatureLabel()) ); m->mothurOutEndLine();
}
}
}
}
// apply [0,1] standardization
if ( transformName == "zeroone") {
m->mothurOut("transforming data to lie within range [0,1]\n");
transformZeroOne(labeledObservationVector);
}
else {
m->mothurOut("transforming data to have zero mean and unit variance\n");
transformZeroMeanUnitVariance(labeledObservationVector);
}
SvmDataset svmDataset(labeledObservationVector, featureVector);
OneVsOneMultiClassSvmTrainer trainer(svmDataset, evaluationFoldCount, trainingFoldCount, outputFilter);
if ( mode == "rfe" ) {
SvmRfe svmRfe;
ParameterRange& linearKernelConstantRange = kernelParameterRangeMap["linear"]["constant"];
ParameterRange& linearKernelSmoCRange = kernelParameterRangeMap["linear"]["smoc"];
RankedFeatureList rankedFeatureList = svmRfe.getOrderedFeatureList(svmDataset, trainer, linearKernelConstantRange, linearKernelSmoCRange);
map<string, string> variables;
variables["[filename]"] = outputdir + util.getRootName(util.getSimpleName(sharedfile));
variables["[distance]"] = lookup[0]->getLabel();
string filename = getOutputFileName("summary", variables);
outputNames.push_back(filename);
outputTypes["summary"].push_back(filename);
m->mothurOutEndLine();
ofstream outputFile(filename.c_str());
int n = 0;
int rfeRoundCount = rankedFeatureList.front().getRank();
m->mothurOut("ordered features:\n" );
m->mothurOut("index\tOTU\trank\n");
outputFile << setw(5) << "index"
<< setw(12) << "OTU"
<< setw(5) << "rank"
<< endl;
for (RankedFeatureList::iterator i = rankedFeatureList.begin(); i != rankedFeatureList.end(); i++) {
n++;
int rank = rfeRoundCount - i->getRank() + 1;
outputFile << setw(5) << n
<< setw(12) << i->getFeature().getFeatureLabel()
<< setw(5) << rank
; m->mothurOutEndLine();
if ( n <= 20 ) {
m->mothurOut(toString(n)
+ toString(i->getFeature().getFeatureLabel())
+ toString(rank)
); m->mothurOutEndLine();
}
}
outputFile.close();
}
else {
MultiClassSVM* mcsvm = trainer.train(kernelParameterRangeMap);
map<string, string> variables;
variables["[filename]"] = outputdir + util.getRootName(util.getSimpleName(sharedfile));
variables["[distance]"] = lookup[0]->getLabel();
string filename = getOutputFileName("summary", variables);
outputNames.push_back(filename);
outputTypes["summary"].push_back(filename);
m->mothurOutEndLine();
ofstream outputFile(filename.c_str());
printPerformanceSummary(mcsvm, cout);
printPerformanceSummary(mcsvm, outputFile);
outputFile << "actual predicted" << endl;
for ( LabeledObservationVector::const_iterator i = labeledObservationVector.begin(); i != labeledObservationVector.end(); i++ ) {
Label actualLabel = i->getLabel();
outputFile << i->getDatasetIndex() << " " << actualLabel << " ";
try {
Label predictedLabel = mcsvm->classify(*(i->getObservation()));
outputFile << predictedLabel << endl;
}
catch ( MultiClassSvmClassificationTie& e ) {
outputFile << "tie" << endl;
m->mothurOut("classification tie for observation " + toString(i->datasetIndex) + " with label " + toString(i->first)); m->mothurOutEndLine();
}
}
outputFile.close();
delete mcsvm;
}
}
catch (exception& e) {
m->errorOut(e, "ClassifySvmSharedCommand", "processSharedAndDesignData");
exit(1);
}
}
//**********************************************************************************************************************
void ClassifySvmSharedCommand::trainSharedAndDesignData(vector<SharedRAbundVector*> lookup, vector<string> currentLabels) {
try {
LabeledObservationVector labeledObservationVector;
FeatureVector featureVector;
readSharedRAbundVectors(lookup, designMap, labeledObservationVector, featureVector, currentLabels);
SvmDataset svmDataset(labeledObservationVector, featureVector);
int evaluationFoldCount = 3;
int trainFoldCount = 5;
OutputFilter outputFilter(2);
OneVsOneMultiClassSvmTrainer t(svmDataset, evaluationFoldCount, trainFoldCount, outputFilter);
KernelParameterRangeMap kernelParameterRangeMap;
getDefaultKernelParameterRangeMap(kernelParameterRangeMap);
t.train(kernelParameterRangeMap);
m->mothurOut("done training" ); m->mothurOutEndLine();
map<string, string> variables;
variables["[filename]"] = outputdir + util.getRootName(util.getSimpleName(sharedfile));
variables["[distance]"] = lookup[0]->getLabel();
string filename = getOutputFileName("summary", variables);
outputNames.push_back(filename);
outputTypes["summary"].push_back(filename);
m->mothurOutEndLine();
m->mothurOut("leaving processSharedAndDesignData" ); m->mothurOutEndLine();
}
catch (exception& e) {
m->errorOut(e, "ClassifySvmSharedCommand", "trainSharedAndDesignData");
exit(1);
}
}
//**********************************************************************************************************************
|