1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
|
//
// opticluster.cpp
// Mothur
//
// Created by Sarah Westcott on 4/20/16.
// Copyright (c) 2016 Schloss Lab. All rights reserved.
//
#include "opticluster.h"
OptiCluster::OptiCluster(OptiData* mt, ClusterMetric* met, long long ns) : Cluster() {
matrix = mt; metric = met; truePositives = 0; trueNegatives = 0; falseNegatives = 0; falsePositives = 0; numSingletons = ns;
}
/***********************************************************************/
//randomly assign sequences to OTUs
int OptiCluster::initialize(double& value, bool randomize, string initialize) {
try {
numSeqs = matrix->getNumSeqs();
truePositives = 0;
falsePositives = 0;
falseNegatives = 0;
trueNegatives = 0;
bins.resize(numSeqs); //place seqs in own bin
vector<long long> temp;
bins.push_back(temp);
seqBin[numSeqs] = -1;
insertLocation = numSeqs;
Utils util;
if (initialize == "singleton") {
//put everyone in own bin
for (int i = 0; i < numSeqs; i++) { bins[i].push_back(i); }
//maps randomized sequences to bins
for (int i = 0; i < numSeqs; i++) {
seqBin[i] = bins[i][0];
randomizeSeqs.push_back(i);
}
if (randomize) { util.mothurRandomShuffle(randomizeSeqs); }
//for each sequence (singletons removed on read)
for (map<long long, long long>::iterator it = seqBin.begin(); it != seqBin.end(); it++) {
if (it->second == -1) { }
else {
long long numCloseSeqs = (matrix->getNumClose(it->first)); //does not include self
falseNegatives += numCloseSeqs;
}
}
falseNegatives /= 2; //square matrix
trueNegatives = numSeqs * (numSeqs-1)/2 - (falsePositives + falseNegatives + truePositives); //since everyone is a singleton no one clusters together. True negative = num far apart
}else {
//put everyone in first bin
for (int i = 0; i < numSeqs; i++) {
bins[0].push_back(i);
seqBin[i] = 0;
randomizeSeqs.push_back(i);
}
if (randomize) { util.mothurRandomShuffle(randomizeSeqs); }
//for each sequence (singletons removed on read)
for (map<long long, long long>::iterator it = seqBin.begin(); it != seqBin.end(); it++) {
if (it->second == -1) { }
else {
long long numCloseSeqs = (matrix->getNumClose(it->first)); //does not include self
truePositives += numCloseSeqs;
}
}
truePositives /= 2; //square matrix
falsePositives = numSeqs * (numSeqs-1)/2 - (trueNegatives + falseNegatives + truePositives);
}
value = metric->getValue(truePositives, trueNegatives, falsePositives, falseNegatives);
return value;
}
catch(exception& e) {
m->errorOut(e, "OptiCluster", "initialize");
exit(1);
}
}
/***********************************************************************/
/* for each sequence with mutual information (close)
* remove from current OTU and calculate MCC when sequence forms its own OTU or joins one of the other OTUs where there is a sequence within the `threshold` (no need to calculate MCC if the paired sequence is already in same OTU and no need to try every OTU - just those where there's a close sequence)
* keep or move the sequence to the OTU where the `metric` is the largest - flip a coin on ties */
bool OptiCluster::update(double& listMetric) {
try {
//for each sequence (singletons removed on read)
for (int i = 0; i < randomizeSeqs.size(); i++) {
if (m->getControl_pressed()) { break; }
map<long long, long long>::iterator it = seqBin.find(randomizeSeqs[i]);
long long seqNumber = it->first;
long long binNumber = it->second;
if (binNumber == -1) { }
else {
double tn, tp, fp, fn;
double bestMetric = -1;
double bestBin, bestTp, bestTn, bestFn, bestFp;
tn = trueNegatives; tp = truePositives; fp = falsePositives; fn = falseNegatives;
//close / far count in current bin
vector<double> results = getCloseFarCounts(seqNumber, binNumber);
double cCount = results[0]; double fCount = results[1];
//metric in current bin
bestMetric = metric->getValue(tp, tn, fp, fn); bestBin = binNumber; bestTp = tp; bestTn = tn; bestFp = fp; bestFn = fn;
//if not already singleton, then calc value if singleton was created
if (!((bins[binNumber].size()) == 1)) {
//make a singleton
//move out of old bin
fn+=cCount; tn+=fCount; fp-=fCount; tp-=cCount;
double singleMetric = metric->getValue(tp, tn, fp, fn);
if (singleMetric > bestMetric) {
bestBin = -1; bestTp = tp; bestTn = tn; bestFp = fp; bestFn = fn;
bestMetric = singleMetric;
}
}
set<long long> binsToTry;
set<long long> closeSeqs = matrix->getCloseSeqs(seqNumber);
for (set<long long>::iterator itClose = closeSeqs.begin(); itClose != closeSeqs.end(); itClose++) { binsToTry.insert(seqBin[*itClose]); }
//merge into each "close" otu
for (set<long long>::iterator it = binsToTry.begin(); it != binsToTry.end(); it++) {
tn = trueNegatives; tp = truePositives; fp = falsePositives; fn = falseNegatives;
fn+=cCount; tn+=fCount; fp-=fCount; tp-=cCount; //move out of old bin
results = getCloseFarCounts(seqNumber, *it);
fn-=results[0]; tn-=results[1]; tp+=results[0]; fp+=results[1]; //move into new bin
double newMetric = metric->getValue(tp, tn, fp, fn); //score when sequence is moved
//new best
if (newMetric > bestMetric) { bestMetric = newMetric; bestBin = (*it); bestTp = tp; bestTn = tn; bestFp = fp; bestFn = fn; }
}
bool usedInsert = false;
if (bestBin == -1) { bestBin = insertLocation; usedInsert = true; }
if (bestBin != binNumber) {
truePositives = bestTp; trueNegatives = bestTn; falsePositives = bestFp; falseNegatives = bestFn;
//move seq from i to j
bins[bestBin].push_back(seqNumber); //add seq to bestbin
bins[binNumber].erase(remove(bins[binNumber].begin(), bins[binNumber].end(), seqNumber), bins[binNumber].end()); //remove from old bin i
}
if (usedInsert) { insertLocation = findInsert(); }
//update seqBins
seqBin[seqNumber] = bestBin; //set new OTU location
}
}
listMetric = metric->getValue(truePositives, trueNegatives, falsePositives, falseNegatives);
if (m->getDebug()) { ListVector* list = getList(); list->print(cout); delete list; }
return 0;
}
catch(exception& e) {
m->errorOut(e, "OptiCluster", "update");
exit(1);
}
}
/***********************************************************************/
vector<double> OptiCluster::getCloseFarCounts(long long seq, long long newBin) {
try {
vector<double> results; results.push_back(0); results.push_back(0);
if (newBin == -1) { } //making a singleton bin. Close but we are forcing apart.
else { //merging a bin
for (int i = 0; i < bins[newBin].size(); i++) {
if (seq == bins[newBin][i]) {} //ignore self
else if (!matrix->isClose(seq, bins[newBin][i])) { results[1]++; } //this sequence is "far away" from sequence i - above the cutoff
else { results[0]++; } //this sequence is "close" to sequence i - distance between them is less than cutoff
}
}
return results;
}
catch(exception& e) {
m->errorOut(e, "OptiCluster", "getCloseFarCounts");
exit(1);
}
}
/***********************************************************************/
vector<double> OptiCluster::getStats( double& tp, double& tn, double& fp, double& fn) {
try {
double singletn = matrix->getNumSingletons() + numSingletons;
double tempnumSeqs = numSeqs + singletn;
tp = truePositives;
fp = falsePositives;
fn = falseNegatives;
tn = tempnumSeqs * (tempnumSeqs-1)/2 - (falsePositives + falseNegatives + truePositives); //adds singletons to tn
vector<double> results;
Sensitivity sens; double sensitivity = sens.getValue(tp, tn, fp, fn); results.push_back(sensitivity);
Specificity spec; double specificity = spec.getValue(tp, tn, fp, fn); results.push_back(specificity);
PPV ppv; double positivePredictiveValue = ppv.getValue(tp, tn, fp, fn); results.push_back(positivePredictiveValue);
NPV npv; double negativePredictiveValue = npv.getValue(tp, tn, fp, fn); results.push_back(negativePredictiveValue);
FDR fdr; double falseDiscoveryRate = fdr.getValue(tp, tn, fp, fn); results.push_back(falseDiscoveryRate);
Accuracy acc; double accuracy = acc.getValue(tp, tn, fp, fn); results.push_back(accuracy);
MCC mcc; double matthewsCorrCoef = mcc.getValue(tp, tn, fp, fn); results.push_back(matthewsCorrCoef);
F1Score f1; double f1Score = f1.getValue(tp, tn, fp, fn); results.push_back(f1Score);
return results;
}
catch(exception& e) {
m->errorOut(e, "OptiCluster", "getStats");
exit(1);
}
}
/***********************************************************************/
ListVector* OptiCluster::getList() {
try {
ListVector* list = new ListVector();
ListVector* singleton = matrix->getListSingle();
if (singleton != nullptr) { //add in any sequences above cutoff in read. Removing these saves clustering time.
for (int i = 0; i < singleton->getNumBins(); i++) {
if (singleton->get(i) != "") {
list->push_back(singleton->get(i));
}
}
delete singleton;
}
for (int i = 0; i < bins.size(); i++) {
if (bins[i].size() != 0) {
string otu = matrix->getName(bins[i][0]);
for (int j = 1; j < bins[i].size(); j++) {
otu += "," + matrix->getName(bins[i][j]);
}
list->push_back(otu);
}
}
return list;
}
catch(exception& e) {
m->errorOut(e, "OptiCluster", "getList");
exit(1);
}
}
/***********************************************************************/
long long OptiCluster::getNumBins() {
try {
long long singletn = matrix->getNumSingletons();
for (int i = 0; i < bins.size(); i++) {
if (bins[i].size() != 0) {
singletn++;
}
}
return singletn;
}
catch(exception& e) {
m->errorOut(e, "OptiCluster", "getNumBins");
exit(1);
}
}
/***********************************************************************/
long long OptiCluster::findInsert() {
try {
//initially there are bins for each sequence (excluding singletons removed on read)
for (long long i = 0; i < bins.size(); i++) {
if (m->getControl_pressed()) { break; }
if (bins[i].size() == 0) { return i; } //this bin is empty
}
return -1;
}
catch(exception& e) {
m->errorOut(e, "OptiCluster", "findInsert");
exit(1);
}
}
/***********************************************************************/
|