1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
//
// wilcox.cpp
// Mothur
//
// Created by SarahsWork on 8/6/13.
// Copyright (c) 2013 Schloss Lab. All rights reserved.
//
// Modified to avoid using Rmath.h
#include "mothur.h"
/*
Mathlib : A C Library of Special Functions
Copyright (C) 1999-2012 The R Core Team
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at
your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, a copy is available at
http://www.r-project.org/Licenses/
SYNOPSIS
#include <Rmath.h>
double dwilcox(double x, double m, double n, int give_log)
double pwilcox(double x, double m, double n, int lower_tail, int log_p)
double qwilcox(double x, double m, double n, int lower_tail, int log_p);
double rwilcox(double m, double n)
DESCRIPTION
dwilcox The density of the Wilcoxon distribution.
pwilcox The distribution function of the Wilcoxon distribution.
qwilcox The quantile function of the Wilcoxon distribution.
rwilcox Random variates from the Wilcoxon distribution.
*/
/*
Note: the checks here for R_CheckInterrupt also do stack checking.
calloc/free are remapped for use in R, so allocation checks are done there.
freeing is completed by an on.exit action in the R wrappers.
*/
#include "wilcox.h"
#define WILCOX_MAX 50
#define give_log log_p
#define R_D__0 (log_p ? 1 : 0.) /* 0 */
#define R_D__1 (log_p ? 0. : 1.) /* 1 */
#define R_DT_0 (lower_tail ? R_D__0 : R_D__1) /* 0 */
#define R_DT_1 (lower_tail ? R_D__1 : R_D__0) /* 1 */
#define R_D_val(x) (log_p ? log(x) : (x)) /* x in pF(x,..) */
#define R_D_Clog(p) (log_p ? log1p(-(p)) : (0.5 - (p) + 0.5)) /* [log](1-p) */
#define R_DT_val(x) (lower_tail ? R_D_val(x) : R_D_Clog(x))
/*********************************************************************************************************************************/
//Numerical Recipes pg. 219
double PWilcox::gammln(const double xx) {
try {
int j;
double x,y,tmp,ser;
static const double cof[6]={76.18009172947146,-86.50532032941677,24.01409824083091,
-1.231739572450155,0.120858003e-2,-0.536382e-5};
y=x=xx;
tmp=x+5.5;
tmp -= (x+0.5)*log(tmp);
ser=1.0;
for (j=0;j<6;j++) {
ser += cof[j]/++y;
}
return -tmp+log(2.5066282746310005*ser/x);
}
catch(exception& e) {
mout->errorOut(e, "PWilcox", "gammln");
exit(1);
}
}
/*********************************************************************************************************************************/
double PWilcox::choose(double n, double k){
try {
n = floor(n + 0.5);
k = floor(k + 0.5);
double lchoose = gammln(n + 1.0) - gammln(k + 1.0) - gammln(n - k + 1.0);
return (floor(exp(lchoose) + 0.5));
}
catch(exception& e) {
mout->errorOut(e, "PWilcox", "choose");
exit(1);
}
}
/*********************************************************************************************************************************/
/* This counts the number of choices with statistic = k */
double PWilcox::cwilcox(int k, int m, int n, double*** w) {
try {
int c, u, i, j, l;
if (mout->getControl_pressed()) { return 0; }
u = m * n;
if (k < 0 || k > u)
return(0);
c = (int)(u / 2);
if (k > c)
k = u - k; /* hence k <= floor(u / 2) */
if (m < n) {
i = m; j = n;
} else {
i = n; j = m;
} /* hence i <= j */
if (j == 0) /* and hence i == 0 */
return (k == 0);
/* We can simplify things if k is small. Consider the Mann-Whitney
definition, and sort y. Then if the statistic is k, no more
than k of the y's can be <= any x[i], and since they are sorted
these can only be in the first k. So the count is the same as
if there were just k y's.
*/
if (j > 0 && k < j) return cwilcox(k, i, k, w);
Utils util;
if (w[i][j] == nullptr) {
w[i][j] = (double *) calloc((size_t) c + 1, sizeof(double));
for (l = 0; l <= c; l++)
w[i][j][l] = -1;
}
if (w[i][j][k] < 0) {
if (j == 0) /* and hence i == 0 */
w[i][j][k] = (k == 0);
else
w[i][j][k] = cwilcox(k - j, i - 1, j, w) + cwilcox(k, i, j - 1, w);
}
return(w[i][j][k]);
}
catch(exception& e) {
mout->errorOut(e, "PWilcox", "cwilcox");
exit(1);
}
}
/*********************************************************************************************************************************/
/* args have the same meaning as R function pwilcox */
double PWilcox::pwilcox(double q, double m, double n, bool lower_tail){
try {
int i;
double c, p;
bool log_p = false;
double*** w; w = nullptr;
if (isnan(m) || isnan(n))
{return 0;}
m = floor(m + 0.5);
n = floor(n + 0.5);
if (m <= 0 || n <= 0) {return 0;}
q = floor(q + 1e-7);
if (q < 0.0)
return(R_DT_0);
if (q >= m * n)
return(R_DT_1);
int mm = (int) m, nn = (int) n;
if (mout->getControl_pressed()) { return 0; }
//w_init_maybe(mm, nn);
/********************************************/
int thisi;
if (mm > nn) { thisi = nn; nn = mm; mm = thisi; }
mm = max(mm, 50);
nn = max(nn, 50);
w = (double ***) calloc((size_t) mm + 1, sizeof(double **));
for (thisi = 0; thisi <= mm; thisi++) {
w[thisi] = (double **) calloc((size_t) nn + 1, sizeof(double *));
}
allocated_m = m; allocated_n = n;
/********************************************/
c = choose(m + n, n);
p = 0;
/* Use summation of probs over the shorter range */
if (q <= (m * n / 2)) {
for (i = 0; i <= q; i++)
p += cwilcox(i, m, n, w) / c;
}
else {
q = m * n - q;
for (i = 0; i < q; i++) {
p += cwilcox(i, m, n, w) / c;
}
lower_tail = !lower_tail; /* p = 1 - p; */
}
Utils util;
//free w
/********************************************/
for (int i = allocated_m; i >= 0; i--) {
for (int j = allocated_n; j >= 0; j--) {
if (w[i][j] != nullptr)
free((void *) w[i][j]);
}
free((void *) w[i]);
}
free((void *) w);
w = 0; allocated_m = allocated_n = 0;
/********************************************/
return(R_DT_val(p));
}
catch(exception& e) {
mout->errorOut(e, "PWilcox", "pwilcox");
exit(1);
}
} /* pwilcox */
|