File: clustersplitcommand.cpp

package info (click to toggle)
mothur 1.48.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 13,692 kB
  • sloc: cpp: 161,866; makefile: 122; sh: 31
file content (1608 lines) | stat: -rw-r--r-- 78,687 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
/*
 *  clustersplitcommand.cpp
 *  Mothur
 *
 *  Created by westcott on 5/19/10.
 *  Copyright 2010 Schloss Lab. All rights reserved.
 *
 */

#include "clustersplitcommand.h"
#include "systemcommand.h"
#include "sensspeccommand.h"
#include "mcc.hpp"
#include "sensitivity.hpp"
#include "specificity.hpp"
#include "fdr.hpp"
#include "npv.hpp"
#include "ppv.hpp"
#include "f1score.hpp"
#include "tp.hpp"
#include "fp.hpp"
#include "fpfn.hpp"
#include "tptn.hpp"
#include "tn.hpp"
#include "fn.hpp"
#include "accuracy.hpp"

//**********************************************************************************************************************
vector<string> ClusterSplitCommand::setParameters(){	
	try {
        CommandParameter pfile("file", "InputTypes", "", "", "PhylipColumnFasta", "PhylipColumnFasta", "none","",false,false,true); parameters.push_back(pfile);
		CommandParameter ptaxonomy("taxonomy", "InputTypes", "", "", "none", "none", "FastaTaxName","",false,false,true); parameters.push_back(ptaxonomy);
		CommandParameter pfasta("fasta", "InputTypes", "", "", "PhylipColumnFasta", "PhylipColumnFasta", "FastaTaxName","list",false,false,true); parameters.push_back(pfasta);
		CommandParameter pname("name", "InputTypes", "", "", "NameCount", "none", "ColumnName-FastaTaxName","rabund-sabund",false,false,true); parameters.push_back(pname);
        CommandParameter pcount("count", "InputTypes", "", "", "NameCount", "none", "","",false,false,true); parameters.push_back(pcount);
		CommandParameter ptaxlevel("taxlevel", "Number", "", "3", "", "", "","",false,false,true); parameters.push_back(ptaxlevel);
		CommandParameter pshowabund("showabund", "Boolean", "", "T", "", "", "","",false,false); parameters.push_back(pshowabund);
        CommandParameter prunspenspec("runsensspec", "Boolean", "", "T", "", "", "","",false,false); parameters.push_back(prunspenspec);
        CommandParameter pcluster("cluster", "Boolean", "", "T", "", "", "","",false,false); parameters.push_back(pcluster);
		CommandParameter ptiming("timing", "Boolean", "", "F", "", "", "","",false,false); parameters.push_back(ptiming);
		CommandParameter pprocessors("processors", "Number", "", "1", "", "", "","",false,false,true); parameters.push_back(pprocessors);
		CommandParameter pcutoff("cutoff", "Number", "", "0.03", "", "", "","",false,false,true); parameters.push_back(pcutoff);
        CommandParameter pmetriccutoff("delta", "Number", "", "0.0001", "", "", "","",false,false,true); parameters.push_back(pmetriccutoff);
        CommandParameter piters("iters", "Number", "", "100", "", "", "","",false,false,true); parameters.push_back(piters);
        CommandParameter pinitialize("initialize", "Multiple", "oneotu-singleton", "singleton", "", "", "","",false,false,true); parameters.push_back(pinitialize);
        CommandParameter pprecision("precision", "Number", "", "100", "", "", "","",false,false); parameters.push_back(pprecision);
        CommandParameter pmethod("method", "Multiple", "furthest-nearest-average-weighted-agc-dgc-opti", "opti", "", "", "","",false,false,true); parameters.push_back(pmethod);
        CommandParameter pmetric("metric", "Multiple", "mcc-sens-spec-tptn-fpfn-tp-tn-fp-fn-f1score-accuracy-ppv-npv-fdr", "mcc", "", "", "","",false,false,true); parameters.push_back(pmetric);
       CommandParameter pdist("dist", "Boolean", "", "F", "", "", "","",false,false); parameters.push_back(pdist);
        CommandParameter pislist("islist", "Boolean", "", "F", "", "", "","",false,false); parameters.push_back(pislist);
        CommandParameter pclassic("classic", "Boolean", "", "F", "", "", "","",false,false); parameters.push_back(pclassic);
        CommandParameter pvsearchlocation("vsearch", "String", "", "", "", "", "","",false,false); parameters.push_back(pvsearchlocation);
		CommandParameter pseed("seed", "Number", "", "0", "", "", "","",false,false); parameters.push_back(pseed);
        CommandParameter pinputdir("inputdir", "String", "", "", "", "", "","",false,false); parameters.push_back(pinputdir);
		CommandParameter poutputdir("outputdir", "String", "", "", "", "", "","",false,false); parameters.push_back(poutputdir);
        
        abort = false; calledHelp = false;
        
        vector<string> tempOutNames;
        outputTypes["list"] = tempOutNames;
        outputTypes["rabund"] = tempOutNames;
        outputTypes["sabund"] = tempOutNames;
        outputTypes["column"] = tempOutNames;
        outputTypes["name"] = tempOutNames;
        outputTypes["file"] = tempOutNames;
        outputTypes["sensspec"] = tempOutNames;
			
		vector<string> myArray;
		for (int i = 0; i < parameters.size(); i++) {	myArray.push_back(parameters[i].name);		}
		return myArray;
	}
	catch(exception& e) {
		m->errorOut(e, "ClusterSplitCommand", "setParameters");
		exit(1);
	}
}
//**********************************************************************************************************************
string ClusterSplitCommand::getHelpString(){	
	try {
		string helpString = "";
		helpString += "The cluster.split command parameter options are file, fasta, name, count, cutoff, precision, method, taxonomy, taxlevel, showabund, timing, cluster, iters, delta, initialize, dist, processors, runsensspec. Fasta or file are required.\n";
		helpString += "The cluster.split command splits your files by classification using a fasta file to generate distance matrices for each taxonomic group. \n";
        helpString += "The file option allows you to enter your file containing your list of column and names/count files as well as the singleton file.  This file is mothur generated, when you run cluster.split() with the cluster=f parameter.  This can be helpful when you have a large dataset that you may be able to use all your processors for the splitting step, but have to reduce them for the cluster step due to RAM constraints. For example: cluster.split(fasta=yourFasta, taxonomy=yourTax, count=yourCount, taxlevel=3, cluster=f, processors=8) then cluster.split(file=yourFile, processors=4).  This allows your to maximize your processors during the splitting step.  Also, if you are unsure if the cluster step will have RAM issue with multiple processors, you can avoid running the first part of the command multiple times.\n";
		helpString += "The fasta parameter allows you to enter your aligned fasta file. \n";
		helpString += "The name parameter allows you to enter your name file. \n";
        helpString += "The count parameter allows you to enter your count file.\n";
        helpString += "The taxonomy parameter allows you to enter the taxonomy file for your sequences. This is required unless you are running the command with the file option. \n";
        helpString += "The cluster parameter allows you to indicate whether you want to run the clustering or just split the dataset into taxanomic matrices, default=t";
        helpString += "The dist parameter allows you to indicate whether you want a column formatted distance matrix outputted along with the list file. Default=F.";
		helpString += "The cutoff parameter allow you to set the distance you want to cluster to, default is 0.03. \n";
		helpString += "The precision parameter allows you specify the precision of the precision of the distances outputted, default=100, meaning 2 decimal places. \n";
        helpString += "The iters parameter allow you to set the maxiters for the opticluster method. \n";
        helpString += "The metric parameter allows to select the metric in the opticluster method. Options are Matthews correlation coefficient (mcc), sensitivity (sens), specificity (spec), true positives + true negatives (tptn), false positives + false negatives (fpfn), true positives (tp), true negative (tn), false positive (fp), false negative (fn), f1score (f1score), accuracy (accuracy), positive predictive value (ppv), negative predictive value (npv), false discovery rate (fdr). Default=mcc.\n";
        helpString += "The delta parameter allows to set the stable value for the metric in the opticluster method. Default=0.0001\n";
        helpString += "The initialize parameter allows to select the initial randomization for the opticluster method. Options are singleton, meaning each sequence is randomly assigned to its own OTU, or oneotu meaning all sequences are assigned to one otu. Default=singleton.\n";
        helpString += "The runsensspec parameter allows to run the sens.spec command on the completed list file. Default=true.\n";
		helpString += "The method parameter allows you to enter your clustering mothod. Options are furthest, nearest, average, weighted, agc, dgc and opti. Default=opti.  The agc and dgc methods require a fasta file.";
        helpString += "The taxlevel parameter allows you to specify the taxonomy level you want to use to split the dataset, default=3.\n";
        helpString += "The classic parameter allows you to indicate that you want to run your files with cluster.classic. Default=f.\n";
        helpString += "The processors parameter allows you to specify the number of processors to use. The default is all available.\n";
         helpString += "The vsearch parameter allows you to specify the name and location of your vsearch executable if using agc or dgc clustering methods. By default mothur will look in your path, mothur's executable and mothur tools locations.  You can set the vsearch location as follows, vsearch=/usr/bin/vsearch.\n";
		helpString += "The cluster.split command should be in the following format: \n";
		helpString += "cluster.split(fasta=yourFastaFile, count=yourCountFile, method=yourMethod, cutoff=yourCutoff, taxonomy=yourTaxonomyfile, taxlevel=yourtaxlevel) \n";
		return helpString;
	}
	catch(exception& e) {
		m->errorOut(e, "ClusterSplitCommand", "getHelpString");
		exit(1);
	}
}
//**********************************************************************************************************************
string ClusterSplitCommand::getOutputPattern(string type) {
    try {
        string pattern = "";
        
        if (type == "list") {  pattern = "[filename],[clustertag],list-[filename],[clustertag],[tag2],list"; } 
        else if (type == "rabund") {  pattern = "[filename],[clustertag],rabund"; } 
        else if (type == "sabund") {  pattern = "[filename],[clustertag],sabund"; }
        else if (type == "sensspec") {  pattern = "[filename],[clustertag],sensspec"; }
        else if (type == "column") {  pattern = "[filename],dist"; }
        else if (type == "file")   {  pattern = "[filename],file"; }
        else { m->mothurOut("[ERROR]: No definition for type " + type + " output pattern.\n"); m->setControl_pressed(true);  }
        
        return pattern;
    }
    catch(exception& e) {
        m->errorOut(e, "ClusterSplitCommand", "getOutputPattern");
        exit(1);
    }
}
//**********************************************************************************************************************
string ClusterSplitCommand::getCommonQuestions(){
    try {
        vector<string> questions, issues, qanswers, ianswers, howtos, hanswers;
        
        string issue = "Cluster.split crashes after merging individual list files. What do I do?"; issues.push_back(issue);
        string ianswer = "\tAfter merging the split list files, mothur runs the sens.spec command on the entire dataset. The entire dataset's distance matrix may be too large to fit in memory, which causes the crash. You can skip this step by setting the runsensspec parameter to false. Skipping the sens.spec analysis does not effect the OTU assignment, and you can run the sens.spec analysis separately using the sens.spec command. \n"; ianswers.push_back(ianswer);
        
        issue = "Cluster.split crashes while reading the split distance matrices. What should I do?"; issues.push_back(issue);
        ianswer = "\tThe command is crashing because the distance matrices are too large to fit into memory. Why do I have such a large distance matrix? This is most often caused by poor overlap of your reads. When reads have poor overlap, it greatly increases your error rate. Also, sequences that should cluster together don't because the errors appear to be genetic differences when in fact they are not. The quality of the data you are processing can not be overstressed. Error filled reads produce error filled results. To take a step back, if you look through our MiSeq SOP, you’ll see that we go to great pains to only work with the unique sequences to limit the number of sequences we have to align, screen for chimeras, classify, etc. We all know that 20 million reads will never make it through the pipeline without setting your computer on fire. Returning to the question at hand, you can imagine that if the reads do not fully overlap then any error in the 5’ end of the first read will be uncorrected by the 3’ end of the second read. If we assume for now that the errors are random, then every error will generate a new unique sequence. Granted, this happens less than 1% of the time, but multiply that by 20 million reads at whatever length you choose and you’ve got a big number. Viola, a bunch of unique reads and a ginormous distance matrix. \n"; ianswers.push_back(ianswer);
        
        string howto = "How do I cluster my sequences into OTUs at distance 0.03?"; howtos.push_back(howto);
        string hanswer = "\tBy default the cluster.split command will use the opti method to cluster to 0.03. To find OTUs at a different distance set the cutoff parameter. ie. cutoff=0.01 will assemble OTUs for distance 0.01.\n"; hanswers.push_back(hanswer);
        
        string commonQuestions = util.getFormattedHelp(questions, qanswers, issues, ianswers, howtos, hanswers);
        
        return commonQuestions;
    }
    catch(exception& e) {
        m->errorOut(e, "ClusterSplitCommand", "getCommonQuestions");
        exit(1);
    }
}
//**********************************************************************************************************************
//This function checks to make sure the cluster command has no errors and then clusters based on the method chosen.
ClusterSplitCommand::ClusterSplitCommand(string option) : Command()  {
	try{
		format = "";
		
		//allow user to run help
		if(option == "help") { help(); abort = true; calledHelp = true; }
		else if(option == "citation") { citation(); abort = true; calledHelp = true;}
        else if(option == "category") {  abort = true; calledHelp = true;  }
		
		else {
			OptionParser parser(option, setParameters());
			map<string,string> parameters = parser.getParameters();
			
			ValidParameters validParameter;
			
			//check for required parameters
			file = validParameter.validFile(parameters, "file");
			if (file == "not open") { file = ""; abort = true; }
			else if (file == "not found") { file = ""; }
            else { distfile = file; type = ""; }
			
			namefile = validParameter.validFile(parameters, "name");
			if (namefile == "not open") { abort = true; namefile = "";}	
			else if (namefile == "not found") { namefile = "";  }
            else { current->setNameFile(namefile); type = "name"; }
            
            countfile = validParameter.validFile(parameters, "count");
			if (countfile == "not open") { abort = true; countfile = "";}	
			else if (countfile == "not found") { countfile = "";  }
            else { current->setCountFile(countfile); type = "count"; }
			
			fastafile = validParameter.validFile(parameters, "fasta");
			if (fastafile == "not open") { abort = true; }	
			else if (fastafile == "not found") { fastafile = ""; }
			else { distfile = fastafile;  current->setFastaFile(fastafile); }
			
			taxFile = validParameter.validFile(parameters, "taxonomy");
			if (taxFile == "not open") { taxFile = ""; abort = true; }	
			else if (taxFile == "not found") { taxFile = ""; }
			else { current->setTaxonomyFile(taxFile); }
			
            if ((fastafile == "") && (file == "")) {
                fastafile = current->getFastaFile();
                if (fastafile != "") {   m->mothurOut("Using " + fastafile + " as input file for the fasta parameter.\n");  }
                else {
                    m->mothurOut("[ERROR]: No valid current files. When executing a cluster.split command you must enter a file file or fastafile.\n"); abort = true;
                }
            }
			else if ((fastafile != "") && (file != "")) { m->mothurOut("[ERROR]: When executing a cluster.split command you must enter ONLY ONE of the following: file or fasta.\n");  abort = true; }
            
            if ((countfile != "") && (namefile != "")) { m->mothurOut("[ERROR]: When executing a cluster.split command you must enter ONLY ONE of the following: count or name.\n");  abort = true; }
            
            if (file != "") {
                if ((namefile == "") && (countfile == "")) {
                    m->mothurOut("\n[WARNING]: When using the file option, it is recommended you include the name or count file. Doing so will ensure the OTUs are printed by OTU size reflecting the redundant reads, instead of just the unique reads.\n");
                }
            }
			
			if (fastafile != "") {
				if (taxFile == "") { 
					taxFile = current->getTaxonomyFile(); 
					if (taxFile != "") {  m->mothurOut("Using " + taxFile + " as input file for the taxonomy parameter.\n");  }
					else { 
						m->mothurOut("[ERROR]: You need to provide a taxonomy file if you are if you are using a fasta file to generate the split.\n");
						abort = true; 
					}	
				}
				
				if ((namefile == "") && (countfile == "")) { 
					namefile = current->getNameFile(); 
                    if (namefile != "") {  m->mothurOut("Using " + namefile + " as input file for the name parameter.\n");  type = "name"; }
					else { 
						countfile = current->getCountFile();
                        if (countfile != "") {  m->mothurOut("Using " + countfile + " as input file for the count parameter.\n"); type = "count"; }
                        else {  m->mothurOut("[ERROR]: You need to provide a namefile or countfile.\n");   abort = true;
                        }	
					}	
				}
			}
					
			
			string temp;
			temp = validParameter.valid(parameters, "precision");
			if (temp == "not found") { temp = "100"; }
			//saves precision legnth for formatting below
			length = temp.length();
			util.mothurConvert(temp, precision); 
			
			temp = validParameter.valid(parameters, "processors");	if (temp == "not found"){	temp = current->getProcessors();	}
			processors = current->setProcessors(temp);
			
            temp = validParameter.valid(parameters, "classic");			if (temp == "not found") { temp = "F"; }
			classic = util.isTrue(temp);
            
            temp = validParameter.valid(parameters, "runsensspec");			if (temp == "not found") { temp = "T"; }
            runsensSpec = util.isTrue(temp);
            
			temp = validParameter.valid(parameters, "taxlevel");		if (temp == "not found")  { temp = "3"; }
			util.mothurConvert(temp, taxLevelCutoff);
            
            temp = validParameter.valid(parameters, "iters");		if (temp == "not found")  { temp = "100"; }
            util.mothurConvert(temp, maxIters);
            
            temp = validParameter.valid(parameters, "delta");		if (temp == "not found")  { temp = "0.0001"; }
            util.mothurConvert(temp, stableMetric);
			
            metricName = validParameter.valid(parameters, "metric");		if (metricName == "not found") { metricName = "mcc"; }
            
            if ((metricName == "mcc") || (metricName == "sens") || (metricName == "spec") || (metricName == "tptn") || (metricName == "tp") || (metricName == "tn") || (metricName == "fp") || (metricName == "fn") || (metricName == "f1score") || (metricName == "accuracy") || (metricName == "ppv") || (metricName == "npv") || (metricName == "fdr") || (metricName == "fpfn") ){ }
            else { m->mothurOut("[ERROR]: Not a valid metric.  Valid metrics are mcc, sens, spec, tp, tn, fp, fn, tptn, fpfn, f1score, accuracy, ppv, npv, fdr.\n");  abort = true; }
            
            initialize = validParameter.valid(parameters, "initialize");		if (initialize == "not found") { initialize = "singleton"; }
            
            if ((initialize == "singleton") || (initialize == "oneotu")){ }
            else { m->mothurOut("[ERROR]: Not a valid initialization.  Valid initializations are singleton and oneotu.\n");  abort = true; }

			method = validParameter.valid(parameters, "method");		if (method == "not found") { method = "opti";  }
            
            vector<string> versionOutputs;
            bool foundTool = false;
            string programName = "vsearch"; programName += EXECUTABLE_EXT;
            
            vsearchLocation = validParameter.validPath(parameters, "vsearch");
            if (vsearchLocation == "not found") {
                vsearchLocation = "";
                if ((method == "agc") || (method == "dgc")) {
                    foundTool = util.findTool(programName, vsearchLocation, versionOutputs, current->getLocations());
                }
            }
            else {
                if ((method == "agc") || (method == "dgc")) {
                    //test to make sure vsearch exists
                    ifstream in;
                    vsearchLocation = util.getFullPathName(vsearchLocation);
                    bool ableToOpen = util.openInputFile(vsearchLocation, in, "no error"); in.close();
                    if(!ableToOpen) {
                        m->mothurOut(vsearchLocation + " file does not exist or cannot be opened, ignoring.\n"); vsearchLocation = "";
                        programName = util.getSimpleName(vsearchLocation); vsearchLocation = "";
                        foundTool = util.findTool(programName, vsearchLocation, versionOutputs, current->getLocations());
                    }
                }
            }
			
            if ((method == "furthest") || (method == "nearest") || (method == "average") || (method == "weighted") || (method == "agc") || (method == "dgc") || (method == "opti")) { }
            else { m->mothurOut("[ERROR]: Not a valid clustering method.  Valid clustering algorithms are furthest, nearest, average, weighted, agc, dgc and opti.\n");  abort = true; }
            
            if ((method == "agc") || (method == "dgc")) {
                if (fastafile == "") { m->mothurOut("[ERROR]: You must provide a fasta file when using the agc or dgc clustering methods, aborting\n."); abort = true;}
                if (classic) { m->mothurOut("[ERROR]: You cannot use cluster.classic with the agc or dgc clustering methods, aborting\n."); abort = true; }
                if (!foundTool) { abort = true; }
            }
            
            cutoffNotSet = false;
            temp = validParameter.valid(parameters, "cutoff");
            if (temp == "not found") { cutoffNotSet = true; if ((method == "opti") || (method == "agc") || (method == "dgc")) { temp = "0.03"; }else { temp = "0.15"; } }
            util.mothurConvert(temp, cutoff);
            
			temp = validParameter.valid(parameters, "showabund");
			if (temp == "not found") { temp = "T"; }
            showabund = util.isTrue(temp);
            
            temp = validParameter.valid(parameters, "cluster");  if (temp == "not found") { temp = "T"; }
            runCluster = util.isTrue(temp);
            
            temp = validParameter.valid(parameters, "islist");  if (temp == "not found") { temp = "F"; }
            isList = util.isTrue(temp);
            
            temp = validParameter.valid(parameters, "dist");  if (temp == "not found") { temp = "F"; }
            makeDist = util.isTrue(temp);
            if (method == "opti") { makeDist = runsensSpec;  }
            
            if (classic && makeDist) { m->mothurOut("[ERROR]: You cannot use the dist parameter with the classic parameter. Mothur will ignore the dist parameter.\n"); makeDist = false; }

			timing = validParameter.valid(parameters, "timing");
			if (timing == "not found") { timing = "F"; }
		}
	}
	catch(exception& e) {
		m->errorOut(e, "ClusterSplitCommand", "ClusterSplitCommand");
		exit(1);
	}
}

//**********************************************************************************************************************

int ClusterSplitCommand::execute(){
	try {
	
		if (abort) { if (calledHelp) { return 0; }  return 2;	}
        
        time_t estart;
        vector<string> listFileNames;
        vector< map<string, string> > distName;
        set<string> labels;
        string singletonName = "";
        
        double saveCutoff = cutoff;

        if (file != "") {
            deleteFiles = false; estart = time(nullptr);
            singletonName = readFile(distName);

            if (isList) {
                
                //set list file as new current listfile
                string currentName = "";
                itTypes = outputTypes.find("list");
                if (itTypes != outputTypes.end()) {
                    if ((itTypes->second).size() != 0) { currentName = (itTypes->second)[0]; current->setListFile(currentName); }
                }
                
                m->mothurOut("\nOutput File Names: \n");
                for (int i = 0; i < outputNames.size(); i++) {	m->mothurOut(outputNames[i] + "\n");	} m->mothurOutEndLine();
                
                return 0;
            }
                    
        }else {
            //splitting
            estart = time(nullptr); bool usingVsearchToCLuster = false;
            if ((method == "agc") || (method == "dgc")) { usingVsearchToCLuster = true; if (cutoffNotSet) {  m->mothurOut("\nYou did not set a cutoff, using 0.03.\n"); cutoff = 0.03; } }
            
            m->mothurOut("Splitting the file...\n");
            current->setMothurCalling(true);
            
            //split matrix into non-overlapping groups
            SplitMatrix* split = new SplitMatrix(fastafile, namefile, countfile, taxFile, taxLevelCutoff, cutoff,  processors, classic, outputdir, usingVsearchToCLuster);

            if (fastafile != "") {  current->setFastaFile(fastafile);  }

            if (m->getControl_pressed()) { delete split; return 0; }
                
            singletonName = split->getSingletonNames();
            distName = split->getDistanceFiles();  //returns map of distance files -> namefile sorted by distance file size
            delete split;
            current->setMothurCalling(false);
            
            if (m->getDebug()) { m->mothurOut("[DEBUG]: distName.size() = " + toString(distName.size()) + ".\n"); }
            
            m->mothurOut("It took " + toString(time(nullptr) - estart) + " seconds to split the distance file.\n");
            
            //output a merged distance file
            if (makeDist)		{ createMergedDistanceFile(distName); }
            
            if (m->getControl_pressed()) { return 0; }
            
            estart = time(nullptr);
            
            if (!runCluster) {
                string filename = printFile(singletonName, distName);
                
                m->mothurOutEndLine();
                m->mothurOut("Output File Names:\n\n"); m->mothurOut(filename); m->mothurOutEndLine();
                for (int i = 0; i < distName.size(); i++) {	m->mothurOut(distName[i].begin()->first); m->mothurOutEndLine(); m->mothurOut(distName[i].begin()->second); m->mothurOutEndLine();	}
                m->mothurOutEndLine();
                
                return 0;
            }
            deleteFiles = true;
        }
		//****************** break up files between processes and cluster each file set ******************************//
		
        listFileNames = createProcesses(distName, labels);
        
        if (deleteFiles) {
            //delete the temp files now that we are done
            for (int i = 0; i < distName.size(); i++) {
                string thisNamefile = distName[i].begin()->second;
                string thisDistFile = distName[i].begin()->first;
                util.mothurRemove(thisNamefile);
                util.mothurRemove(thisDistFile);
            }
        }
		
		if (m->getControl_pressed()) { for (int i = 0; i < listFileNames.size(); i++) { util.mothurRemove(listFileNames[i]); } return 0; }
		
		if (!util.isEqual(saveCutoff, cutoff)) { m->mothurOut("\nCutoff was " + toString(saveCutoff) + " changed cutoff to " + toString(cutoff)); m->mothurOutEndLine();  }
		
		m->mothurOut("It took " + toString(time(nullptr) - estart) + " seconds to cluster\n");
		
		//****************** merge list file and create rabund and sabund files ******************************//
		estart = time(nullptr);
		m->mothurOut("Merging the clustered files...\n");

		ListVector* listSingle;
		map<double, int> labelBins = completeListFile(listFileNames, singletonName, labels, listSingle); //returns map of label to numBins
		
		if (m->getControl_pressed()) { if (listSingle != nullptr) { delete listSingle; } for (int i = 0; i < outputNames.size(); i++) { util.mothurRemove(outputNames[i]); } return 0; }
		
		mergeLists(listFileNames, labelBins, listSingle);

		if (m->getControl_pressed()) { for (int i = 0; i < outputNames.size(); i++) { util.mothurRemove(outputNames[i]); } return 0; }
        
        //delete after all are complete incase a crash happens
        if (!deleteFiles) { for (int i = 0; i < distName.size(); i++) {	util.mothurRemove(distName[i].begin()->first); util.mothurRemove(distName[i].begin()->second); 	} }
		
		m->mothurOut("It took " + toString(time(nullptr) - estart) + " seconds to merge.\n");
        
        if ((method == "opti") && (runsensSpec)) { runSensSpec();  }
        
        if (m->getControl_pressed()) { for (int i = 0; i < outputNames.size(); i++) { util.mothurRemove(outputNames[i]); } return 0; }
        
		//set list file as new current listfile
		string currentName = "";
		itTypes = outputTypes.find("list");
		if (itTypes != outputTypes.end()) {
			if ((itTypes->second).size() != 0) { currentName = (itTypes->second)[0]; current->setListFile(currentName); }
		}
		
		//set rabund file as new current rabundfile
		itTypes = outputTypes.find("rabund");
		if (itTypes != outputTypes.end()) { if ((itTypes->second).size() != 0) { currentName = (itTypes->second)[0]; current->setRabundFile(currentName); } }
		
		//set sabund file as new current sabundfile
		itTypes = outputTypes.find("sabund");
		if (itTypes != outputTypes.end()) { if ((itTypes->second).size() != 0) { currentName = (itTypes->second)[0]; current->setSabundFile(currentName); } }
        
        //set sabund file as new current sabundfile
        itTypes = outputTypes.find("column");
        if (itTypes != outputTypes.end()) { if ((itTypes->second).size() != 0) { currentName = (itTypes->second)[0]; current->setColumnFile(currentName); } }
				
		m->mothurOut("\nOutput File Names: \n"); 
		for (int i = 0; i < outputNames.size(); i++) {	m->mothurOut(outputNames[i] +"\n"); 	} m->mothurOutEndLine();

		return 0;
	}
	catch(exception& e) {
		m->errorOut(e, "ClusterSplitCommand", "execute");
		exit(1);
	}
}
//**********************************************************************************************************************
map<double, int> ClusterSplitCommand::completeListFile(vector<string> listNames, string singleton, set<string>& userLabels, ListVector*& listSingle){
	try {
		map<double, int> labelBin;
		vector<double> orderFloat;
		int numSingleBins;
        
		//read in singletons
		if (singleton != "none") {
            
            listSingle = new ListVector();
            if (type == "count") {
                
                CountTable ct; ct.readTable(singleton, false, false);
                
                vector<string> singletonSeqNames = ct.getNamesOfSeqs();
                
                for (int i = 0; i < singletonSeqNames.size(); i++) { listSingle->push_back(singletonSeqNames[i]); }
                
            }else if (type == "name") {
                map<string, string> singletonSeqNames; util.readNames(singleton, singletonSeqNames);
                
                for (map<string, string>::iterator it = singletonSeqNames.begin(); it != singletonSeqNames.end(); it++) { listSingle->push_back(it->second); }
            }
    
			util.mothurRemove(singleton);
            
			numSingleBins = listSingle->getNumBins();
        }else{  listSingle = nullptr; numSingleBins = 0;  }
		
        //go through users set and make them floats so we can sort them
        for(set<string>::iterator it = userLabels.begin(); it != userLabels.end(); ++it) {
            double temp = -10.0;
            
            if ((*it != "unique") && (convertTestFloat(*it, temp) ))	{	util.mothurConvert(*it, temp);	}
            else if (*it == "unique")										{	temp = -1.0;		}
            
            if ((temp < cutoff) || util.isEqual(cutoff, temp)) {
                orderFloat.push_back(temp);
                labelBin[temp] = numSingleBins; //initialize numbins
            }
        }
	
		//sort order
		sort(orderFloat.begin(), orderFloat.end());
		userLabels.clear();
        
		//get the list info from each file
		for (int k = 0; k < listNames.size(); k++) {
            
			if (m->getControl_pressed()) {  
				if (listSingle != nullptr) { delete listSingle; listSingle = nullptr; util.mothurRemove(singleton);  }
				for (int i = 0; i < listNames.size(); i++) {   util.mothurRemove(listNames[i]);  }
				return labelBin;
			}
			
			InputData* input = new InputData(listNames[k], "list", nullVector);
			ListVector* list = input->getListVector();
			string lastLabel = list->getLabel();
            
			string filledInList = listNames[k] + "filledInTemp";
			ofstream outFilled;
			util.openOutputFile(filledInList, outFilled);
            bool printHeaders = true;
            
            
			//for each label needed
			for(int l = 0; l < orderFloat.size(); l++){
                
				string thisLabel;
				if (util.isEqual(orderFloat[l],-1)) { thisLabel = "unique"; }
				else { thisLabel = toString(orderFloat[l],  length-1);  } 
                
				//this file has reached the end
				if (list == nullptr) { 
					list = input->getListVector(lastLabel, true); 
				}else{	//do you have the distance, or do you need to fill in
						
					float labelFloat;
					if (list->getLabel() == "unique") {  labelFloat = -1.0;  }
					else { convert(list->getLabel(), labelFloat); }
                    
					//check for missing labels
					if (labelFloat > orderFloat[l]) { //you are missing the label, get the next smallest one
						//if its bigger get last label, otherwise keep it
						delete list;
						list = input->getListVector(lastLabel, true);  //get last list vector to use, you actually want to move back in the file
					}
					lastLabel = list->getLabel();
				}
				
				//print to new file
				list->setLabel(thisLabel);
                list->setPrintedLabels(printHeaders);
                list->print(outFilled, true); printHeaders = false;
		
				//update labelBin
				labelBin[orderFloat[l]] += list->getNumBins();
									
				delete list;
									
				list = input->getListVector();
			}
			
			if (list != nullptr) { delete list; }
			delete input;
			
			outFilled.close();
			util.mothurRemove(listNames[k]);
			rename(filledInList.c_str(), listNames[k].c_str());
		}
		
		return labelBin;
	}
	catch(exception& e) {
		m->errorOut(e, "ClusterSplitCommand", "completeListFile");
		exit(1);
	}
}
//**********************************************************************************************************************
int ClusterSplitCommand::mergeLists(vector<string> listNames, map<double, int> userLabels, ListVector* listSingle){
	try {
		if (outputdir == "") { outputdir += util.hasPath(distfile); }
		fileroot = outputdir + util.getRootName(util.getSimpleName(distfile));
		
        map<string, string> variables; 
        variables["[filename]"] = fileroot;
        variables["[clustertag]"] = tag;
        string sabundFileName = getOutputFileName("sabund", variables);
        string rabundFileName = getOutputFileName("rabund", variables);
        string listFileName = getOutputFileName("list", variables);
        
        map<string, int> counts;
        ofstream outList, outRabund, outSabund;
        if (countfile == "") {
            util.openOutputFile(sabundFileName,	outSabund);
            util.openOutputFile(rabundFileName,	outRabund);
            outputNames.push_back(sabundFileName); outputTypes["sabund"].push_back(sabundFileName);
            outputNames.push_back(rabundFileName); outputTypes["rabund"].push_back(rabundFileName);
            
        }else {
            CountTable ct;
            ct.readTable(countfile, false, false);
            counts = ct.getNameMap();
        }
        
		util.openOutputFile(listFileName,	outList);
        outputNames.push_back(listFileName); outputTypes["list"].push_back(listFileName);
        bool printHeaders = true;

		//for each label needed
		for(map<double, int>::iterator itLabel = userLabels.begin(); itLabel != userLabels.end(); itLabel++) {
			
			string thisLabel;
			if (util.isEqual(itLabel->first,-1)) { thisLabel = "unique"; }
			else { thisLabel = toString(itLabel->first,  length-1);  } 
			
			//outList << thisLabel << '\t' << itLabel->second << '\t';
            
            RAbundVector* rabund = nullptr;
            ListVector completeList;
            completeList.setLabel(thisLabel);
            
            if (countfile == "") {
                rabund = new RAbundVector();
                rabund->setLabel(thisLabel);
            }

			//add in singletons
			if (listSingle != nullptr) {
				for (int j = 0; j < listSingle->getNumBins(); j++) {
					//outList << listSingle->get(j) << '\t';
                    completeList.push_back(listSingle->get(j));
					if (countfile == "") { rabund->push_back(util.getNumNames(listSingle->get(j))); }
				}
			}
			
			//get the list info from each file
			for (int k = 0; k < listNames.size(); k++) {
	
				if (m->getControl_pressed()) {  if (listSingle != nullptr) { delete listSingle;   } for (int i = 0; i < listNames.size(); i++) { util.mothurRemove(listNames[i]);  } if (rabund != nullptr) { delete rabund; } return 0; }
				
				InputData* input = new InputData(listNames[k], "list", nullVector);
				ListVector* list = input->getListVector(thisLabel);
				
				//this file has reached the end
				if (list == nullptr) { m->mothurOut("Error merging listvectors in file " + listNames[k]); m->mothurOutEndLine();  }	
				else {		
					for (int j = 0; j < list->getNumBins(); j++) {
                        completeList.push_back(list->get(j));
						if (countfile == "") { rabund->push_back(util.getNumNames(list->get(j))); }
					}
					delete list;
				}
				delete input;
			}
			
            if (countfile == "") {
                SAbundVector sabund = rabund->getSAbundVector();
                sabund.print(outSabund);
                rabund->print(outRabund);
            }

            completeList.setPrintedLabels(printHeaders);
            if (countfile != "") { completeList.print(outList, counts);  printHeaders = false; }
            else { completeList.print(outList);  printHeaders = false; }
			
			if (rabund != nullptr) { delete rabund; }
		}
		
		outList.close();
        if (countfile == "") {
            outRabund.close();
            outSabund.close();
		}
		if (listSingle != nullptr) { delete listSingle;  }
		
		for (int i = 0; i < listNames.size(); i++) {  util.mothurRemove(listNames[i]);  }
		
		return 0;
	}
	catch(exception& e) {
		m->errorOut(e, "ClusterSplitCommand", "mergeLists");
		exit(1);
	}
}
/**************************************************************************************************/
struct clusterData {
    MothurOut* m;
    Utils util;
    int count, precision, length, maxIters; //numSingletons,
    bool showabund, classic, useName, useCount, deleteFiles, cutoffNotSet;
    double cutoff, stableMetric;
    ofstream outList, outRabund, outSabund;
    string tag, method,  vsearchLocation, metricName, initialize, outputDir, type;
    vector< map<string, string> > distNames;
    set<string> labels;
    vector<string> listFileNames;
    
    clusterData(){}
    clusterData(bool showab, bool cla, bool df, vector< map<string, string> > dN, bool cns, double cu, int prec, int len, string meth, string opd, string vl, string ty) {
        showabund = showab;
        distNames = dN;
        cutoff = cu;
        classic = cla;
        method = meth;
        precision = prec;
        length = len;
        outputDir = opd;
        vsearchLocation = vl;
        deleteFiles = df;
        cutoffNotSet = cns;
        m = MothurOut::getInstance();
        count = 0;
        type = ty;
        useName = false;
        useCount = false;
        //numSingletons = 0;
    }
    void setOptiOptions(string metn, double stabMet, string init, int mxi ) {
        metricName = metn;
        stableMetric = stabMet;
        maxIters = mxi;
        initialize = init;
    }
    void setNamesCount(string cnf) {
        useName = false;
        useCount = false;
        if (type == "name") { useName = true;  }
        if (type == "count") { useCount = true; }
    }
};
//**********************************************************************************************************************
int createRabund(CountTable*& ct, ListVector*& list, RAbundVector*& rabund, clusterData* params){
    try {
        rabund->setLabel(list->getLabel());
        for(int i = 0; i < list->getNumBins(); i++) {
            if (params->m->getControl_pressed()) { break; }
            vector<string> binNames;
            string bin = list->get(i);
            params->util.splitAtComma(bin, binNames);
            int total = 0;
            for (int j = 0; j < binNames.size(); j++) { total += ct->getNumSeqs(binNames[j]);  }
            rabund->push_back(total);
        }
        return 0;
    }
    catch(exception& e) {
        params->m->errorOut(e, "ClusterSplitCommand", "createRabund");
        exit(1);
    }
    
}
//**********************************************************************************************************************
string clusterClassicFile(string thisDistFile, string thisNamefile, double& smallestCutoff, clusterData* params){
    try {
        string listFileName = "";
        
        ListVector* list = nullptr;
        ListVector oldList;
        RAbundVector* rabund = nullptr;
        
        params->m->mothurOut("\nReading " + thisDistFile + "\n");
        
        //reads phylip file storing data in 2D vector, also fills list and rabund
        bool sim = false;
        ClusterClassic cluster(params->cutoff, params->method, sim);
        
        NameAssignment* nameMap = nullptr;
        CountTable* ct = nullptr;
        if(params->useName){
            nameMap = new NameAssignment(thisNamefile);
            nameMap->readMap();
            cluster.readPhylipFile(thisDistFile, nameMap);
        }else if (params->useCount) {
            ct = new CountTable();
            ct->readTable(thisNamefile, false, false);
            cluster.readPhylipFile(thisDistFile, ct);
        }
        params->tag = cluster.getTag();
        
        if (params->m->getControl_pressed()) { if(params->useName){	delete nameMap; }
            else if (params->useCount) { delete ct; } return listFileName; }
        
        list = cluster.getListVector();
        rabund = cluster.getRAbundVector();
        
        string thisOutputDir = params->outputDir;
        if (params->outputDir == "") { thisOutputDir += params->util.hasPath(thisDistFile); }
        string fileroot = thisOutputDir + params->util.getRootName(params->util.getSimpleName(thisDistFile));
        listFileName = fileroot+ params->tag + ".list";
        
        ofstream listFile;
        params->util.openOutputFile(fileroot+ params->tag + ".list",	listFile);
        
        float previousDist = 0.00000;
        float rndPreviousDist = 0.00000;
        bool printHeaders = true;
        oldList = *list;
        
        params->m->mothurOut("\nClustering " + thisDistFile + "\n");
        
        while ((cluster.getSmallDist() < params->cutoff) && (cluster.getNSeqs() > 1)){
            if (params->m->getControl_pressed()) {  delete list; delete rabund; listFile.close();  if(params->useName){	delete nameMap; }
                else if (params->useCount) { delete ct; } return listFileName;  }
            
            cluster.update(params->cutoff);
            
            float dist = cluster.getSmallDist();
            float rndDist = params->util.ceilDist(dist, params->precision);
            
            if(previousDist <= 0.0000 && !params->util.isEqual(dist, previousDist)){
                oldList.setLabel("unique");
                oldList.setPrintedLabels(printHeaders);
                oldList.print(listFile); printHeaders = false;
                if (params->labels.count("unique") == 0) {  params->labels.insert("unique");  }
            }
            else if(!params->util.isEqual(rndDist, rndPreviousDist)){
                oldList.setLabel(toString(rndPreviousDist,  params->length-1));
                oldList.setPrintedLabels(printHeaders);
                oldList.print(listFile); printHeaders = false;
                if (params->labels.count(toString(rndPreviousDist,  params->length-1)) == 0) { params->labels.insert(toString(rndPreviousDist,  params->length-1)); }
            }
            
            
            previousDist = dist;
            rndPreviousDist = rndDist;
            oldList = *list;
        }
        
        if(previousDist <= 0.0000){
            oldList.setLabel("unique");
            oldList.setPrintedLabels(printHeaders);
            oldList.print(listFile); printHeaders = false;
            if (params->labels.count("unique") == 0) { params->labels.insert("unique"); }
        }
        else if(rndPreviousDist<params->cutoff){
            oldList.setLabel(toString(rndPreviousDist,  params->length-1));
            oldList.setPrintedLabels(printHeaders);
            oldList.print(listFile); printHeaders = false;
            if (params->labels.count(toString(rndPreviousDist,  params->length-1)) == 0) { params->labels.insert(toString(rndPreviousDist,  params->length-1)); }
        }
        listFile.close();
        
        delete list; delete rabund;
        if(params->useName)         {	delete nameMap; }
        else if (params->useCount)  {   delete ct;      }
        
        if (params->deleteFiles) {
            params->util.mothurRemove(thisDistFile);
            params->util.mothurRemove(thisNamefile);
        }
        return listFileName;
    }
    catch(exception& e) {
        params->m->errorOut(e, "ClusterSplitCommand", "clusterClassicFile");
        exit(1);
    }
}
//**********************************************************************************************************************
string runOptiCluster(string thisDistFile, string thisNamefile, double& smallestCutoff, clusterData* params){
    try {
        if (params->cutoffNotSet) {  params->m->mothurOut("\nYou did not set a cutoff, using 0.03.\n"); params->cutoff = 0.03;  }
        
        string nameOrCount = params->type;
        
        OptiMatrix matrix(thisDistFile, thisNamefile, nameOrCount, "column", params->cutoff, false);
        
        ClusterMetric* metric = nullptr;
        if (params->metricName == "mcc")             { metric = new MCC();              }
        else if (params->metricName == "sens")       { metric = new Sensitivity();      }
        else if (params->metricName == "spec")       { metric = new Specificity();      }
        else if (params->metricName == "tptn")       { metric = new TPTN();             }
        else if (params->metricName == "tp")         { metric = new TP();               }
        else if (params->metricName == "tn")         { metric = new TN();               }
        else if (params->metricName == "fp")         { metric = new FP();               }
        else if (params->metricName == "fn")         { metric = new FN();               }
        else if (params->metricName == "f1score")    { metric = new F1Score();          }
        else if (params->metricName == "accuracy")   { metric = new Accuracy();         }
        else if (params->metricName == "ppv")        { metric = new PPV();              }
        else if (params->metricName == "npv")        { metric = new NPV();              }
        else if (params->metricName == "fdr")        { metric = new FDR();              }
        else if (params->metricName == "fpfn")       { metric = new FPFN();             }
        
        OptiCluster cluster(&matrix, metric, 0);
        params->tag = cluster.getTag();
        
        params->m->mothurOut("\nClustering " + thisDistFile + "\n");
        
        string thisOutputDir = params->outputDir;
        if (params->outputDir == "") { thisOutputDir += params->util.hasPath(thisDistFile); }
        string fileroot = thisOutputDir + params->util.getRootName(params->util.getSimpleName(thisDistFile));
        string listFileName = fileroot+ params->tag + ".list";

        int iters = 0;
        double listVectorMetric = 0; //worst state
        double delta = 1;
        
        cluster.initialize(listVectorMetric, true, params->initialize);
        
        while ((delta > params->stableMetric) && (iters < params->maxIters)) {
            
            if (params->m->getControl_pressed()) { if (params->deleteFiles) { params->util.mothurRemove(thisDistFile);  params->util.mothurRemove(thisNamefile); } return listFileName; }
            double oldMetric = listVectorMetric;
            cluster.update(listVectorMetric);
            
            delta = abs(oldMetric - listVectorMetric);
            iters++;
        }
        
        if (params->m->getControl_pressed()) { delete metric; metric = nullptr; return 0; }
        
        ListVector* list = cluster.getList();
        list->setLabel(toString(smallestCutoff));
        //params->cutoff = params->util.ceilDist(params->cutoff, params->precision);
        params->labels.insert(toString(smallestCutoff));
        
        ofstream listFile;
        params->util.openOutputFile(listFileName,	listFile);
        list->print(listFile);
        listFile.close();
        
        if (params->deleteFiles) {
            params->util.mothurRemove(thisDistFile);
            params->util.mothurRemove(thisNamefile);
        }
        
        double tp, tn, fp, fn;
        params->m->mothurOut("\ntp\ttn\tfp\tfn\tsensitivity\tspecificity\tppv\tnpv\tfdr\taccuracy\tmcc\tf1score\n");
        vector<double> results = cluster.getStats(tp, tn, fp, fn);
        params->m->mothurOut(toString(tp) + "\t" + toString(tn) + "\t" + toString(fp) + "\t" + toString(fn) + "\t");
        for (int i = 0; i < results.size(); i++) { params->m->mothurOut(toString(results[i]) + "\t");  }
        params->m->mothurOut("\n\n");
        return listFileName;
        
    }
    catch(exception& e) {
        params->m->errorOut(e, "ClusterSplitCommand", "runOptiCluster");
        exit(1);
    }
}
//**********************************************************************************************************************

int vsearchDriver(string inputFile, string ucClusteredFile, string logfile, double cutoff, clusterData* params){
    try {
        
        //vsearch --maxaccepts 16 --usersort --id 0.97 --minseqlength 30 --wordlength 8 --uc $ROOT.clustered.uc --cluster_smallmem $ROOT.sorted.fna --maxrejects 64 --strand both --log $ROOT.clustered.log --sizeorder
        
        
        ucClusteredFile = params->util.getFullPathName(ucClusteredFile);
        inputFile = params->util.getFullPathName(inputFile);
        logfile = params->util.getFullPathName(logfile);
        
        //to allow for spaces in the path
        ucClusteredFile = "\"" + ucClusteredFile + "\"";
        inputFile = "\"" + inputFile + "\"";
        logfile = "\"" + logfile + "\"";
        
        vector<char*> cPara;
        
        string vsearchCommand = params->vsearchLocation;
        vsearchCommand = "\"" + vsearchCommand + "\" ";
        
        vector<char*> vsearchParameters;
        vsearchParameters.push_back(params->util.mothurConvert(vsearchCommand));
        
        //--maxaccepts=16
        vsearchParameters.push_back(params->util.mothurConvert("--maxaccepts=16"));
        
        //--threads=1
        string processorsString = "--threads=1";
        vsearchParameters.push_back(params->util.mothurConvert(processorsString));
        
        //--usersort
        vsearchParameters.push_back(params->util.mothurConvert("--usersort"));
        
        //--id=0.97
        cutoff = abs(1.0 - cutoff); string cutoffString = toString(cutoff);
        if (cutoffString.length() > 4) {  cutoffString = cutoffString.substr(0, 4);  }
        else if (cutoffString.length() < 4)  {  for (int i = cutoffString.length(); i < 4; i++)  { cutoffString += "0";  } }
        
        cutoffString = "--id=" +  cutoffString;
        vsearchParameters.push_back(params->util.mothurConvert(cutoffString));
        
        //--minseqlength=30
        vsearchParameters.push_back(params->util.mothurConvert("--minseqlength=30"));
        
        //--wordlength=8
        vsearchParameters.push_back(params->util.mothurConvert("--wordlength=8"));

        //--uc=$ROOT.clustered.uc
        string tempIn = "--uc=" + ucClusteredFile;
        vsearchParameters.push_back(params->util.mothurConvert(tempIn));

        //--cluster_smallmem $ROOT.sorted.fna
        string tempSorted = "--cluster_smallmem=" + inputFile;
        vsearchParameters.push_back(params->util.mothurConvert(tempSorted));
     
        //--maxrejects=64
        vsearchParameters.push_back(params->util.mothurConvert("--maxrejects=64"));
        
        //--strand=both
        vsearchParameters.push_back(params->util.mothurConvert("--strand=both"));
        
        //--log=$ROOT.clustered.log
        string tempLog = "--log=" + logfile;
        vsearchParameters.push_back(params->util.mothurConvert(tempLog));

        if (params->method == "agc") { //--sizeorder
            vsearchParameters.push_back(params->util.mothurConvert("--sizeorder"));
         }
          
        if (params->m->getDebug()) {  params->m->mothurOut("[DEBUG]: "); for(int i = 0; i < vsearchParameters.size(); i++)  { params->m->mothurOut(toString(vsearchParameters[i]) + "\t"); } params->m->mothurOut("\n");  }
        
        string commandString = "";
        for (int i = 0; i < vsearchParameters.size(); i++) {    commandString += toString(vsearchParameters[i]) + " "; }
        
#if defined NON_WINDOWS
#else
        commandString = "\"" + commandString + "\"";
#endif
        if (params->m->getDebug()) {  params->m->mothurOut("[DEBUG]: vsearch cluster command = " + commandString + ".\n"); }
        
        system(commandString.c_str());
        
        //free memory
        for(int i = 0; i < vsearchParameters.size(); i++)  {  delete vsearchParameters[i];  }
        
        //remove "" from filenames
        ucClusteredFile = ucClusteredFile.substr(1, ucClusteredFile.length()-2);
        inputFile = inputFile.substr(1, inputFile.length()-2);
        logfile = logfile.substr(1, logfile.length()-2);
        
        return 0;
        
    }
    catch(exception& e) {
        params->m->errorOut(e, "ClusterSplitCommand", "vsearchDriver");
        exit(1);
    }
}
//**********************************************************************************************************************
string runVsearchCluster(string thisDistFile, string thisNamefile, double& smallestCutoff, clusterData* params){
    try {
        
        params->m->mothurOut("\nClustering " + thisDistFile + "\n");
        
        string vsearchFastafile = ""; VsearchFileParser* vParse;
        if (params->useName)                    { vParse = new VsearchFileParser(thisDistFile, thisNamefile, "name");       }
        else if (params->useCount)              { vParse = new VsearchFileParser(thisDistFile, thisNamefile, "count");      }
        else                                    { params->m->mothurOut("[ERROR]: Opps, should never get here. ClusterSplitCommand::runVsearchCluster() \n"); params->m->setControl_pressed(true);  return ""; }
        
        if (params->m->getControl_pressed()) {  delete vParse; return ""; }
        
        vsearchFastafile = vParse->getVsearchFile();
        
        if (params->cutoff > 1.0) {  params->m->mothurOut("You did not set a cutoff, using 0.03.\n"); params->cutoff = 0.03; }
        
        //Run vsearch
        string ucVsearchFile = params->util.getSimpleName(vsearchFastafile) + ".clustered.uc";
        string logfile = params->util.getSimpleName(vsearchFastafile) + ".clustered.log";
        vsearchDriver(vsearchFastafile, ucVsearchFile, logfile, smallestCutoff, params);
        
        if (params->m->getControl_pressed()) { params->util.mothurRemove(ucVsearchFile); params->util.mothurRemove(logfile);  params->util.mothurRemove(vsearchFastafile); return ""; }
        
        string thisOutputDir = params->outputDir;
        if (params->outputDir == "") { thisOutputDir += params->util.hasPath(thisDistFile); }
        params->tag = params->method;
        string listFileName = thisOutputDir + params->util.getRootName(params->util.getSimpleName(thisDistFile)) + params->tag + ".list";
        
        //Convert outputted *.uc file into a list file
        map<string, int> counts;
        ListVector list = vParse->createListFile(ucVsearchFile, vParse->getNumBins(logfile), toString(params->cutoff), counts);
        
        ofstream out;
        params->util.openOutputFile(listFileName,	out);

        list.DataVector::printHeaders(out);
        
        if (params->useCount) { list.print(out, counts); }
        else { list.print(out); } delete vParse;

        //remove temp files
        params->util.mothurRemove(ucVsearchFile); params->util.mothurRemove(logfile);  params->util.mothurRemove(vsearchFastafile);
        
        if (params->deleteFiles) {
            params->util.mothurRemove(thisDistFile);
            params->util.mothurRemove(thisNamefile);
        }
        params->labels.insert(toString(params->cutoff));
        
        return listFileName;
    }
    catch(exception& e) {
        params->m->errorOut(e, "ClusterSplitCommand", "runVsearchCluster");
        exit(1);
    }
}
//**********************************************************************************************************************
string clusterFile(string thisDistFile, string thisNamefile, double& smallestCutoff, clusterData* params){
    try {
        string listFileName = "";
        
        if ((params->method == "agc") || (params->method == "dgc")) {  listFileName = runVsearchCluster(thisDistFile, thisNamefile, smallestCutoff, params);  }
        else if (params->method == "opti")                          {  listFileName = runOptiCluster(thisDistFile, thisNamefile, smallestCutoff, params);     }
        else {
            
            Cluster* cluster = nullptr;
            SparseDistanceMatrix* matrix = nullptr;
            ListVector* list = nullptr;
            ListVector oldList;
            RAbundVector* rabund = nullptr;
            
            if (params->m->getControl_pressed()) { return listFileName; }
            
            params->m->mothurOut("\nReading " + thisDistFile + "\n");
            
            ReadMatrix* read = new ReadColumnMatrix(thisDistFile);
            read->setCutoff(params->cutoff);
            
            NameAssignment* nameMap = nullptr;
            CountTable* ct = nullptr;
            if(params->useName){
                nameMap = new NameAssignment(thisNamefile);
                nameMap->readMap();
                read->read(nameMap);
            }else if (params->useCount) {
                ct = new CountTable();
                ct->readTable(thisNamefile, false, false);
                read->read(ct);
            }else { read->read(nameMap); }
            
            list = read->getListVector();
            matrix = read->getDMatrix();
            
            if(params->useCount) {
                rabund = new RAbundVector();
                createRabund(ct, list, rabund, params); //creates an rabund that includes the counts for the unique list
                delete ct;
            }else { rabund = new RAbundVector(list->getRAbundVector()); }
            
            delete read;  read = nullptr;
            if (params->useName) { delete nameMap; nameMap = nullptr; }
            
            params->m->mothurOut("\nClustering " + thisDistFile + "\n");
            
            //create cluster
            float adjust = -1.0;
            if (params->method == "furthest")	{	cluster = new CompleteLinkage(rabund, list, matrix, params->cutoff, params->method, adjust); }
            else if(params->method == "nearest"){	cluster = new SingleLinkage(rabund, list, matrix, params->cutoff, params->method, adjust); }
            else if(params->method == "average"){	cluster = new AverageLinkage(rabund, list, matrix, params->cutoff, params->method, adjust);	}
            params->tag = cluster->getTag();
            
            string thisOutputDir = params->outputDir;
            if (params->outputDir == "") { thisOutputDir += params->util.hasPath(thisDistFile); }
            string fileroot = thisOutputDir + params->util.getRootName(params->util.getSimpleName(thisDistFile));
            listFileName = fileroot+ params->tag + ".list";

            ofstream listFile;
            params->util.openOutputFile(listFileName,	listFile);

            float previousDist = 0.00000;
            float rndPreviousDist = 0.00000;
            bool printHeaders = true;
            
            oldList = *list;
            
            double saveCutoff = params->cutoff;
            
            while (matrix->getSmallDist() < params->cutoff && matrix->getNNodes() > 0){
                
                if (params->m->getControl_pressed()) { //clean up
                    delete matrix; delete list;	delete cluster; delete rabund;
                    listFile.close();
                    params->util.mothurRemove(listFileName);
                    return listFileName;
                }
                
                cluster->update(saveCutoff);
                
                float dist = matrix->getSmallDist();
                float rndDist = params->util.ceilDist(dist, params->precision);
                
                if(previousDist <= 0.0000 && !params->util.isEqual(dist, previousDist)){
                    oldList.setLabel("unique");
                    oldList.setPrintedLabels(printHeaders);
                    oldList.print(listFile); printHeaders = false;
                    if (params->labels.count("unique") == 0) {  params->labels.insert("unique");  }
                }
                else if(!params->util.isEqual(rndDist, rndPreviousDist)){
                    oldList.setPrintedLabels(printHeaders);
                    oldList.setLabel(toString(rndPreviousDist,  params->length-1));
                    oldList.setPrintedLabels(printHeaders);
                    oldList.print(listFile); printHeaders = false;
                    if (params->labels.count(toString(rndPreviousDist,  params->length-1)) == 0) { params->labels.insert(toString(rndPreviousDist,  params->length-1)); }
                }
                
                previousDist = dist;
                rndPreviousDist = rndDist;
                oldList = *list;
            }
            
            
            if(previousDist <= 0.0000){
                oldList.setLabel("unique");
                oldList.setPrintedLabels(printHeaders);
                oldList.print(listFile); printHeaders = false;
                if (params->labels.count("unique") == 0) { params->labels.insert("unique"); }
            }
            else if(rndPreviousDist<params->cutoff){
                oldList.setLabel(toString(rndPreviousDist,  params->length-1));
                oldList.setPrintedLabels(printHeaders);
                oldList.print(listFile); printHeaders = false;
                if (params->labels.count(toString(rndPreviousDist,  params->length-1)) == 0) { params->labels.insert(toString(rndPreviousDist,  params->length-1)); }
            }
            
            delete matrix; delete list;	delete cluster; delete rabund;
            matrix = nullptr; list = nullptr; cluster = nullptr; rabund = nullptr;
            listFile.close();
            
            if (params->m->getControl_pressed()) { //clean up
                params->util.mothurRemove(listFileName);
                return listFileName;
            }
            
            if (params->deleteFiles) {
                params->util.mothurRemove(thisDistFile);
                params->util.mothurRemove(thisNamefile);
            }
            
            if (!params->util.isEqual(saveCutoff, params->cutoff)) {
                saveCutoff = params->util.ceilDist(saveCutoff, params->precision);
                params->m->mothurOut("Cutoff was " + toString(params->cutoff) + " changed cutoff to " + toString(saveCutoff) + "\n");
            }
            
            if (saveCutoff < smallestCutoff) { smallestCutoff = saveCutoff;  }
        }
        return listFileName;
    }
    catch(exception& e) {
        params->m->errorOut(e, "ClusterSplitCommand", "clusterFile");
        exit(1);
    }
}
//**********************************************************************************************************************
void cluster(clusterData* params){
    try {
        vector<string> listFileNames;
        double smallestCutoff = params->cutoff;
        
        //cluster each distance file
        for (int i = 0; i < params->distNames.size(); i++) {
            
            string thisNamefile = params->distNames[i].begin()->second;
            string thisDistFile = params->distNames[i].begin()->first;
            
            params->setNamesCount(thisNamefile);
            
            string listFileName = "";
            if (params->classic)    {  listFileName = clusterClassicFile(thisDistFile, thisNamefile, smallestCutoff, params);   }
            else                    {  listFileName = clusterFile(thisDistFile, thisNamefile, smallestCutoff, params);          }
            
            if (params->m->getControl_pressed()) { //clean up
                for (int i = 0; i < listFileNames.size(); i++) {	params->util.mothurRemove(listFileNames[i]); 	}
                params->listFileNames.clear(); break;
            }
            params->listFileNames.push_back(listFileName);
        }
        params->cutoff = smallestCutoff;
    }
    catch(exception& e) {
        params->m->errorOut(e, "ClusterSplitCommand", "cluster");
        exit(1);
    }
    
    
}
//**********************************************************************************************************************
void printData(ListVector* oldList, clusterData* params){
	try {
		string label = oldList->getLabel();
		RAbundVector oldRAbund = oldList->getRAbundVector();
		
		oldRAbund.setLabel(label);
		if (params->showabund) {
			oldRAbund.getSAbundVector().print(cout);
		}
		oldRAbund.print(params->outRabund);
		oldRAbund.getSAbundVector().print(params->outSabund);
	
		oldList->print(params->outList, true);
	}
	catch(exception& e) {
		params->m->errorOut(e, "ClusterSplitCommand", "printData");
		exit(1);
	}
}
//**********************************************************************************************************************
vector<string> ClusterSplitCommand::createProcesses(vector< map<string, string> > distName, set<string>& labels){
	try {
        //sanity check
        if (processors > distName.size()) { processors = distName.size(); }
        deleteFiles = false; //so if we need to recalc the processors the files are still there
        vector<string> listFiles;
        vector < vector < map<string, string> > > dividedNames; //distNames[1] = vector of filenames for process 1...
        dividedNames.resize(processors);
        
        //for each file group figure out which process will complete it
        //want to divide the load intelligently so the big files are spread between processes
        for (int i = 0; i < distName.size(); i++) {
            int processToAssign = (i+1) % processors; 
            if (processToAssign == 0) { processToAssign = processors; }
            
            dividedNames[(processToAssign-1)].push_back(distName[i]);
            if ((processToAssign-1) == 1) { m->mothurOut(distName[i].begin()->first + "\n"); }
        }
        
        //now lets reverse the order of ever other process, so we balance big files running with little ones
        for (int i = 0; i < processors; i++) {
            int remainder = ((i+1) % processors);
            if (remainder) {  reverse(dividedNames[i].begin(), dividedNames[i].end());  }
        }
        
        if (m->getControl_pressed()) { return listFiles; }
        
        
        //create array of worker threads
        vector<std::thread*> workerThreads;
        vector<clusterData*> data;
        
        //Lauch worker threads
        for (int i = 0; i < processors-1; i++) {
            clusterData* dataBundle = new clusterData(showabund, classic, deleteFiles, dividedNames[i+1], cutoffNotSet, cutoff, precision, length, method, outputdir, vsearchLocation, type);
            dataBundle->setOptiOptions(metricName, stableMetric, initialize, maxIters);
            data.push_back(dataBundle);
            
            workerThreads.push_back(new std::thread(cluster, dataBundle));
        }
        
        
        clusterData* dataBundle = new clusterData(showabund, classic, deleteFiles, dividedNames[0], cutoffNotSet, cutoff, precision, length, method, outputdir, vsearchLocation, type);
        dataBundle->setOptiOptions(metricName, stableMetric, initialize, maxIters);
        cluster(dataBundle);
        listFiles = dataBundle->listFileNames;
        tag = dataBundle->tag;
        cutoff = dataBundle->cutoff;
        labels = dataBundle->labels;
        
        
        for (int i = 0; i < processors-1; i++) {
            workerThreads[i]->join();
            
            listFiles.insert(listFiles.end(), data[i]->listFileNames.begin(), data[i]->listFileNames.end());
            labels.insert(data[i]->labels.begin(), data[i]->labels.end());
            if (data[i]->cutoff < cutoff) { cutoff = data[i]->cutoff; }
            
            delete data[i];
            delete workerThreads[i];
        }
        delete dataBundle;
        deleteFiles = true;
        
        return listFiles;
	}
	catch(exception& e) {
		m->errorOut(e, "ClusterSplitCommand", "createProcesses");
		exit(1);
	}
}
//**********************************************************************************************************************

int ClusterSplitCommand::createMergedDistanceFile(vector< map<string, string> > distNames) {
	try{
		string thisOutputDir = outputdir;
		if (outputdir == "") { thisOutputDir = util.hasPath(fastafile); }
        map<string, string> variables; 
        variables["[filename]"] = thisOutputDir + util.getRootName(util.getSimpleName(fastafile));
		string outputFileName = getOutputFileName("column", variables);
		util.mothurRemove(outputFileName);
		
		
		for (int i = 0; i < distNames.size(); i++) {
			if (m->getControl_pressed()) {  return 0; }
			
			string thisDistFile = distNames[i].begin()->first;
			
			util.appendFiles(thisDistFile, outputFileName);
		}	
			
		outputTypes["column"].push_back(outputFileName); outputNames.push_back(outputFileName);
			
		return 0;
	}
	catch(exception& e) {
		m->errorOut(e, "ClusterSplitCommand", "createMergedDistanceFile");
		exit(1);
	}
}
//**********************************************************************************************************************

int ClusterSplitCommand::runSensSpec() {
    try{
        string listFile = "";
        itTypes = outputTypes.find("list");
        if (itTypes != outputTypes.end()) {
            if ((itTypes->second).size() != 0) { listFile = (itTypes->second)[0];  }
        }
        
        string columnFile = "";
        if (makeDist) {
            itTypes = outputTypes.find("column");
            if (itTypes != outputTypes.end()) {
                if ((itTypes->second).size() != 0) { columnFile = (itTypes->second)[0];  }
            }
        }
    
        string inputString = "cutoff=" + toString(cutoff) + ", list=" + listFile;
        if (columnFile != "") { inputString += ", column=" + columnFile;  }
        else { m->mothurOut("[WARNING]: Cannot run sens.spec analysis without a column file, skipping."); return 0;  }

        if (namefile != "")         {  inputString += ", name=" + namefile; }
        else if (countfile != "")   { inputString += ", count=" + countfile; }
        else { m->mothurOut("[WARNING]: Cannot run sens.spec analysis without a name or count file, skipping."); return 0;  }
        
        m->mothurOut("/******************************************/\n");
        m->mothurOut("Running command: sens.spec(" + inputString + ")\n");
        current->setMothurCalling(true);
        
        Command* sensspecCommand = new SensSpecCommand(inputString);
        sensspecCommand->execute();
        
        map<string, vector<string> > filenames = sensspecCommand->getOutputFiles();
        
        delete sensspecCommand;
         current->setMothurCalling(false);
        
        string outputFileName = filenames["sensspec"][0];
        
        outputTypes["sensspec"].push_back(outputFileName);  outputNames.push_back(outputFileName);
        
        m->mothurOut("/******************************************/\n"); 
        m->mothurOut("Done.\n\n\n"); 
        
        ifstream in; util.openInputFile(outputFileName, in);
        
        while(!in.eof()){
            if (m->getControl_pressed()) { break; }
            
            m->mothurOut(util.getline(in)+"\n"); gobble(in);
        }
        in.close();
        
        return 0;
    }
    catch(exception& e) {
        m->errorOut(e, "ClusterSplitCommand", "runSensSpec");
        exit(1);
    }
}
//**********************************************************************************************************************
string ClusterSplitCommand::printFile(string singleton, vector< map<string, string> >& distName){
    try {
        ofstream out;
        map<string, string> variables;
        string thisOutputDir = outputdir;
		if (outputdir == "") { thisOutputDir = util.hasPath(distfile); }
        variables["[filename]"] = thisOutputDir + util.getRootName(util.getSimpleName(distfile));
		string outputFileName = getOutputFileName("file", variables);
        util.openOutputFile(outputFileName, out);
        outputTypes["file"].push_back(outputFileName); outputNames.push_back(outputFileName);
        current->setFileFile(outputFileName);
        
        out << singleton << endl;
        if (namefile != "") { out << "name" << endl; }
        else if (countfile != "") { out << "count" << endl; }
        else { out << "unknown" << endl; }
        
        for (int i = 0; i < distName.size(); i++) {    out << distName[i].begin()->first << '\t' << distName[i].begin()->second << endl;	}
        out.close();
        
        return outputFileName;
    }
    catch(exception& e) {
		m->errorOut(e, "ClusterSplitCommand", "printFile");
		exit(1);
	}
    
}
//**********************************************************************************************************************
string ClusterSplitCommand::readFile(vector< map<string, string> >& distName){
    try {
        
        string singleton, thiscolumn, thisname;
        
        ifstream in; util.openInputFile(file, in);
        
        in >> singleton; gobble(in);
        
        string path = util.hasPath(singleton);
        if (path == "") {  singleton = inputDir + singleton;  }
        
        in >> type; gobble(in);
        
        if (type == "name") { }
        else if (type == "count") { }
        else {  m->mothurOut("[ERROR]: unknown file type. Are the files in column 2 of the file name files or count files? Please change unknown to name or count.\n"); m->setControl_pressed(true); }
        
        if (isList) {

            vector<string> listFileNames;
            string thisListFileName = "";
            set<string> listLabels;
            
            while(!in.eof()) {
                if (m->getControl_pressed()) { break; }
                
                in >> thisListFileName; gobble(in);
                
                string path = util.hasPath(thisListFileName);
                if (path == "") {  thisListFileName = inputDir + thisListFileName;  }
                
                getLabels(thisListFileName, listLabels);
                listFileNames.push_back(thisListFileName);
            }
            
            ListVector* listSingle;
            map<double, int> labelBins = completeListFile(listFileNames, singleton, listLabels, listSingle);
            
            mergeLists(listFileNames, labelBins, listSingle);
        
        }else {
            
            while(!in.eof()) {
                if (m->getControl_pressed()) { break; }
                
                in >> thiscolumn; gobble(in);
                in >> thisname; gobble(in);
                
                map<string, string> temp;
                temp[thiscolumn] = thisname;
                distName.push_back(temp);
            }
        }
        
        in.close();
        
        return singleton;
    }
    catch(exception& e) {
		m->errorOut(e, "ClusterSplitCommand", "readFile");
		exit(1);
	}
    
}
//**********************************************************************************************************************
int ClusterSplitCommand::getLabels(string file, set<string>& listLabels){
    try {
        ifstream in; util.openInputFile(file, in);

        //read headers
        util.getline(in); gobble(in);
        
        string label;
        while(!in.eof()) {
            if (m->getControl_pressed()) { break; }
            
            in >> label; util.getline(in); gobble(in);
            
            listLabels.insert(label);
        }
        
        in.close();
        
        return 0;
    }
    catch(exception& e) {
        m->errorOut(e, "ClusterSplitCommand", "getLabels");
        exit(1);
    }
    
}
//**********************************************************************************************************************