1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113
|
//
// svm.cpp
// support vector machine
//
// Created by Joshua Lynch on 6/19/2013.
// Copyright (c) 2013 Schloss Lab. All rights reserved.
//
#include <algorithm>
#include <functional>
#include <iomanip>
#include <iostream>
#include <limits>
#include <numeric>
#include <stack>
#include <utility>
#include "svm.hpp"
// OutputFilter constants
const int OutputFilter::QUIET = 0;
const int OutputFilter::INFO = 1;
const int OutputFilter::mDEBUG = 2;
const int OutputFilter::TRACE = 3;
#define RANGE(X) X, X + sizeof(X)/sizeof(double)
// parameters will be tested in the order they are specified
const string LinearKernelFunction::MapKey = "linear";//"LinearKernel";
const string LinearKernelFunction::MapKey_Constant = "constant";//"LinearKernel_Constant";
const double defaultLinearConstantRangeArray[] = {0.0, -1.0, 1.0, -10.0, 10.0};
const ParameterRange LinearKernelFunction::defaultConstantRange = ParameterRange(RANGE(defaultLinearConstantRangeArray));
const string RbfKernelFunction::MapKey = "rbf";//"RbfKernel";
const string RbfKernelFunction::MapKey_Gamma = "gamma";//"RbfKernel_Gamma";
const double defaultRbfGammaRangeArray[] = {0.0001, 0.001, 0.01, 0.1, 1.0, 10.0, 100.0};
const ParameterRange RbfKernelFunction::defaultGammaRange = ParameterRange(RANGE(defaultRbfGammaRangeArray));
const string PolynomialKernelFunction::MapKey = "polynomial";//"PolynomialKernel";
const string PolynomialKernelFunction::MapKey_Constant = "constant";//"PolynomialKernel_Constant";
const string PolynomialKernelFunction::MapKey_Coefficient = "coefficient";//"PolynomialKernel_Coefficient";
const string PolynomialKernelFunction::MapKey_Degree = "degree";//"PolynomialKernel_Degree";
const double defaultPolynomialConstantRangeArray[] = {0.0, -1.0, 1.0, -2.0, 2.0, -3.0, 3.0};
const ParameterRange PolynomialKernelFunction::defaultConstantRange = ParameterRange(RANGE(defaultPolynomialConstantRangeArray));
const double defaultPolynomialCoefficientRangeArray[] = {0.01, 0.1, 1.0, 10.0, 100.0};
const ParameterRange PolynomialKernelFunction::defaultCoefficientRange = ParameterRange(RANGE(defaultPolynomialCoefficientRangeArray));
const double defaultPolynomialDegreeRangeArray[] = {2.0, 3.0, 4.0};
const ParameterRange PolynomialKernelFunction::defaultDegreeRange = ParameterRange(RANGE(defaultPolynomialDegreeRangeArray));
const string SigmoidKernelFunction::MapKey = "sigmoid";
const string SigmoidKernelFunction::MapKey_Alpha = "alpha";
const string SigmoidKernelFunction::MapKey_Constant = "constant";
const double defaultSigmoidAlphaRangeArray[] = {1.0, 2.0};
const ParameterRange SigmoidKernelFunction::defaultAlphaRange = ParameterRange(RANGE(defaultSigmoidAlphaRangeArray));
const double defaultSigmoidConstantRangeArray[] = {1.0, 2.0};
const ParameterRange SigmoidKernelFunction::defaultConstantRange = ParameterRange(RANGE(defaultSigmoidConstantRangeArray));
const string SmoTrainer::MapKey_C = "smoc";//"SmoTrainer_C";
const double defaultSmoTrainerCRangeArray[] = {0.0001, 0.001, 0.01, 0.1, 1.0, 10.0, 100.0, 1000.0};
const ParameterRange SmoTrainer::defaultCRange = ParameterRange(RANGE(defaultSmoTrainerCRangeArray));
MothurOut* m = MothurOut::getInstance();
LabelPair buildLabelPair(const Label& one, const Label& two) {
LabelVector labelPair(2);
labelPair[0] = one;
labelPair[1] = two;
return labelPair;
}
// Dividing a dataset into training and testing sets while maintaining equal
// representation of all classes is done using a LabelToLabeledObservationVector.
// This container is used to divide datasets into groups of LabeledObservations
// having the same label. For example, given a LabeledObservationVector like
// ["blue", [1.0, 2.0, 3.0]]
// ["green", [3.0, 4.0, 5.0]]
// ["blue", [2,0, 3.0. 4.0]]
// ["green", [4.0, 5.0, 6.0]]
// the corresponding LabelToLabeledObservationVector looks like
// "blue" : [["blue", [1.0, 2.0, 3.0]], ["blue", [2,0, 3.0. 4.0]]]
// "green" : [["green", [3.0, 4.0, 5.0]], ["green", [4.0, 5.0, 6.0]]]
void buildLabelToLabeledObservationVector(LabelToLabeledObservationVector& labelToLabeledObservationVector, const LabeledObservationVector& labeledObservationVector) {
for ( LabeledObservationVector::const_iterator j = labeledObservationVector.begin(); j != labeledObservationVector.end(); j++ ) {
labelToLabeledObservationVector[j->first].push_back(*j);
}
}
class MeanAndStd {
private:
double n;
double M2;
double mean;
public:
MeanAndStd() = default;
~MeanAndStd() = default;
void initialize() {
n = 0.0;
mean = 0.0;
M2 = 0.0;
}
void processNextValue(double x) {
n += 1.0;
double delta = x - mean;
mean += delta / n;
M2 += delta * (x - mean);
}
double getMean() {
return mean;
}
double getStd() {
double variance = M2 / (n - 1.0);
return sqrt(variance);
}
};
// The LabelMatchesEither functor is used only in a call to remove_copy_if in the
// OneVsOneMultiClassSvmTrainer::train method. It returns true if the labeled
// observation argument has the same label as either of the two label arguments.
class FeatureLabelMatches {
public:
FeatureLabelMatches(const string& _featureLabel) : featureLabel(_featureLabel){}
bool operator() (const Feature& f) {
return f.getFeatureLabel() == featureLabel;
}
private:
const string& featureLabel;
};
Feature removeFeature(Feature featureToRemove, LabeledObservationVector& observations, FeatureVector& featureVector) {
FeatureLabelMatches matchFeatureLabel(featureToRemove.getFeatureLabel());
featureVector.erase(
remove_if(featureVector.begin(), featureVector.end(), matchFeatureLabel),
featureVector.end()
);
for ( ObservationVector::size_type observation = 0; observation < observations.size(); observation++ ) {
observations[observation].removeFeatureAtIndex(featureToRemove.getFeatureIndex());
}
// update the feature indices
for ( int i = 0; i < featureVector.size(); i++ ) {
featureVector.at(i).setFeatureIndex(i);
}
featureToRemove.setFeatureIndex(-1);
return featureToRemove;
}
FeatureVector applyStdThreshold(double stdThreshold, LabeledObservationVector& observations, FeatureVector& featureVector) {
// calculate standard deviation of each feature
// remove features with standard deviation less than or equal to stdThreshold
MeanAndStd ms;
// loop over features in reverse order so we can get the index of each
// for example,
// if there are 5 features a,b,c,d,e
// and features a, c, e fall below the stdThreshold
// loop iteration 0: remove feature e (index 4) -- features are now a,b,c,d
// loop iteration 1: leave feature d (index 3)
// loop iteration 2: remove feature c (index 2) -- features are now a,b,d
// loop iteration 3: leave feature b (index 1)
// loop iteration 4: remove feature a (index 0) -- features are now b,d
FeatureVector removedFeatureVector;
for ( int feature = observations[0].second->size()-1; feature >= 0 ; feature-- ) {
ms.initialize();
m->mothurOut("feature index " + toString(feature)); m->mothurOutEndLine();
for ( ObservationVector::size_type observation = 0; observation < observations.size(); observation++ ) {
ms.processNextValue(observations[observation].second->at(feature));
}
m->mothurOut( "feature " + toString(feature) + " has std " + toString(ms.getStd()) ); m->mothurOutEndLine();
if ( ms.getStd() <= stdThreshold ) {
m->mothurOut( "removing feature with index " + toString(feature) ); m->mothurOutEndLine();
// remove this feature
Feature featureToRemove = featureVector.at(feature);
removedFeatureVector.push_back(
removeFeature(featureToRemove, observations, featureVector)
);
}
}
reverse(removedFeatureVector.begin(), removedFeatureVector.end());
return removedFeatureVector;
}
// this function standardizes data to mean 0 and variance 1
// but this may not be a good standardization for OTU data
void transformZeroMeanUnitVariance(LabeledObservationVector& observations) {
bool vebose = false;
// online method for mean and variance
MeanAndStd ms;
for ( Observation::size_type feature = 0; feature < observations[0].second->size(); feature++ ) {
ms.initialize();
//double n = 0.0;
//double mean = 0.0;
//double M2 = 0.0;
for ( ObservationVector::size_type observation = 0; observation < observations.size(); observation++ ) {
ms.processNextValue(observations[observation].second->at(feature));
//n += 1.0;
//double x = observations[observation].second->at(feature);
//double delta = x - mean;
//mean += delta / n;
//M2 += delta * (x - mean);
}
//double variance = M2 / (n - 1.0);
//double standardDeviation = sqrt(variance);
if (vebose) {
m->mothurOut( "mean of feature " + toString(feature) + " is " + toString(ms.getMean()) ); m->mothurOutEndLine();
m->mothurOut( "std of feature " + toString(feature) + " is " + toString(ms.getStd()) ); m->mothurOutEndLine();
}
// normalize the feature
double mean = ms.getMean();
double std = ms.getStd();
for ( ObservationVector::size_type observation = 0; observation < observations.size(); observation++ ) {
observations[observation].second->at(feature) = (observations[observation].second->at(feature) - mean ) / std;
}
}
}
double getMinimumFeatureValueForObservation(Observation::size_type featureIndex, LabeledObservationVector& observations) {
double featureMinimum = numeric_limits<double>::max();
for ( ObservationVector::size_type observation = 0; observation < observations.size(); observation++ ) {
if ( observations[observation].second->at(featureIndex) < featureMinimum ) {
featureMinimum = observations[observation].second->at(featureIndex);
}
}
return featureMinimum;
}
double getMaximumFeatureValueForObservation(Observation::size_type featureIndex, LabeledObservationVector& observations) {
double featureMaximum = numeric_limits<double>::min();
for ( ObservationVector::size_type observation = 0; observation < observations.size(); observation++ ) {
if ( observations[observation].second->at(featureIndex) > featureMaximum ) {
featureMaximum = observations[observation].second->at(featureIndex);
}
}
return featureMaximum;
}
// this function standardizes data to minimum value 0.0 and maximum value 1.0
void transformZeroOne(LabeledObservationVector& observations) {
for ( Observation::size_type feature = 0; feature < observations[0].second->size(); feature++ ) {
double featureMinimum = getMinimumFeatureValueForObservation(feature, observations);
double featureMaximum = getMaximumFeatureValueForObservation(feature, observations);
// standardize the feature
for ( ObservationVector::size_type observation = 0; observation < observations.size(); observation++ ) {
double x = observations[observation].second->at(feature);
double xstd = (x - featureMinimum) / (featureMaximum - featureMinimum);
observations[observation].second->at(feature) = xstd / (1.0 - 0.0) + 0.0;
}
}
}
//
// SVM member functions
//
// the discriminant member function returns +1 or -1
int SVM::discriminant(const Observation& observation) const {
// d is the discriminant function
double d = b;
for ( int i = 0; i < y.size(); i++ ) {
d += y[i]*a[i]*inner_product(observation.begin(), observation.end(), x[i].second->begin(), 0.0);
}
return d > 0.0 ? 1 : -1;
}
LabelVector SVM::classify(const LabeledObservationVector& twoClassLabeledObservationVector) const {
LabelVector predictionVector;
for ( LabeledObservationVector::const_iterator i = twoClassLabeledObservationVector.begin(); i != twoClassLabeledObservationVector.end(); i++ ) {
Label prediction = classify(*(i->getObservation()));
Label actual = i->getLabel();
predictionVector.push_back(prediction);
}
return predictionVector;
}
// the score member function classifies each labeled observation from the
// argument and returns the fraction of correct classifications
// don't need this any more????
double SVM::score(const LabeledObservationVector& twoClassLabeledObservationVector) const {
double s = 0.0;
for ( LabeledObservationVector::const_iterator i = twoClassLabeledObservationVector.begin(); i != twoClassLabeledObservationVector.end(); i++ ) {
Label predicted_label = classify(*(i->second));
if ( predicted_label == i->first ) {
s = s + 1.0;
}
else {
}
}
return s / double(twoClassLabeledObservationVector.size());
}
void SvmPerformanceSummary::init(const SVM& svm, const LabeledObservationVector& actualLabels, const LabelVector& predictedLabels) {
// accumulate four counts:
// tp (true positive) -- correct classifications (classified +1 as +1)
// fp (false positive) -- incorrect classifications (classified -1 as +1)
// fn (false negative) -- incorrect classifications (classified +1 as -1)
// tn (true negative) -- correct classification (classified -1 as -1)
// the label corresponding to discriminant +1 will be the 'positive' class
NumericClassToLabel discriminantToLabel = svm.getDiscriminantToLabel();
positiveClassLabel = discriminantToLabel[1];
negativeClassLabel = discriminantToLabel[-1];
double tp = 0;
double fp = 0;
double fn = 0;
double tn = 0;
for (int i = 0; i < actualLabels.size(); i++) {
Label predictedLabel = predictedLabels.at(i);
Label actualLabel = actualLabels.at(i).getLabel();
if ( actualLabel.compare(positiveClassLabel) == 0) {
if ( predictedLabel.compare(positiveClassLabel) == 0 ) {
tp++;
}
else if ( predictedLabel.compare(negativeClassLabel) == 0 ) {
fn++;
}
else {
m->mothurOut( "actual label is positive but something is wrong" ); m->mothurOutEndLine();
}
}
else if ( actualLabel.compare(negativeClassLabel) == 0 ) {
if ( predictedLabel.compare(positiveClassLabel) == 0 ) {
fp++;
}
else if ( predictedLabel.compare(negativeClassLabel) == 0 ) {
tn++;
}
else {
m->mothurOut( "actual label is negative but something is wrong" ); m->mothurOutEndLine();
}
}
else {
// in the event we have been given an observation that is labeled
// neither positive nor negative then we will get a false classification
if ( predictedLabel.compare(positiveClassLabel) ) {
fp++;
}
else {
fn++;
}
}
}
Utils util;
if (util.isEqual(tp, 0) && util.isEqual(fp, 0) ) {
precision = 0;
}
else {
precision = tp / (tp + fp);
}
recall = tp / (tp + fn);
if ( util.isEqual(precision, 0) && util.isEqual(recall, 0) ) {
f = 0;
}
else {
f = 2.0 * (precision * recall) / (precision + recall);
}
accuracy = (tp + tn) / (tp + tn + fp + fn);
}
MultiClassSVM::MultiClassSVM(const vector<SVM*> s, const LabelSet& l, const SvmToSvmPerformanceSummary& p, OutputFilter of) : twoClassSvmList(s.begin(), s.end()), labelSet(l), svmToSvmPerformanceSummary(p), outputFilter(of), accuracy(0) {}
MultiClassSVM::~MultiClassSVM() {
for ( int i = 0; i < twoClassSvmList.size(); i++ ) {
delete twoClassSvmList[i];
}
}
// The fewerVotes function is used to find the maximum vote
// tally in MultiClassSVM::classify. This function returns true
// if the first element (number of votes for the first label) is
// less than the second element (number of votes for the second label).
bool fewerVotes(const pair<Label, int>& p, const pair<Label, int>& q) {
return p.second < q.second;
}
Label MultiClassSVM::classify(const Observation& observation) {
map<Label, int> labelToVoteCount;
for ( int i = 0; i < twoClassSvmList.size(); i++ ) {
Label predictedLabel = twoClassSvmList[i]->classify(observation);
labelToVoteCount[predictedLabel]++;
}
pair<Label, int> winner = *max_element(labelToVoteCount.begin(), labelToVoteCount.end(), fewerVotes);
LabelVector winningLabels;
winningLabels.push_back(winner.first);
for ( map<Label, int>::const_iterator i = labelToVoteCount.begin(); i != labelToVoteCount.end(); i++ ) {
if ( i->second == winner.second && i->first != winner.first ) {
winningLabels.push_back(i->first);
}
}
if ( winningLabels.size() == 1) {
// we have a winner
}
else {
// we have a tie
throw MultiClassSvmClassificationTie(winningLabels, winner.second);
}
return winner.first;
}
double MultiClassSVM::score(const LabeledObservationVector& multiClassLabeledObservationVector) {
double s = 0.0;
for (LabeledObservationVector::const_iterator i = multiClassLabeledObservationVector.begin(); i != multiClassLabeledObservationVector.end(); i++) {
try {
Label predicted_label = classify(*(i->second));
if ( predicted_label == i->first ) {
s = s + 1.0;
}
else {
// predicted label does not match actual label
}
}
catch ( MultiClassSvmClassificationTie& e ) {
if ( outputFilter.debug() ) {
m->mothurOut( "classification tie for observation " + toString(i->datasetIndex) + " with label " + toString(i->first) ); m->mothurOutEndLine();
}
}
}
return s / double(multiClassLabeledObservationVector.size());
}
class MaxIterationsExceeded : public exception {
virtual const char* what() const throw() {
return "maximum iterations exceeded during SMO";
}
} maxIterationsExceeded;
//SvmTrainingInterruptedException smoTrainingInterruptedException("SMO training interrupted by user");
// The train method implements Sequential Minimal Optimization as described in
// "Support Vector Machine Solvers" by Bottou and Lin.
//
// SmoTrainer::train releases a pointer to an SVM into the wild so we must be
// careful about handling the LabeledObservationVector.... Must create a copy
// of those labeled vectors???
SVM* SmoTrainer::train(KernelFunctionCache& K, const LabeledObservationVector& twoClassLabeledObservationVector) {
const int observationCount = twoClassLabeledObservationVector.size();
const int featureCount = twoClassLabeledObservationVector[0].second->size();
if (outputFilter.debug()) m->mothurOut( "observation count : " + toString(observationCount) ); m->mothurOutEndLine();
if (outputFilter.debug()) m->mothurOut( "feature count : " + toString(featureCount) ); m->mothurOutEndLine();
// dual coefficients
vector<double> a(observationCount, 0.0);
// gradient
vector<double> g(observationCount, 1.0);
// convert the labels to -1.0,+1.0
vector<double> y(observationCount);
if (outputFilter.trace()) m->mothurOut( "assign numeric labels" ); m->mothurOutEndLine();
NumericClassToLabel discriminantToLabel;
assignNumericLabels(y, twoClassLabeledObservationVector, discriminantToLabel);
if (outputFilter.trace()) m->mothurOut( "assign A and B" ); m->mothurOutEndLine();
vector<double> A(observationCount);
vector<double> B(observationCount);
Utils util;
for ( int n = 0; n < observationCount; n++ ) {
if ( util.isEqual(y[n], +1.0)) {
A[n] = 0.0;
B[n] = C;
}
else {
A[n] = -C;
B[n] = 0;
}
if (outputFilter.trace()) m->mothurOut( toString(n) + " " + toString(A[n]) + " " + toString(B[n]) ); m->mothurOutEndLine();
}
if (outputFilter.trace()) m->mothurOut( "assign K" ); m->mothurOutEndLine();
int m_count = 0;
vector<double> u(3);
vector<double> ya(observationCount);
vector<double> yg(observationCount);
double lambda = numeric_limits<double>::max();
while ( true ) {
if (m->getControl_pressed()) { return 0; }
m_count++;
int i = 0; // 0
int j = 0; // 0
double yg_max = numeric_limits<double>::min();
double yg_min = numeric_limits<double>::max();
if (outputFilter.trace()) m->mothurOut( "m = " + toString(m_count) ); m->mothurOutEndLine();
for ( int k = 0; k < observationCount; k++ ) {
ya[k] = y[k] * a[k];
yg[k] = y[k] * g[k];
}
if (outputFilter.trace()) {
m->mothurOut( "yg =");
for ( int k = 0; k < observationCount; k++ ) {
m->mothurOut( " " + toString(yg[k]));
}
m->mothurOutEndLine();
}
for ( int k = 0; k < observationCount; k++ ) {
if ( ya[k] < B[k] && yg[k] > yg_max ) {
yg_max = yg[k];
i = k;
}
if ( A[k] < ya[k] && yg[k] < yg_min ) {
yg_min = yg[k];
j = k;
}
}
// maximum violating pair is i,j
if (outputFilter.trace()) {
m->mothurOut( "maximal violating pair: " + toString(i) + " " + toString(j) ); m->mothurOutEndLine();
m->mothurOut( " i = " + toString(i) + " features: ");
for ( int feature = 0; feature < featureCount; feature++ ) {
m->mothurOut( toString(twoClassLabeledObservationVector[i].second->at(feature)) + " ");
};
m->mothurOutEndLine();
m->mothurOut( " j = " + toString(j) + " features: ");
for ( int feature = 0; feature < featureCount; feature++ ) {
m->mothurOut( toString(twoClassLabeledObservationVector[j].second->at(feature)) + " ");
};
m->mothurOutEndLine();
}
// parameterize this
if ( m_count > 1000 ) { //1000
// what happens if we just go with what we've got instead of throwing an exception?
// things work pretty well for the most part
// might be better to look at lambda???
if (outputFilter.debug()) m->mothurOut( "iteration limit reached with lambda = " + toString(lambda) ); m->mothurOutEndLine();
break;
}
// using lambda to break is a good performance enhancement
if ( yg[i] <= yg[j] or lambda < 0.0001) {
break;
}
u[0] = B[i] - ya[i];
u[1] = ya[j] - A[j];
double K_ii = K.similarity(twoClassLabeledObservationVector[i], twoClassLabeledObservationVector[i]);
double K_jj = K.similarity(twoClassLabeledObservationVector[j], twoClassLabeledObservationVector[j]);
double K_ij = K.similarity(twoClassLabeledObservationVector[i], twoClassLabeledObservationVector[j]);
u[2] = (yg[i] - yg[j]) / (K_ii+K_jj-2.0*K_ij);
if (outputFilter.trace()) m->mothurOut( "directions: (" + toString(u[0]) + "," + toString(u[1]) + "," + toString(u[2]) + ")" ); m->mothurOutEndLine();
lambda = *min_element(u.begin(), u.end());
if (outputFilter.trace()) m->mothurOut( "lambda: " + toString(lambda) ); m->mothurOutEndLine();
for ( int k = 0; k < observationCount; k++ ) {
double K_ik = K.similarity(twoClassLabeledObservationVector[i], twoClassLabeledObservationVector[k]);
double K_jk = K.similarity(twoClassLabeledObservationVector[j], twoClassLabeledObservationVector[k]);
g[k] += (-lambda * y[k] * K_ik + lambda * y[k] * K_jk);
}
if (outputFilter.trace()) {
m->mothurOut( "g =");
for ( int k = 0; k < observationCount; k++ ) {
m->mothurOut( " " + toString(g[k]));
}
m->mothurOutEndLine();
}
a[i] += y[i] * lambda;
a[j] -= y[j] * lambda;
}
// at this point the optimal a's have been found
// now use them to find w and b
if (outputFilter.trace()) m->mothurOut( "find w" ); m->mothurOutEndLine();
vector<double> w(twoClassLabeledObservationVector[0].second->size(), 0.0);
double b = 0.0;
for ( int i = 0; i < y.size(); i++ ) {
if (outputFilter.trace()) m->mothurOut( "alpha[" + toString(i) + "] = " + toString(a[i]) ); m->mothurOutEndLine();
for ( int j = 0; j < w.size(); j++ ) {
w[j] += a[i] * y[i] * twoClassLabeledObservationVector[i].second->at(j);
}
if ( A[i] < a[i] && a[i] < B[i] ) {
b = yg[i];
if (outputFilter.trace()) m->mothurOut( "b = " + toString(b) ); m->mothurOutEndLine();
}
}
if (outputFilter.trace()) {
for ( int i = 0; i < w.size(); i++ ) {
m->mothurOut( "w[" + toString(i) + "] = " + toString(w[i]) ); m->mothurOutEndLine();
}
}
// be careful about passing twoClassLabeledObservationVector - what if this vector
// is deleted???
//
// we can eliminate elements of y, a and observation vectors corresponding to a = 0
vector<double> support_y;
vector<double> nonzero_a;
LabeledObservationVector supportVectors;
for (int i = 0; i < a.size(); i++) {
if ( util.isEqual(a.at(i), 0.0) ) {
// this dual coefficient does not correspond to a support vector
}
else {
support_y.push_back(y.at(i));
nonzero_a.push_back(a.at(i));
supportVectors.push_back(twoClassLabeledObservationVector.at(i));
}
}
//return new SVM(y, a, twoClassLabeledObservationVector, b, discriminantToLabel);
if (outputFilter.info()) m->mothurOut( "found " + toString(supportVectors.size()) + " support vectors\n" );
return new SVM(support_y, nonzero_a, supportVectors, b, discriminantToLabel);
}
typedef map<Label, double> LabelToNumericClassLabel;
// For SVM training we need to assign numeric class labels of -1.0 and +1.0.
// This method populates the y vector argument with -1.0 and +1.0
// corresponding to the two classes in the labelVector argument.
// For example, if labeledObservationVector looks like this:
// [ (0, "blue", [...some observations...]),
// (1, "green", [...some observations...]),
// (2, "blue", [...some observations...]) ]
// Then after the function executes the y vector will look like this:
// [-1.0, blue
// +1.0, green
// -1.0] blue
// and discriminantToLabel will look like this:
// { -1.0 : "blue",
// +1.0 : "green" }
// The label "blue" is mapped to -1.0 because it is (lexicographically) less than "green".
// When given labels "blue" and "green" this function will always assign "blue" to -1.0 and
// "green" to +1.0. This is not fundamentally important but it makes testing easier and is
// not a hassle to implement.
void SmoTrainer::assignNumericLabels(vector<double>& y, const LabeledObservationVector& labeledObservationVector, NumericClassToLabel& discriminantToLabel) {
// it would be nice if we assign -1.0 and +1.0 consistently for each pair of labels
// I think the label set will always be traversed in sorted order so we should get this for free
// we are going to overwrite arguments y and discriminantToLabel
y.clear();
discriminantToLabel.clear();
LabelSet labelSet;
buildLabelSet(labelSet, labeledObservationVector);
LabelVector uniqueLabels(labelSet.begin(), labelSet.end());
if (labelSet.size() != 2) {
// throw an exception
cerr << "unexpected label set size " << labelSet.size() << endl;
for (LabelSet::const_iterator i = labelSet.begin(); i != labelSet.end(); i++) {
cerr << " label " << *i << endl;
}
throw SmoTrainerException("SmoTrainer::assignNumericLabels was passed more than 2 labels");
}
else {
LabelToNumericClassLabel labelToNumericClassLabel;
labelToNumericClassLabel[uniqueLabels[0]] = -1.0;
labelToNumericClassLabel[uniqueLabels[1]] = +1.0;
for ( LabeledObservationVector::const_iterator i = labeledObservationVector.begin(); i != labeledObservationVector.end(); i++ ) {
y.push_back( labelToNumericClassLabel[i->first] );
}
discriminantToLabel[-1.0] = uniqueLabels[0];
discriminantToLabel[+1.0] = uniqueLabels[1];
}
}
// the is a convenience function for getting parameter ranges for all kernels
void getDefaultKernelParameterRangeMap(KernelParameterRangeMap& kernelParameterRangeMap) {
ParameterRangeMap linearParameterRangeMap;
linearParameterRangeMap[SmoTrainer::MapKey_C] = SmoTrainer::defaultCRange;
linearParameterRangeMap[LinearKernelFunction::MapKey_Constant] = LinearKernelFunction::defaultConstantRange;
ParameterRangeMap rbfParameterRangeMap;
rbfParameterRangeMap[SmoTrainer::MapKey_C] = SmoTrainer::defaultCRange;
rbfParameterRangeMap[RbfKernelFunction::MapKey_Gamma] = RbfKernelFunction::defaultGammaRange;
ParameterRangeMap polynomialParameterRangeMap;
polynomialParameterRangeMap[SmoTrainer::MapKey_C] = SmoTrainer::defaultCRange;
polynomialParameterRangeMap[PolynomialKernelFunction::MapKey_Constant] = PolynomialKernelFunction::defaultConstantRange;
polynomialParameterRangeMap[PolynomialKernelFunction::MapKey_Coefficient] = PolynomialKernelFunction::defaultCoefficientRange;
polynomialParameterRangeMap[PolynomialKernelFunction::MapKey_Degree] = PolynomialKernelFunction::defaultDegreeRange;
ParameterRangeMap sigmoidParameterRangeMap;
sigmoidParameterRangeMap[SmoTrainer::MapKey_C] = SmoTrainer::defaultCRange;
sigmoidParameterRangeMap[SigmoidKernelFunction::MapKey_Alpha] = SigmoidKernelFunction::defaultAlphaRange;
sigmoidParameterRangeMap[SigmoidKernelFunction::MapKey_Constant] = SigmoidKernelFunction::defaultConstantRange;
kernelParameterRangeMap[LinearKernelFunction::MapKey] = linearParameterRangeMap;
kernelParameterRangeMap[RbfKernelFunction::MapKey] = rbfParameterRangeMap;
kernelParameterRangeMap[PolynomialKernelFunction::MapKey] = polynomialParameterRangeMap;
kernelParameterRangeMap[SigmoidKernelFunction::MapKey] = sigmoidParameterRangeMap;
}
//
// OneVsOneMultiClassSvmTrainer
//
// An instance of OneVsOneMultiClassSvmTrainer is intended to work with a single set of data
// to produce a single instance of MultiClassSVM. That's why observations and labels go in to
// the constructor.
OneVsOneMultiClassSvmTrainer::OneVsOneMultiClassSvmTrainer(SvmDataset& d, int e, int t, OutputFilter& of) :
svmDataset(d),
evaluationFoldCount(e),
trainFoldCount(t),
outputFilter(of) {
buildLabelSet(labelSet, svmDataset.getLabeledObservationVector());
buildLabelToLabeledObservationVector(labelToLabeledObservationVector, svmDataset.getLabeledObservationVector());
buildLabelPairSet(labelPairSet, svmDataset.getLabeledObservationVector());
}
void buildLabelSet(LabelSet& labelSet, const LabeledObservationVector& labeledObservationVector) {
for (LabeledObservationVector::const_iterator i = labeledObservationVector.begin(); i != labeledObservationVector.end(); i++) {
labelSet.insert(i->first);
}
}
// This function uses the LabeledObservationVector argument to populate the LabelPairSet
// argument with pairs of labels. For example, if labeledObservationVector looks like this:
// [ ("blue", x), ("green", y), ("red", z) ]
// then the labelPairSet will be populated with the following label pairs:
// ("blue", "green"), ("blue", "red"), ("green", "red")
// The order of labels in the pairs is determined by the ordering of labels in the temporary
// LabelSet. By default this order will be ascending. However, labels are taken off the
// temporary labelStack in reverse order, so the labelStack is initialized with reverse iterators.
// In the end our label pairs will be in sorted order.
void OneVsOneMultiClassSvmTrainer::buildLabelPairSet(LabelPairSet& labelPairSet, const LabeledObservationVector& labeledObservationVector) {
LabelSet labelSet;
buildLabelSet(labelSet, labeledObservationVector);
LabelVector labelStack(labelSet.rbegin(), labelSet.rend());
while (labelStack.size() > 1) {
Label label = labelStack.back();
labelStack.pop_back();
LabelPair labelPair(2);
labelPair[0] = label;
for (LabelVector::const_iterator i = labelStack.begin(); i != labelStack.end(); i++) {
labelPair[1] = *i;
labelPairSet.insert(
//make_pair(label, *i)
labelPair
);
}
}
}
// The LabelMatchesEither functor is used only in a call to remove_copy_if in the
// OneVsOneMultiClassSvmTrainer::train method. It returns true if the labeled
// observation argument has the same label as either of the two label arguments.
class LabelMatchesEither {
public:
LabelMatchesEither(const Label& _label0, const Label& _label1) : label0(_label0), label1(_label1) {}
bool operator() (const LabeledObservation& o) {
return !((o.first == label0) || (o.first == label1));
}
private:
const Label& label0;
const Label& label1;
};
MultiClassSVM* OneVsOneMultiClassSvmTrainer::train(const KernelParameterRangeMap& kernelParameterRangeMap) {
double bestMultiClassSvmScore = 0.0;
MultiClassSVM* bestMc;
KernelFunctionFactory kernelFunctionFactory(svmDataset.getLabeledObservationVector());
// first divide the data into a 'development' set for tuning hyperparameters
// and an 'evaluation' set for measuring performance
int evaluationFoldNumber = 0;
KFoldLabeledObservationsDivider kFoldDevEvalDivider(evaluationFoldCount, svmDataset.getLabeledObservationVector());
for ( kFoldDevEvalDivider.start(); !kFoldDevEvalDivider.end(); kFoldDevEvalDivider.next() ) {
const LabeledObservationVector& developmentObservations = kFoldDevEvalDivider.getTrainingData();
const LabeledObservationVector& evaluationObservations = kFoldDevEvalDivider.getTestingData();
evaluationFoldNumber++;
if ( outputFilter.debug() ) {
m->mothurOut( "evaluation fold " + toString(evaluationFoldNumber) + " of " + toString(evaluationFoldCount) ); m->mothurOutEndLine();
}
vector<SVM*> twoClassSvmList;
SvmToSvmPerformanceSummary svmToSvmPerformanceSummary;
SmoTrainer smoTrainer(outputFilter);
LabelPairSet::iterator labelPair;
for (labelPair = labelPairSet.begin(); labelPair != labelPairSet.end(); labelPair++) {
// generate training and testing data for this label pair
Label label0 = (*labelPair)[0];
Label label1 = (*labelPair)[1];
if ( outputFilter.debug() ) {
m->mothurOut("training SVM on labels " + toString(label0) + " and " + toString(label1) ); m->mothurOutEndLine();
}
double bestMeanScoreOnKFolds = 0.0;
ParameterMap bestParameterMap;
string bestKernelFunctionKey;
LabeledObservationVector twoClassDevelopmentObservations;
LabelMatchesEither labelMatchesEither(label0, label1);
remove_copy_if(
developmentObservations.begin(),
developmentObservations.end(),
back_inserter(twoClassDevelopmentObservations),
labelMatchesEither
//[&](const LabeledObservation& o){
// return !((o.first == label0) || (o.first == label1));
//}
);
KFoldLabeledObservationsDivider kFoldLabeledObservationsDivider(trainFoldCount, twoClassDevelopmentObservations);
// loop on kernel functions and kernel function parameters
for ( KernelParameterRangeMap::const_iterator kmap = kernelParameterRangeMap.begin(); kmap != kernelParameterRangeMap.end(); kmap++ ) {
string kernelFunctionKey = kmap->first;
KernelFunction& kernelFunction = kernelFunctionFactory.getKernelFunctionForKey(kmap->first);
ParameterSetBuilder p(kmap->second);
for (ParameterMapVector::const_iterator hp = p.getParameterSetList().begin(); hp != p.getParameterSetList().end(); hp++) {
kernelFunction.setParameters(*hp);
KernelFunctionCache kernelFunctionCache(kernelFunction, svmDataset.getLabeledObservationVector());
smoTrainer.setParameters(*hp);
if (outputFilter.debug()) {
m->mothurOut( "parameters for " + toString(kernelFunctionKey) + " kernel" ); m->mothurOutEndLine();
for ( ParameterMap::const_iterator i = hp->begin(); i != hp->end(); i++ ) {
m->mothurOut( " " + toString(i->first) + ":" + toString(i->second) ); m->mothurOutEndLine();
}
}
double meanScoreOnKFolds = trainOnKFolds(smoTrainer, kernelFunctionCache, kFoldLabeledObservationsDivider);
if ( meanScoreOnKFolds > bestMeanScoreOnKFolds ) {
bestMeanScoreOnKFolds = meanScoreOnKFolds;
bestParameterMap = *hp;
bestKernelFunctionKey = kernelFunctionKey;
}
}
}
Utils util;
if ( util.isEqual(bestMeanScoreOnKFolds, 0.0) ) {
m->mothurOut( "failed to train SVM on labels " + toString(label0) + " and " + toString(label1) ); m->mothurOutEndLine();
throw exception();
}
else {
if ( outputFilter.debug() ) {
m->mothurOut( "trained SVM on labels " + label0 + " and " + label1 ); m->mothurOutEndLine();
m->mothurOut( " best mean score over " + toString(trainFoldCount) + " folds is " + toString(bestMeanScoreOnKFolds) ); m->mothurOutEndLine();
m->mothurOut( " best parameters for " + bestKernelFunctionKey + " kernel" ); m->mothurOutEndLine();
for ( ParameterMap::const_iterator p = bestParameterMap.begin(); p != bestParameterMap.end(); p++ ) {
m->mothurOut( " " + toString(p->first) + " : " + toString(p->second) ); m->mothurOutEndLine();
}
}
LabelMatchesEither labelMatchesEither(label0, label1);
LabeledObservationVector twoClassDevelopmentObservations;
remove_copy_if(
developmentObservations.begin(),
developmentObservations.end(),
back_inserter(twoClassDevelopmentObservations),
labelMatchesEither
//[&](const LabeledObservation& o){
// return !((o.first == label0) || (o.first == label1));
//}
);
if (outputFilter.info()) {
m->mothurOut( "training final SVM with " + toString(twoClassDevelopmentObservations.size()) + " labeled observations" ); m->mothurOutEndLine();
for ( ParameterMap::const_iterator i = bestParameterMap.begin(); i != bestParameterMap.end(); i++ ) {
m->mothurOut( " " + toString(i->first) + ":" + toString(i->second) ); m->mothurOutEndLine();
}
}
KernelFunction& kernelFunction = kernelFunctionFactory.getKernelFunctionForKey(bestKernelFunctionKey);
kernelFunction.setParameters(bestParameterMap);
smoTrainer.setParameters(bestParameterMap);
KernelFunctionCache kernelFunctionCache(kernelFunction, svmDataset.getLabeledObservationVector());
SVM* svm = smoTrainer.train(kernelFunctionCache, twoClassDevelopmentObservations);
twoClassSvmList.push_back(svm);
// return a performance summary using the evaluation dataset
LabeledObservationVector twoClassEvaluationObservations;
remove_copy_if(
evaluationObservations.begin(),
evaluationObservations.end(),
back_inserter(twoClassEvaluationObservations),
labelMatchesEither
);
SvmPerformanceSummary p(*svm, twoClassEvaluationObservations);
svmToSvmPerformanceSummary[svm->getLabelPair()] = p;
}
}
MultiClassSVM* mc = new MultiClassSVM(twoClassSvmList, labelSet, svmToSvmPerformanceSummary, outputFilter);
//double score = mc->score(evaluationObservations);
mc->setAccuracy(evaluationObservations);
if ( outputFilter.debug() ) {
m->mothurOut( "fold " + toString(evaluationFoldNumber) + " multiclass SVM score: " + toString(mc->getAccuracy()) ); m->mothurOutEndLine();
}
if ( mc->getAccuracy() > bestMultiClassSvmScore ) {
bestMc = mc;
bestMultiClassSvmScore = mc->getAccuracy();
}
else {
delete mc;
}
}
if ( outputFilter.info() ) {
m->mothurOut( "best multiclass SVM has score " + toString(bestMc->getAccuracy()) ); m->mothurOutEndLine();
}
return bestMc;
}
//SvmTrainingInterruptedException multiClassSvmTrainingInterruptedException("one-vs-one multiclass SVM training interrupted by user");
double OneVsOneMultiClassSvmTrainer::trainOnKFolds(SmoTrainer& smoTrainer, KernelFunctionCache& kernelFunction, KFoldLabeledObservationsDivider& kFoldLabeledObservationsDivider) {
double meanScoreOverKFolds = 0.0;
double online_mean_n = 0.0;
double online_mean_score = 0.0;
meanScoreOverKFolds = -1.0; // means we failed to train a SVM
for ( kFoldLabeledObservationsDivider.start(); !kFoldLabeledObservationsDivider.end(); kFoldLabeledObservationsDivider.next() ) {
const LabeledObservationVector& kthTwoClassTrainingFold = kFoldLabeledObservationsDivider.getTrainingData();
const LabeledObservationVector& kthTwoClassTestingFold = kFoldLabeledObservationsDivider.getTestingData();
if (outputFilter.info()) {
m->mothurOut( "fold " + toString(kFoldLabeledObservationsDivider.getFoldNumber()) + " training data has " + toString(kthTwoClassTrainingFold.size()) + " labeled observations" ); m->mothurOutEndLine();
m->mothurOut( "fold " + toString(kFoldLabeledObservationsDivider.getFoldNumber()) + " testing data has " + toString(kthTwoClassTestingFold.size()) + " labeled observations" ); m->mothurOutEndLine();
}
if (m->getControl_pressed()) { return 0; }
else {
try {
if (outputFilter.debug()) m->mothurOut( "begin training" ); m->mothurOutEndLine();
SVM* evaluationSvm = smoTrainer.train(kernelFunction, kthTwoClassTrainingFold);
SvmPerformanceSummary svmPerformanceSummary(*evaluationSvm, kthTwoClassTestingFold);
double score = evaluationSvm->score(kthTwoClassTestingFold);
//double score = svmPerformanceSummary.getAccuracy();
if (outputFilter.debug()) {
m->mothurOut( "score on fold " + toString(kFoldLabeledObservationsDivider.getFoldNumber()) + " of test data is " + toString(score) ); m->mothurOutEndLine();
m->mothurOut( "positive label: " + toString(svmPerformanceSummary.getPositiveClassLabel()) ); m->mothurOutEndLine();
m->mothurOut( "negative label: " + toString(svmPerformanceSummary.getNegativeClassLabel()) ); m->mothurOutEndLine();
m->mothurOut( " precision: " + toString(svmPerformanceSummary.getPrecision())
+ " recall: " + toString(svmPerformanceSummary.getRecall())
+ " f: " + toString(svmPerformanceSummary.getF())
+ " accuracy: " + toString(svmPerformanceSummary.getAccuracy())
); m->mothurOutEndLine();
}
online_mean_n += 1.0;
double online_mean_delta = score - online_mean_score;
online_mean_score += online_mean_delta / online_mean_n;
meanScoreOverKFolds = online_mean_score;
delete evaluationSvm;
}
catch ( exception& e ) {
m->mothurOut( "exception: " + toString(e.what()) ); m->mothurOutEndLine();
m->mothurOut( " on fold " + toString(kFoldLabeledObservationsDivider.getFoldNumber()) + " failed to train SVM with C = " + toString(smoTrainer.getC()) ); m->mothurOutEndLine();
}
}
}
if (outputFilter.debug()) {
m->mothurOut( "done with cross validation on C = " + toString(smoTrainer.getC()) ); m->mothurOutEndLine();
m->mothurOut( " mean score over " + toString(kFoldLabeledObservationsDivider.getFoldNumber()) + " folds is " + toString(meanScoreOverKFolds) ); m->mothurOutEndLine();
}
Utils util;
if ( util.isEqual(meanScoreOverKFolds, 0.0) ) { m->mothurOut( "failed to train SVM with C = " + toString(smoTrainer.getC()) + "\n"); }
return meanScoreOverKFolds;
}
class UnrankedFeature {
public:
UnrankedFeature(const Feature& f) : feature(f), rankingCriterion(0.0) {}
~UnrankedFeature() = default;
Feature getFeature() const { return feature; }
double getRankingCriterion() const { return rankingCriterion; }
void setRankingCriterion(double rc) { rankingCriterion = rc; }
private:
Feature feature;
double rankingCriterion;
};
bool lessThanRankingCriterion(const UnrankedFeature& a, const UnrankedFeature& b) {
return a.getRankingCriterion() < b.getRankingCriterion();
}
bool lessThanFeatureIndex(const UnrankedFeature& a, const UnrankedFeature& b) {
return a.getFeature().getFeatureIndex() < b.getFeature().getFeatureIndex();
}
typedef list<UnrankedFeature> UnrankedFeatureList;
// Only the linear svm can be used here.
// Consider allowing only parameter ranges as arguments.
// Right now any kernel can be sent in.
// It would be useful to remove more than one feature at a time
// Might make sense to turn last two arguments into one
RankedFeatureList SvmRfe::getOrderedFeatureList(SvmDataset& svmDataset, OneVsOneMultiClassSvmTrainer& t, const ParameterRange& linearKernelConstantRange, const ParameterRange& smoTrainerParameterRange) {
KernelParameterRangeMap rfeKernelParameterRangeMap;
ParameterRangeMap linearParameterRangeMap;
linearParameterRangeMap[SmoTrainer::MapKey_C] = smoTrainerParameterRange;
linearParameterRangeMap[LinearKernelFunction::MapKey_Constant] = linearKernelConstantRange;
rfeKernelParameterRangeMap[LinearKernelFunction::MapKey] = linearParameterRangeMap;
// the rankedFeatureList is empty at first
RankedFeatureList rankedFeatureList;
// loop until all but one feature have been eliminated
// no need to eliminate the last feature, after all
int svmRfeRound = 0;
//while ( rankedFeatureList.size() < (svmDataset.getFeatureVector().size()-1) ) {
while ( svmDataset.getFeatureVector().size() > 1 ) {
svmRfeRound++;
m->mothurOut( "SVM-RFE round " + toString(svmRfeRound) + ":" ); m->mothurOutEndLine();
UnrankedFeatureList unrankedFeatureList;
for (int featureIndex = 0; featureIndex < svmDataset.getFeatureVector().size(); featureIndex++) {
Feature f = svmDataset.getFeatureVector().at(featureIndex);
unrankedFeatureList.push_back(UnrankedFeature(f));
}
m->mothurOut( toString(unrankedFeatureList.size()) + " unranked features" ); m->mothurOutEndLine();
MultiClassSVM* s = t.train(rfeKernelParameterRangeMap);
m->mothurOut( "multiclass SVM accuracy: " + toString(s->getAccuracy()) ); m->mothurOutEndLine();
m->mothurOut( "two-class SVM performance" ); m->mothurOutEndLine();
m->mothurOut("class 1\tclass 2\tprecision\trecall\f\accuracy\n");
for ( SvmVector::const_iterator svm = s->getSvmList().begin(); svm != s->getSvmList().end(); svm++ ) {
SvmPerformanceSummary sps = s->getSvmPerformanceSummary(**svm);
m->mothurOut(toString(sps.getPositiveClassLabel())
+ toString(sps.getNegativeClassLabel())
+ toString(sps.getPrecision())
+ toString(sps.getRecall())
+ toString(sps.getF())
+ toString(sps.getAccuracy()) ); m->mothurOutEndLine();
}
// calculate the 'ranking criterion' for each (remaining) feature using each binary svm
for (UnrankedFeatureList::iterator f = unrankedFeatureList.begin(); f != unrankedFeatureList.end(); f++) {
const int i = f->getFeature().getFeatureIndex();
// rankingCriterion combines feature weights for feature i in all svms
double rankingCriterion = 0.0;
for ( SvmVector::const_iterator svm = s->getSvmList().begin(); svm != s->getSvmList().end(); svm++ ) {
// output SVM performance summary
// calculate the weight w of feature i for this svm
double wi = 0.0;
for (int j = 0; j < (*svm)->x.size(); j++) {
// all support vectors contribute to wi
wi += (*svm)->a.at(j) * (*svm)->y.at(j) * (*svm)->x.at(j).second->at(i);
}
// accumulate weights for feature i from all svms
rankingCriterion += pow(wi, 2);
}
// update the (unranked) feature ranking criterion
f->setRankingCriterion(rankingCriterion);
}
delete s;
// sort the unranked features by ranking criterion
unrankedFeatureList.sort(lessThanRankingCriterion);
// eliminate the bottom 1/(n+1) features - this is very slow but gives good results
////int eliminateFeatureCount = ceil(unrankedFeatureList.size() / (iterationCount+1.0));
// eliminate the bottom 1/3 features - fast but results slightly different from above
// how about 1/4?
int eliminateFeatureCount = ceil(unrankedFeatureList.size() / 4.0);
m->mothurOut( "eliminating " + toString(eliminateFeatureCount) + " feature(s) of " + toString(unrankedFeatureList.size()) + " total features\n");
m->mothurOutEndLine();
UnrankedFeatureList featuresToEliminate;
for ( int i = 0; i < eliminateFeatureCount; i++ ) {
// remove the lowest ranked feature(s) from the list of unranked features
UnrankedFeature unrankedFeature = unrankedFeatureList.front();
unrankedFeatureList.pop_front();
featuresToEliminate.push_back(unrankedFeature);
// put the lowest ranked feature at the front of the list of ranked features
// the first feature to be eliminated will be at the back of this list
// the last feature to be eliminated will be at the front of this list
rankedFeatureList.push_front(RankedFeature(unrankedFeature.getFeature(), svmRfeRound));
}
featuresToEliminate.sort(lessThanFeatureIndex);
reverse(featuresToEliminate.begin(), featuresToEliminate.end());
for (UnrankedFeatureList::iterator g = featuresToEliminate.begin(); g != featuresToEliminate.end(); g++) {
Feature unrankedFeature = g->getFeature();
removeFeature(unrankedFeature, svmDataset.getLabeledObservationVector(), svmDataset.getFeatureVector());
}
}
// there may be one feature left
svmRfeRound++;
for ( FeatureVector::iterator f = svmDataset.getFeatureVector().begin(); f != svmDataset.getFeatureVector().end(); f++ ) {
rankedFeatureList.push_front(RankedFeature(*f, svmRfeRound));
}
return rankedFeatureList;
}
|