1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
|
/*
* unifracweightedcommand.cpp
* Mothur
*
* Created by Sarah Westcott on 2/9/09.
* Copyright 2009 Schloss Lab UMASS Amherst. All rights reserved.
*
*/
#include "unifracweightedcommand.h"
#include "consensus.h"
#include "subsample.h"
#include "treereader.h"
//**********************************************************************************************************************
vector<string> UnifracWeightedCommand::setParameters(){
try {
CommandParameter ptree("tree", "InputTypes", "", "", "none", "none", "none","weighted-wsummary",false,true,true); parameters.push_back(ptree);
CommandParameter pname("name", "InputTypes", "", "", "NameCount", "none", "none","",false,false,true); parameters.push_back(pname);
CommandParameter pcount("count", "InputTypes", "", "", "NameCount-CountGroup", "none", "none","",false,false,true); parameters.push_back(pcount);
CommandParameter pgroup("group", "InputTypes", "", "", "CountGroup", "none", "none","",false,false,true); parameters.push_back(pgroup);
CommandParameter pgroups("groups", "String", "", "", "", "", "","",false,false); parameters.push_back(pgroups);
CommandParameter piters("iters", "Number", "", "1000", "", "", "","",false,false); parameters.push_back(piters);
CommandParameter pprocessors("processors", "Number", "", "1", "", "", "","",false,false,true); parameters.push_back(pprocessors);
CommandParameter psubsample("subsample", "String", "", "", "", "", "","",false,false); parameters.push_back(psubsample);
CommandParameter pwithreplacement("withreplacement", "Boolean", "", "F", "", "", "","",false,false,true); parameters.push_back(pwithreplacement);
CommandParameter pconsensus("consensus", "Boolean", "", "F", "", "", "","tree",false,false); parameters.push_back(pconsensus);
CommandParameter prandom("random", "Boolean", "", "F", "", "", "","",false,false); parameters.push_back(prandom);
CommandParameter pdistance("distance", "Multiple", "column-lt-square-phylip", "column", "", "", "","phylip-column",false,false); parameters.push_back(pdistance);
CommandParameter proot("root", "Boolean", "F", "", "", "", "","",false,false); parameters.push_back(proot);
CommandParameter pseed("seed", "Number", "", "0", "", "", "","",false,false); parameters.push_back(pseed);
CommandParameter pinputdir("inputdir", "String", "", "", "", "", "","",false,false); parameters.push_back(pinputdir);
CommandParameter poutputdir("outputdir", "String", "", "", "", "", "","",false,false); parameters.push_back(poutputdir);
vector<string> tempOutNames;
outputTypes["weighted"] = tempOutNames;
outputTypes["wsummary"] = tempOutNames;
outputTypes["phylip"] = tempOutNames;
outputTypes["column"] = tempOutNames;
outputTypes["tree"] = tempOutNames;
abort = false; calledHelp = false;
vector<string> myArray;
for (int i = 0; i < parameters.size(); i++) { myArray.push_back(parameters[i].name); }
return myArray;
}
catch(exception& e) {
m->errorOut(e, "UnifracWeightedCommand", "setParameters");
exit(1);
}
}
//**********************************************************************************************************************
string UnifracWeightedCommand::getHelpString(){
try {
string helpString = "";
helpString += "The unifrac.weighted command parameters are tree, group, name, count, groups, iters, distance, processors, root, subsample, consensus and random. tree parameter is required unless you have valid current tree file.\n";
helpString += "The groups parameter allows you to specify which of the groups in your groupfile you would like analyzed. You must enter at least 2 valid groups.\n";
helpString += "The group names are separated by dashes. The iters parameter allows you to specify how many random trees you would like compared to your tree.\n";
helpString += "The distance parameter allows you to create a distance file from the results. The default is false.\n";
helpString += "The random parameter allows you to shut off the comparison to random trees. The default is false, meaning don't compare your trees with randomly generated trees.\n";
helpString += "The root parameter allows you to include the entire root in your calculations. The default is false, meaning stop at the root for this comparision instead of the root of the entire tree.\n";
helpString += "The processors parameter allows you to specify the number of processors to use. The default is 1.\n";
helpString += "The subsample parameter allows you to enter the size pergroup of the sample or you can set subsample=T and mothur will use the size of your smallest group. The subsample parameter may only be used with a group file.\n";
helpString += "The withreplacement parameter allows you to indicate you want to subsample your data allowing for the same read to be included multiple times. Default=f. \n";
helpString += "The consensus parameter allows you to indicate you would like trees built from distance matrices created with the results, as well as a consensus tree built from these trees. Default=F.\n";
helpString += "The unifrac.weighted command should be in the following format: unifrac.weighted(groups=yourGroups, iters=yourIters).\n";
helpString += "Example unifrac.weighted(groups=A-B-C, iters=500).\n";
helpString += "The default value for groups is all the groups in your groupfile, and iters is 1000.\n";
helpString += "The unifrac.weighted command output two files: .weighted and .wsummary their descriptions are in the manual.\n";
return helpString;
}
catch(exception& e) {
m->errorOut(e, "UnifracWeightedCommand", "getHelpString");
exit(1);
}
}
//**********************************************************************************************************************
string UnifracWeightedCommand::getOutputPattern(string type) {
try {
string pattern = "";
if (type == "weighted") { pattern = "[filename],weighted-[filename],[tag],weighted"; }
else if (type == "wsummary") { pattern = "[filename],[tag],wsummary"; }
else if (type == "phylip") { pattern = "[filename],[tag],[tag2],dist"; }
else if (type == "column") { pattern = "[filename],[tag],[tag2],dist"; }
else if (type == "tree") { pattern = "[filename],[tag],[tag2],tre"; }
else { m->mothurOut("[ERROR]: No definition for type " + type + " output pattern.\n"); m->setControl_pressed(true); }
return pattern;
}
catch(exception& e) {
m->errorOut(e, "UnifracWeightedCommand", "getOutputPattern");
exit(1);
}
}
/***********************************************************/
UnifracWeightedCommand::UnifracWeightedCommand(string option) : Command() {
try {
if(option == "help") { help(); abort = true; calledHelp = true; }
else if(option == "citation") { citation(); abort = true; calledHelp = true;}
else if(option == "category") { abort = true; calledHelp = true; }
else {
OptionParser parser(option, setParameters());
map<string,string> parameters=parser.getParameters();
ValidParameters validParameter;
treefile = validParameter.validFile(parameters, "tree");
if (treefile == "not open") { treefile = ""; abort = true; }
else if (treefile == "not found") { //if there is a current design file, use it
treefile = current->getTreeFile();
if (treefile != "") { m->mothurOut("Using " + treefile + " as input file for the tree parameter.\n"); }
else { m->mothurOut("You have no current tree file and the tree parameter is required.\n"); abort = true; }
}else { current->setTreeFile(treefile); }
//check for required parameters
groupfile = validParameter.validFile(parameters, "group");
if (groupfile == "not open") { abort = true; }
else if (groupfile == "not found") { groupfile = ""; }
else { current->setGroupFile(groupfile); }
namefile = validParameter.validFile(parameters, "name");
if (namefile == "not open") { namefile = ""; abort = true; }
else if (namefile == "not found") { namefile = ""; }
else { current->setNameFile(namefile); }
countfile = validParameter.validFile(parameters, "count");
if (countfile == "not open") { countfile = ""; abort = true; }
else if (countfile == "not found") { countfile = ""; }
else { current->setCountFile(countfile); }
if ((namefile != "") && (countfile != "")) {
m->mothurOut("[ERROR]: you may only use one of the following: name or count.\n"); abort = true;
}
if ((groupfile != "") && (countfile != "")) {
m->mothurOut("[ERROR]: you may only use one of the following: group or count.\n"); abort=true;
}
if (outputdir == ""){ outputdir = util.hasPath(treefile); }
//check for optional parameter and set defaults
// ...at some point should added some additional type checking...
groups = validParameter.valid(parameters, "groups");
if (groups == "not found") { groups = ""; }
else {
util.splitAtDash(groups, Groups);
if (Groups.size() != 0) { if (Groups[0]== "all") { Groups.clear(); } }
}
itersString = validParameter.valid(parameters, "iters"); if (itersString == "not found") { itersString = "1000"; }
util.mothurConvert(itersString, iters);
string temp = validParameter.valid(parameters, "distance");
if (temp == "not found") { phylip = false; outputForm = ""; }
else{
if (temp=="phylip") { temp = "lt"; }
if ((temp == "lt") || (temp == "column") || (temp == "square")) { phylip = true; outputForm = temp; }
else { m->mothurOut("Options for distance are: lt, square, or column. Using lt.\n"); phylip = true; outputForm = "lt"; }
}
temp = validParameter.valid(parameters, "random"); if (temp == "not found") { temp = "F"; }
random = util.isTrue(temp);
temp = validParameter.valid(parameters, "root"); if (temp == "not found") { temp = "F"; }
includeRoot = util.isTrue(temp);
temp = validParameter.valid(parameters, "processors"); if (temp == "not found"){ temp = current->getProcessors(); }
processors = current->setProcessors(temp);
temp = validParameter.valid(parameters, "subsample"); if (temp == "not found") { temp = "F"; }
if (util.isNumeric1(temp)) { util.mothurConvert(temp, subsampleSize); subsample = true; }
else {
if (util.isTrue(temp)) { subsample = true; subsampleSize = -1; } //we will set it to smallest group later
else { subsample = false; }
}
if (!subsample) { subsampleIters = 0; }
else { subsampleIters = iters; }
temp = validParameter.valid(parameters, "withreplacement"); if (temp == "not found"){ temp = "f"; }
withReplacement = util.isTrue(temp);
temp = validParameter.valid(parameters, "consensus"); if (temp == "not found") { temp = "F"; }
consensus = util.isTrue(temp);
if (subsample && random) { m->mothurOut("[ERROR]: random must be false, if subsample=t.\n"); abort=true; }
if (countfile == "") { if (subsample && (groupfile == "")) { m->mothurOut("[ERROR]: if subsample=t, a group file must be provided.\n"); abort=true; } }
else {
CountTable testCt;
if ((!testCt.testGroups(countfile)) && (subsample)) {
m->mothurOut("[ERROR]: if subsample=t, a count file with group info must be provided.\n"); abort=true;
}
}
if (subsample && (!phylip)) { phylip=true; outputForm = "lt"; }
if (consensus && (!subsample)) { m->mothurOut("[ERROR]: you cannot use consensus without subsample.\n"); abort=true; }
}
}
catch(exception& e) {
m->errorOut(e, "UnifracWeightedCommand", "UnifracWeightedCommand");
exit(1);
}
}
/***********************************************************/
int UnifracWeightedCommand::execute() {
try {
if (abort) { if (calledHelp) { return 0; } return 2; }
long start = time(nullptr);
TreeReader* reader;
if (countfile == "") { reader = new TreeReader(treefile, groupfile, namefile); }
else { reader = new TreeReader(treefile, countfile); }
vector<Tree*> T = reader->getTrees();
CountTable* ct; ct = T[0]->getCountTable();
if ((Groups.size() == 0) || (Groups.size() < 2)) { Groups = ct->getNamesOfGroups(); } //must have at least 2 groups to compare
delete reader;
if (m->getControl_pressed()) { delete ct; for (int i = 0; i < T.size(); i++) { delete T[i]; } return 0; }
map<string, string> variables;
vector<string> nameGroups = ct->getNamesOfGroups();
if (Groups.size() < 2) { m->mothurOut("[ERROR]: You cannot run unifrac.weighted with less than 2 groups, aborting.\n"); delete ct; for (int i = 0; i < T.size(); i++) { delete T[i]; } return 0; }
if (m->getControl_pressed()) { delete ct; for (int i = 0; i < T.size(); i++) { delete T[i]; } return 0; }
if ((Groups.size() == 0) || (Groups.size() < 2)) { Groups = ct->getNamesOfGroups(); } //must have at least 2 groups to compare
//set or check size
if (subsample) {
//user has not set size, set size = smallest samples size
if (subsampleSize == -1) {
subsampleSize = ct->getNumSeqsSmallestGroup();
m->mothurOut("\nSetting subsample size to " + toString(subsampleSize) + ".\n\n");
}else { //eliminate any too small groups
vector<string> newGroups = Groups;
Groups.clear();
for (int i = 0; i < newGroups.size(); i++) {
int thisSize = ct->getGroupCount(newGroups[i]);
if (thisSize >= subsampleSize) { Groups.push_back(newGroups[i]); }
else { m->mothurOut("You have selected a size that is larger than "+newGroups[i]+" number of sequences, removing "+newGroups[i]+".\n"); }
}
}
}
vector<string> groupComb; util.getCombos(groupComb, Groups, numComp); //here in case some groups are removed by subsample
if (numComp < processors) { processors = numComp; m->mothurOut("Reducing processors to " + toString(numComp) + ".\n"); }
if (consensus && (numComp < 2)) { m->mothurOut("consensus can only be used with numComparisions greater than 1, setting consensus=f.\n"); consensus=false; }
Weighted weighted(includeRoot, Groups);
for (int i = 0; i < T.size(); i++) {
if (m->getControl_pressed()) { break; }
vector<double> WScoreSig; //tree weighted score signifigance when compared to random trees - percentage of random trees with that score or lower.
vector< vector<double> > uScores; uScores.resize(numComp); //data[0] = weightedscore AB, data[1] = weightedscore AC...
vector<double> userData; userData.resize(numComp,0); //weighted score info for user tree. data[0] = weightedscore AB, data[1] = weightedscore AC...
vector<double> randomData; randomData.resize(numComp,0); //weighted score info for random trees. data[0] = weightedscore AB, data[1] = weightedscore AC...
userData = weighted.getValues(T[i], processors); //userData[0] = weightedscore
if (m->getControl_pressed()) { break; }
if (phylip) { createPhylipFile((i+1), userData); }
if (random) { runRandomCalcs(T[i], ct, userData, (i+1), WScoreSig, groupComb); }
printWSummaryFile((i+1), userData, WScoreSig, groupComb);
if (m->getControl_pressed()) { break; }
//subsample loop
vector< vector<double> > calcDistsTotals; //each iter, each groupCombos dists. this will be used to make .dist files
SubSample sample;
int sampleTime = time(nullptr);
for (int thisIter = 0; thisIter < subsampleIters; thisIter++) { //subsampleIters=0, if subsample=f.
if (m->getControl_pressed()) { break; }
//uses method of setting groups to doNotIncludeMe
//copy to preserve old one - would do this in subsample but memory cleanup becomes messy.
CountTable* newCt = new CountTable();
Tree* subSampleTree;
if (withReplacement) { subSampleTree = sample.getSampleWithReplacement(T[i], ct, newCt, subsampleSize, Groups); }
else { subSampleTree = sample.getSample(T[i], ct, newCt, subsampleSize, Groups); }
if (m->getDebug()) { m->mothurOut("[DEBUG]: iter " + toString(thisIter) + " took " + toString(time(nullptr) - sampleTime) + " seconds to sample tree.\n"); }
//call new weighted function
vector<double> iterData; iterData.resize(numComp,0);
Weighted thisWeighted(includeRoot, Groups);
iterData = thisWeighted.getValues(subSampleTree, processors); //userData[0] = weightedscore
//save data to make ave dist, std dist
calcDistsTotals.push_back(iterData);
delete newCt; delete subSampleTree;
//output at 100 iters or after 10 mins
if (((thisIter+1) % 100 == 0) || ((time(nullptr) - sampleTime) > 600)){ m->mothurOutJustToScreen(toString(thisIter+1)+"\n"); sampleTime = time(nullptr); }
}
if (m->getControl_pressed()) { break; }
if (subsample) { getAverageSTDMatrices(calcDistsTotals, i); }
if (consensus) { getConsensusTrees(calcDistsTotals, i); }
}
delete ct; for (int i = 0; i < T.size(); i++) { delete T[i]; }
if (m->getControl_pressed()) { for (int i = 0; i < outputNames.size(); i++) { util.mothurRemove(outputNames[i]); } return 0; }
m->mothurOut("It took " + toString(time(nullptr) - start) + " secs to run unifrac.weighted.\n");
//set phylip file as new current phylipfile
string currentName = "";
itTypes = outputTypes.find("phylip");
if (itTypes != outputTypes.end()) {
if ((itTypes->second).size() != 0) { currentName = (itTypes->second)[0]; current->setPhylipFile(currentName); }
}
//set column file as new current columnfile
itTypes = outputTypes.find("column");
if (itTypes != outputTypes.end()) {
if ((itTypes->second).size() != 0) { currentName = (itTypes->second)[0]; current->setColumnFile(currentName); }
}
m->mothurOut("\nOutput File Names: \n");
for (int i = 0; i < outputNames.size(); i++) { m->mothurOut(outputNames[i] +"\n"); } m->mothurOutEndLine();
return 0;
}
catch(exception& e) {
m->errorOut(e, "UnifracWeightedCommand", "execute");
exit(1);
}
}
/**************************************************************************************************/
int UnifracWeightedCommand::getAverageSTDMatrices(vector< vector<double> >& dists, int treeNum) {
try {
vector<double> averages = util.getAverages(dists);
vector<double> stdDev = util.getStandardDeviation(dists, averages);
int numGroups = Groups.size();
vector< vector<double> > avedists;
for (int i = 0; i < numGroups; i++) {
vector<double> temp; temp.resize(numGroups, 0.0);
avedists.push_back(temp);
}
//make matrix with scores in it
vector< vector<double> > stddists; //stddists.resize(m->getNumGroups());
for (int i = 0; i < numGroups; i++) {
vector<double> temp; for (int j = 0; j < numGroups; j++) { temp.push_back(0.0); }
stddists.push_back(temp);
}
//flip it so you can print it
int count = 0;
for (int r=0; r< numGroups; r++) {
for (int l = 0; l < r; l++) {
avedists[r][l] = averages[count];
avedists[l][r] = averages[count];
stddists[r][l] = stdDev[count];
stddists[l][r] = stdDev[count];
count++;
}
}
map<string, string> variables;
variables["[filename]"] = outputdir + util.getSimpleName(treefile);
variables["[tag]"] = toString(treeNum+1);
variables["[tag2]"] = "weighted.ave";
string aveFileName = getOutputFileName("phylip",variables);
if (outputForm != "column") { outputNames.push_back(aveFileName); outputTypes["phylip"].push_back(aveFileName); }
else { outputNames.push_back(aveFileName); outputTypes["column"].push_back(aveFileName); }
ofstream out; util.openOutputFile(aveFileName, out);
variables["[tag2]"] = "weighted.std";
string stdFileName = getOutputFileName("phylip",variables);
if (outputForm != "column") { outputNames.push_back(stdFileName); outputTypes["phylip"].push_back(stdFileName); }
else { outputNames.push_back(stdFileName); outputTypes["column"].push_back(stdFileName); }
ofstream outStd; util.openOutputFile(stdFileName, outStd);
if ((outputForm == "lt") || (outputForm == "square")) {
//output numSeqs
out << numGroups << endl;
outStd << numGroups << endl;
}
//output to file
for (int r=0; r< numGroups; r++) {
string name = Groups[r];
if (name.length() < 10) { while (name.length() < 10) { name += " "; } } //pad with spaces to make compatible
if (outputForm == "lt") {
out << name; outStd << name;
for (int l = 0; l < r; l++) { out << '\t' << avedists[r][l]; outStd << '\t' << stddists[r][l];} //output distances
out << endl; outStd << endl;
}else if (outputForm == "square") {
out << name; outStd << name;
for (int l = 0; l < numGroups; l++) { out << '\t' << avedists[r][l]; outStd << '\t' << stddists[r][l]; } //output distances
out << endl; outStd << endl;
}else{
for (int l = 0; l < r; l++) {
string otherName = Groups[l];
if (otherName.length() < 10) { while (otherName.length() < 10) { otherName += " "; } } //pad with spaces to make compatible
out << name << '\t' << otherName << '\t' << avedists[r][l] << endl; //output distances
outStd << name << '\t' << otherName << '\t' << stddists[r][l] << endl;
}
}
}
out.close(); outStd.close();
return 0;
}
catch(exception& e) {
m->errorOut(e, "UnifracWeightedCommand", "getAverageSTDMatrices");
exit(1);
}
}
/**************************************************************************************************/
int UnifracWeightedCommand::getConsensusTrees(vector< vector<double> >& dists, int treeNum) {
try {
///create treemap class from groupmap for tree class to use
CountTable newCt;
set<string> nameMap;
map<string, string> groupMap;
set<string> gps;
int numGroups = Groups.size();
for (int i = 0; i < numGroups; i++) {
nameMap.insert(Groups[i]);
gps.insert(Groups[i]);
groupMap[Groups[i]] = Groups[i];
}
newCt.createTable(nameMap, groupMap, gps);
vector<Tree*> newTrees = buildTrees(dists, treeNum, newCt); //also creates .all.tre file containing the trees created
if (m->getControl_pressed()) { return 0; }
Consensus con;
Tree* conTree = con.getTree(newTrees);
//create a new filename
map<string, string> variables;
variables["[filename]"] = outputdir + util.getRootName(util.getSimpleName(treefile));
variables["[tag]"] = toString(treeNum+1);
variables["[tag2]"] = "weighted.cons";
string conFile = getOutputFileName("tree",variables);
outputNames.push_back(conFile); outputTypes["tree"].push_back(conFile);
ofstream outTree;
util.openOutputFile(conFile, outTree);
if (conTree != nullptr) { conTree->print(outTree, "boot"); delete conTree; } outTree.close();
return 0;
}
catch(exception& e) {
m->errorOut(e, "UnifracWeightedCommand", "getConsensusTrees");
exit(1);
}
}
/**************************************************************************************************/
vector<Tree*> UnifracWeightedCommand::buildTrees(vector< vector<double> >& dists, int treeNum, CountTable& myct) {
try {
vector<Tree*> trees;
//create a new filename
map<string, string> variables;
variables["[filename]"] = outputdir + util.getRootName(util.getSimpleName(treefile));
variables["[tag]"] = toString(treeNum+1);
variables["[tag2]"] = "weighted.all";
string outputFile = getOutputFileName("tree",variables);
outputNames.push_back(outputFile); outputTypes["tree"].push_back(outputFile);
ofstream outAll;
util.openOutputFile(outputFile, outAll);
int numGroups = Groups.size();
for (int i = 0; i < dists.size(); i++) { //dists[0] are the dists for the first subsampled tree.
if (m->getControl_pressed()) { break; }
//make matrix with scores in it
vector< vector<double> > sims; sims.resize(numGroups);
for (int j = 0; j < numGroups; j++) { sims[j].resize(numGroups, 0.0); }
int count = 0;
for (int r=0; r<numGroups; r++) {
for (int l = 0; l < r; l++) {
double sim = -(dists[i][count]-1.0);
sims[r][l] = sim;
sims[l][r] = sim;
count++;
}
}
//create tree
Tree* tempTree = new Tree(&myct, sims, Groups);
tempTree->assembleTree();
trees.push_back(tempTree);
tempTree->print(outAll); //print tree
}
outAll.close();
if (m->getControl_pressed()) { for (int i = 0; i < trees.size(); i++) { delete trees[i]; trees[i] = nullptr; } util.mothurRemove(outputFile); }
return trees;
}
catch(exception& e) {
m->errorOut(e, "UnifracWeightedCommand", "buildTrees");
exit(1);
}
}
/**************************************************************************************************/
int UnifracWeightedCommand::runRandomCalcs(Tree* thisTree, CountTable* ct, vector<double> usersScores, int iter, vector<double>& WScoreSig, vector<string> groupComb) {
try {
map<string, string> variables;
variables["[filename]"] = outputdir + util.getSimpleName(treefile);
variables["[tag]"] = toString(iter);
string wFileName = getOutputFileName("weighted", variables);
ColumnFile output(wFileName, itersString); ofstream out; util.openOutputFile(wFileName, out); out.close();
outputNames.push_back(wFileName); outputTypes["weighted"].push_back(wFileName);
//calculate number of comparisons i.e. with groups A,B,C = AB, AC, BC = 3;
vector< vector<string> > namesOfGroupCombos;
int numGroups = Groups.size();
for (int a=0; a<numGroups; a++) {
for (int l = 0; l < a; l++) {
vector<string> groups; groups.push_back(Groups[a]); groups.push_back(Groups[l]);
namesOfGroupCombos.push_back(groups);
}
}
vector<vector<int> > randomTreeNodes;
for (int f = 0; f < numComp; f++) { randomTreeNodes.push_back(thisTree->getNodes(namesOfGroupCombos[f])); }
vector<vector<int> > savedRandomTreeNodes = randomTreeNodes;
//get scores for random trees
vector<vector<double> > rScores; rScores.resize(numComp);
for (int i = 0; i < iters; i++) {
if (m->getControl_pressed()) { return 0; }
randomTreeNodes = savedRandomTreeNodes;
for (int f = 0; f < numComp; f++) { util.mothurRandomShuffle(randomTreeNodes[f]); }
vector<double> thisItersRScores = createProcesses(thisTree, ct, namesOfGroupCombos, randomTreeNodes);
for (int f = 0; f < numComp; f++) { rScores[f].push_back(thisItersRScores[f]); }
if((i+1) % 100 == 0){ m->mothurOut(toString(i+1)+"\n"); }
}
//find the signifigance of the score for summary file
for (int f = 0; f < numComp; f++) {
//sort random scores
sort(rScores[f].begin(), rScores[f].end());
//the index of the score higher than yours is returned
//so if you have 1000 random trees the index returned is 100
//then there are 900 trees with a score greater then you.
//giving you a signifigance of 0.900
int index = findIndex(usersScores[f], f, rScores); if (index == -1) { m->mothurOut("error in UnifracWeightedCommand\n"); exit(1); } //error code
//the signifigance is the number of trees with the users score or higher
WScoreSig.push_back((iters-index)/(float)iters);
}
set<double> validScores; //map contains scores from random
vector< map<double, double> > rScoreFreq; //map <weighted score, number of random trees with that score.> -vector entry for each combination.
vector< map<double, double> > rCumul; //map <weighted score, cumulative percentage of number of random trees with that score or higher.> -vector entry for each c
calculateFreqsCumuls(validScores, rScores, rScoreFreq, rCumul);
vector<string> tags; tags.push_back("Score"); tags.push_back("RandFreq"); tags.push_back("RandCumul");
for(int a = 0; a < numComp; a++) {
output.setLabelName(groupComb[a], tags);
//print each line
for (set<double>::iterator it = validScores.begin(); it != validScores.end(); it++) {
vector<double> data; data.push_back(*it); data.push_back(rScoreFreq[a][*it]); data.push_back(rCumul[a][*it]);
output.updateOutput(data);
}
output.resetFile();
}
return 0;
}
catch(exception& e) {
m->errorOut(e, "UnifracWeightedCommand", "runRandomCalcs");
exit(1);
}
}
/***********************************************************************/
struct weightedRandomData {
bool includeRoot;
int count, numComps, start, num;
vector<string> Groups, Treenames;
vector<double> scores;
vector< vector<string> > namesOfGroupCombos;
vector<vector<int> > randomizedTreeNodes;
MothurOut* m;
Tree* t;
CountTable* ct;
Utils util;
weightedRandomData(){}
weightedRandomData(int st, int en, vector< vector<string> > ngc, Tree* tree, CountTable* count, bool ir, vector<string> g, vector<vector<int> > randomTreeNodes) {
m = MothurOut::getInstance();
num = en;
start = st;
namesOfGroupCombos = ngc;
numComps = namesOfGroupCombos.size();
randomizedTreeNodes = randomTreeNodes;
t = tree;
ct = count;
includeRoot = ir;
Groups = g;
Treenames = t->getTreeNames();
count = 0;
}
};
/**************************************************************************************************/
void driverWeightedRandom(weightedRandomData* params) {
try {
Weighted weighted(params->includeRoot, params->Groups);
params->count = 0;
Tree* randT = new Tree(params->ct, params->Treenames);
for (int h = params->start; h < (params->start+params->num); h++) {
if (params->m->getControl_pressed()) { break; }
string groupA = params->namesOfGroupCombos[h][0];
string groupB = params->namesOfGroupCombos[h][1];
vector<int> treeNodesFromTheseGroups = params->randomizedTreeNodes[h];
//copy T[i]'s info.
randT->getCopy(params->t);
//create a random tree with same topology as T[i], but different labels
randT->assembleRandomUnifracTree(params->randomizedTreeNodes[h]);
if (params->m->getControl_pressed()) { break; }
//get wscore of random tree
EstOutput randomData = weighted.getValues(randT, groupA, groupB);
if (params->m->getControl_pressed()) { break; }
//save scores
params->scores.push_back(randomData[0]);
}
delete randT;
}
catch(exception& e) {
params->m->errorOut(e, "UnifracWeightedCommand", "driver");
exit(1);
}
}
/**************************************************************************************************/
vector<double> UnifracWeightedCommand::createProcesses(Tree* t, CountTable* ct, vector< vector<string> > namesOfGroupCombos, vector<vector<int> >& randomizedTreeNodes) {
try {
//breakdown work between processors
vector<linePair> lines;
int remainingPairs = namesOfGroupCombos.size();
if (remainingPairs < processors) { processors = remainingPairs; }
int startIndex = 0;
for (int remainingProcessors = processors; remainingProcessors > 0; remainingProcessors--) {
int numPairs = remainingPairs; //case for last processor
if (remainingProcessors != 1) { numPairs = ceil(remainingPairs / remainingProcessors); }
lines.push_back(linePair(startIndex, numPairs)); //startIndex, numPairs
startIndex = startIndex + numPairs;
remainingPairs = remainingPairs - numPairs;
}
//create array of worker threads
vector<std::thread*> workerThreads;
vector<weightedRandomData*> data;
//Lauch worker threads
for (int i = 0; i < processors-1; i++) {
CountTable* copyCount = new CountTable();
copyCount->copy(ct);
vector<string> Treenames = t->getTreeNames();
Tree* copyTree = new Tree(copyCount, Treenames);
copyTree->getCopy(t);
weightedRandomData* dataBundle = new weightedRandomData(lines[i+1].start, lines[i+1].end, namesOfGroupCombos, copyTree, copyCount, includeRoot, Groups, randomizedTreeNodes);
data.push_back(dataBundle);
workerThreads.push_back(new std::thread(driverWeightedRandom, dataBundle));
}
weightedRandomData* dataBundle = new weightedRandomData(lines[0].start, lines[0].end, namesOfGroupCombos, t, ct, includeRoot, Groups, randomizedTreeNodes);
driverWeightedRandom(dataBundle);
vector<double> scores = dataBundle->scores;
for (int i = 0; i < processors-1; i++) {
workerThreads[i]->join();
scores.insert(scores.end(), data[i]->scores.begin(), data[i]->scores.end());
delete data[i]->t; delete data[i]->ct; delete data[i]; delete workerThreads[i];
}
delete dataBundle;
return scores;
}
catch(exception& e) {
m->errorOut(e, "UnifracWeightedCommand", "createProcesses");
exit(1);
}
}
/***********************************************************/
void UnifracWeightedCommand::printWSummaryFile(int treeIndex, vector<double> utreeScores, vector<double> WScoreSig, vector<string> groupComb) {
try {
map<string, string> variables;
variables["[filename]"] = outputdir + util.getSimpleName(treefile);
variables["[tag]"] = toString(treeIndex);
sumFile = getOutputFileName("wsummary",variables);
outputNames.push_back(sumFile); outputTypes["wsummary"].push_back(sumFile);
ofstream outSum; util.openOutputFile(sumFile, outSum);
//column headers
outSum << "Tree#" << '\t' << "Groups" << '\t' << "WScore" << '\t';
m->mothurOut("Tree#\tGroups\tWScore\t");
if (random) { outSum << "WSig"; m->mothurOut("WSig"); }
outSum << endl; m->mothurOutEndLine();
//format output
outSum.setf(ios::fixed, ios::floatfield); outSum.setf(ios::showpoint);
//print each line
int precisionLength = itersString.length();
for (int j = 0; j < numComp; j++) {
if (random) {
if (WScoreSig[j] > (1/(float)iters)) {
outSum << setprecision(6) << treeIndex << '\t' << groupComb[j] << '\t' << utreeScores[j] << '\t' << setprecision(precisionLength) << WScoreSig[j] << endl;
cout << setprecision(6) << treeIndex << '\t' << groupComb[j] << '\t' << utreeScores[j] << '\t' << setprecision(precisionLength) << WScoreSig[j] << endl;
m->mothurOutJustToLog(toString(treeIndex) +"\t" + groupComb[j] +"\t" + toString(utreeScores[j]) +"\t" + toString(WScoreSig[j]) + "\n");
}else{
outSum << setprecision(6) << treeIndex << '\t' << groupComb[j] << '\t' << utreeScores[j] << '\t' << setprecision(precisionLength) << "<" << (1/float(iters)) << endl;
cout << setprecision(6) << treeIndex << '\t' << groupComb[j] << '\t' << utreeScores[j] << '\t' << setprecision(precisionLength) << "<" << (1/float(iters)) << endl;
m->mothurOutJustToLog(toString(treeIndex) +"\t" + groupComb[j] +"\t" + toString(utreeScores[j]) +"\t<" + toString((1/float(iters))) + "\n");
}
}else{
outSum << setprecision(6) << treeIndex << '\t' << groupComb[j] << '\t' << utreeScores[j] << endl;
cout << setprecision(6) << treeIndex << '\t' << groupComb[j] << '\t' << utreeScores[j] << endl;
m->mothurOutJustToLog(toString(treeIndex) +"\t" + groupComb[j] +"\t" + toString(utreeScores[j]) +"\n");
}
}
outSum.close();
}
catch(exception& e) {
m->errorOut(e, "UnifracWeightedCommand", "printWSummaryFile");
exit(1);
}
}
/***********************************************************/
void UnifracWeightedCommand::createPhylipFile(int treeIndex, vector<double> utreeScores) {
try {
int count = 0;
int numGroups = Groups.size();
string phylipFileName;
map<string, string> variables;
variables["[filename]"] = outputdir + util.getSimpleName(treefile);
variables["[tag]"] = toString(treeIndex);
if ((outputForm == "lt") || (outputForm == "square")) {
variables["[tag2]"] = "weighted.phylip";
phylipFileName = getOutputFileName("phylip",variables);
outputNames.push_back(phylipFileName); outputTypes["phylip"].push_back(phylipFileName);
}else { //column
variables["[tag2]"] = "weighted.column";
phylipFileName = getOutputFileName("column",variables);
outputNames.push_back(phylipFileName); outputTypes["column"].push_back(phylipFileName);
}
ofstream out; util.openOutputFile(phylipFileName, out);
if ((outputForm == "lt") || (outputForm == "square")) { out << numGroups << endl; }
//make matrix with scores in it
vector< vector<float> > dists; dists.resize(numGroups);
for (int i = 0; i < numGroups; i++) { dists[i].resize(numGroups, 0.0); }
//flip it so you can print it
for (int r=0; r< numGroups; r++) { for (int l = 0; l < r; l++) { dists[r][l] = utreeScores[count]; dists[l][r] = utreeScores[count]; count++; } }
//output to file
for (int r=0; r<numGroups; r++) {
string name = Groups[r];
if (name.length() < 10) { while (name.length() < 10) { name += " "; } } //pad with spaces to make compatible
if (outputForm == "lt") { out << name; for (int l = 0; l < r; l++) { out << '\t' << dists[r][l]; } out << endl; }
else if (outputForm == "square") { out << name; for (int l = 0; l < numGroups; l++) { out << '\t' << dists[r][l]; } out << endl; }
else{
for (int l = 0; l < r; l++) {
string otherName = Groups[l];
if (otherName.length() < 10) { while (otherName.length() < 10) { otherName += " "; } } //pad with spaces to make compatible
out << name << '\t' << otherName << '\t' << dists[r][l] << endl;
}
}
}
out.close();
}
catch(exception& e) {
m->errorOut(e, "UnifracWeightedCommand", "createPhylipFile");
exit(1);
}
}
/***********************************************************/
int UnifracWeightedCommand::findIndex(float score, int index, vector< vector<double> >& rScores) {
try{
int results = rScores[index].size();
for (int i = 0; i < rScores[index].size(); i++) { if (rScores[index][i] >= score) { results = i; break; } }
return results;
}
catch(exception& e) {
m->errorOut(e, "UnifracWeightedCommand", "findIndex");
exit(1);
}
}
/***********************************************************/
void UnifracWeightedCommand::calculateFreqsCumuls(set<double>& validScores, vector< vector<double> > rScores, vector< map<double, double> >& rScoreFreq, vector< map<double, double> >& rCumul) {
try {
//clear out old tree values
rScoreFreq.clear(); rScoreFreq.resize(numComp); rCumul.clear(); rCumul.resize(numComp); validScores.clear();
//calculate frequency
for (int f = 0; f < numComp; f++) {
for (int i = 0; i < rScores[f].size(); i++) { //looks like 0,0,1,1,1,2,4,7... you want to make a map that say rScoreFreq[0] = 2, rScoreFreq[1] = 3...
validScores.insert(rScores[f][i]);
map<double,double>::iterator it = rScoreFreq[f].find(rScores[f][i]);
if (it != rScoreFreq[f].end()) { rScoreFreq[f][rScores[f][i]]++; }
else { rScoreFreq[f][rScores[f][i]] = 1; }
}
}
//calculate rcumul
for(int a = 0; a < numComp; a++) {
float rcumul = 1.0000;
//this loop fills the cumulative maps and put 0.0000 in the score freq map to make it easier to print.
for (set<double>::iterator it = validScores.begin(); it != validScores.end(); it++) {
//make rscoreFreq map and rCumul
map<double,double>::iterator it2 = rScoreFreq[a].find(*it);
rCumul[a][*it] = rcumul;
//get percentage of random trees with that info
if (it2 != rScoreFreq[a].end()) { rScoreFreq[a][*it] /= iters; rcumul-= it2->second; }
else { rScoreFreq[a][*it] = 0.0000; } //no random trees with that score
}
}
}
catch(exception& e) {
m->errorOut(e, "UnifracWeightedCommand", "calculateFreqsCumuls");
exit(1);
}
}
/***********************************************************/
|