1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
|
// Copyright (c) 2017-2023 California Institute of Technology ("Caltech"). U.S.
// Government sponsorship acknowledged. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
#pragma once
#ifdef __cplusplus
extern "C" {
#endif
#include <stdbool.h>
// Unless specified all arrays stored in contiguous matrices in row-major order.
//
// All functions are defined using the mrcal_..._full() form, which supports
// non-contiguous input and output arrays, and some optional arguments. Strides
// are used to specify the array layout.
//
// All functions have a convenience wrapper macro that is a simpler way to call
// the function, usable with contiguous arrays and defaults.
//
// All the functions use double-precision floating point to store the data, and
// C ints to store strides. The strides are given in bytes. In the
// mrcal_..._full() functions, each array is followed by the strides, one per
// dimension.
//
// I have two different representations of pose transformations:
//
// - Rt is a concatenated (4,3) array: Rt = nps.glue(R,t, axis=-2). The
// transformation is R*x+t
//
// - rt is a concatenated (6,) array: rt = nps.glue(r,t, axis=-1). The
// transformation is R*x+t where R = R_from_r(r)
//
// I treat all vectors as column vectors, so matrix multiplication works from
// the left: to rotate a vector x by a rotation matrix R I have
//
// x_rotated = R * x
// Store an identity rotation matrix into the given (3,3) array
//
// This is simply an identity matrix
#define mrcal_identity_R(R) mrcal_identity_R_full(R,0,0)
void mrcal_identity_R_full(double* R, // (3,3) array
int R_stride0, // in bytes. <= 0 means "contiguous"
int R_stride1 // in bytes. <= 0 means "contiguous"
);
// Store an identity rodrigues rotation into the given (3,) array
//
// This is simply an array of zeros
#define mrcal_identity_r(r) mrcal_identity_r_full(r,0)
void mrcal_identity_r_full(double* r, // (3,) array
int r_stride0 // in bytes. <= 0 means "contiguous"
);
// Store an identity Rt transformation into the given (4,3) array
#define mrcal_identity_Rt(Rt) mrcal_identity_Rt_full(Rt,0,0)
void mrcal_identity_Rt_full(double* Rt, // (4,3) array
int Rt_stride0, // in bytes. <= 0 means "contiguous"
int Rt_stride1 // in bytes. <= 0 means "contiguous"
);
// Store an identity rt transformation into the given (6,) array
#define mrcal_identity_rt(rt) mrcal_identity_rt_full(rt,0)
void mrcal_identity_rt_full(double* rt, // (6,) array
int rt_stride0 // in bytes. <= 0 means "contiguous"
);
// Rotate the point x_in in a (3,) array by the rotation matrix R in a (3,3)
// array. This is simply the matrix-vector multiplication R x_in
//
// The result is returned in a (3,) array x_out.
//
// The gradient dx_out/dR is returned in a (3, 3,3) array J_R. Set to NULL if
// this is not wanted
//
// The gradient dx_out/dx_in is returned in a (3,3) array J_x. This is simply
// the matrix R. Set to NULL if this is not wanted
//
// In-place operation is supported; the output array may be the same as the
// input arrays to overwrite the input.
#define mrcal_rotate_point_R( x_out,J_R,J_x,R,x_in) mrcal_rotate_point_R_full(x_out,0,J_R,0,0,0,J_x,0,0,R,0,0,x_in,0, false)
#define mrcal_rotate_point_R_inverted(x_out,J_R,J_x,R,x_in) mrcal_rotate_point_R_full(x_out,0,J_R,0,0,0,J_x,0,0,R,0,0,x_in,0, true)
void mrcal_rotate_point_R_full( // output
double* x_out, // (3,) array
int x_out_stride0, // in bytes. <= 0 means "contiguous"
double* J_R, // (3,3,3) array. May be NULL
int J_R_stride0, // in bytes. <= 0 means "contiguous"
int J_R_stride1, // in bytes. <= 0 means "contiguous"
int J_R_stride2, // in bytes. <= 0 means "contiguous"
double* J_x, // (3,3) array. May be NULL
int J_x_stride0, // in bytes. <= 0 means "contiguous"
int J_x_stride1, // in bytes. <= 0 means "contiguous"
// input
const double* R, // (3,3) array. May be NULL
int R_stride0, // in bytes. <= 0 means "contiguous"
int R_stride1, // in bytes. <= 0 means "contiguous"
const double* x_in, // (3,) array. May be NULL
int x_in_stride0, // in bytes. <= 0 means "contiguous"
bool inverted // if true, I apply a
// rotation in the opposite
// direction. J_R corresponds
// to the input R
);
// Rotate the point x_in in a (3,) array by the rodrigues rotation in a (3,)
// array.
//
// The result is returned in a (3,) array x_out.
//
// The gradient dx_out/dr is returned in a (3,3) array J_r. Set to NULL if this
// is not wanted
//
// The gradient dx_out/dx_in is returned in a (3,3) array J_x. Set to NULL if
// this is not wanted
//
// In-place operation is supported; the output array may be the same as the
// input arrays to overwrite the input.
#define mrcal_rotate_point_r( x_out,J_r,J_x,r,x_in) mrcal_rotate_point_r_full(x_out,0,J_r,0,0,J_x,0,0,r,0,x_in,0, false)
#define mrcal_rotate_point_r_inverted(x_out,J_r,J_x,r,x_in) mrcal_rotate_point_r_full(x_out,0,J_r,0,0,J_x,0,0,r,0,x_in,0, true)
void mrcal_rotate_point_r_full( // output
double* x_out, // (3,) array
int x_out_stride0, // in bytes. <= 0 means "contiguous"
double* J_r, // (3,3) array. May be NULL
int J_r_stride0, // in bytes. <= 0 means "contiguous"
int J_r_stride1, // in bytes. <= 0 means "contiguous"
double* J_x, // (3,3) array. May be NULL
int J_x_stride0, // in bytes. <= 0 means "contiguous"
int J_x_stride1, // in bytes. <= 0 means "contiguous"
// input
const double* r, // (3,) array. May be NULL
int r_stride0, // in bytes. <= 0 means "contiguous"
const double* x_in, // (3,) array. May be NULL
int x_in_stride0, // in bytes. <= 0 means "contiguous"
bool inverted // if true, I apply a
// rotation in the opposite
// direction. J_r corresponds
// to the input r
);
// Transform the point x_in in a (3,) array by the Rt transformation in a (4,3)
// array.
//
// The result is returned in a (3,) array x_out.
//
// The gradient dx_out/dRt is returned in a (3, 4,3) array J_Rt. Set to NULL if
// this is not wanted
//
// The gradient dx_out/dx_in is returned in a (3,3) array J_x. This is simply
// the matrix R. Set to NULL if this is not wanted
//
// In-place operation is supported; the output array may be the same as the
// input arrays to overwrite the input.
#define mrcal_transform_point_Rt( x_out,J_Rt,J_x,Rt,x_in) mrcal_transform_point_Rt_full(x_out,0,J_Rt,0,0,0,J_x,0,0,Rt,0,0,x_in,0, false)
#define mrcal_transform_point_Rt_inverted(x_out,J_Rt,J_x,Rt,x_in) mrcal_transform_point_Rt_full(x_out,0,J_Rt,0,0,0,J_x,0,0,Rt,0,0,x_in,0, true)
void mrcal_transform_point_Rt_full( // output
double* x_out, // (3,) array
int x_out_stride0, // in bytes. <= 0 means "contiguous"
double* J_Rt, // (3,4,3) array. May be NULL
int J_Rt_stride0, // in bytes. <= 0 means "contiguous"
int J_Rt_stride1, // in bytes. <= 0 means "contiguous"
int J_Rt_stride2, // in bytes. <= 0 means "contiguous"
double* J_x, // (3,3) array. May be NULL
int J_x_stride0, // in bytes. <= 0 means "contiguous"
int J_x_stride1, // in bytes. <= 0 means "contiguous"
// input
const double* Rt, // (4,3) array. May be NULL
int Rt_stride0, // in bytes. <= 0 means "contiguous"
int Rt_stride1, // in bytes. <= 0 means "contiguous"
const double* x_in, // (3,) array. May be NULL
int x_in_stride0, // in bytes. <= 0 means "contiguous"
bool inverted // if true, I apply a
// transformation in the opposite
// direction. J_Rt corresponds
// to the input Rt
);
// Transform the point x_in in a (3,) array by the rt transformation in a (6,)
// array.
//
// The result is returned in a (3,) array x_out.
//
// The gradient dx_out/drt is returned in a (3,6) array J_rt. Set to NULL if
// this is not wanted
//
// The gradient dx_out/dx_in is returned in a (3,3) array J_x. This is simply
// the matrix R. Set to NULL if this is not wanted
//
// In-place operation is supported; the output array may be the same as the
// input arrays to overwrite the input.
#define mrcal_transform_point_rt( x_out,J_rt,J_x,rt,x_in) mrcal_transform_point_rt_full(x_out,0,J_rt,0,0,J_x,0,0,rt,0,x_in,0, false)
#define mrcal_transform_point_rt_inverted(x_out,J_rt,J_x,rt,x_in) mrcal_transform_point_rt_full(x_out,0,J_rt,0,0,J_x,0,0,rt,0,x_in,0, true)
void mrcal_transform_point_rt_full( // output
double* x_out, // (3,) array
int x_out_stride0, // in bytes. <= 0 means "contiguous"
double* J_rt, // (3,6) array. May be NULL
int J_rt_stride0, // in bytes. <= 0 means "contiguous"
int J_rt_stride1, // in bytes. <= 0 means "contiguous"
double* J_x, // (3,3) array. May be NULL
int J_x_stride0, // in bytes. <= 0 means "contiguous"
int J_x_stride1, // in bytes. <= 0 means "contiguous"
// input
const double* rt, // (6,) array. May be NULL
int rt_stride0, // in bytes. <= 0 means "contiguous"
const double* x_in, // (3,) array. May be NULL
int x_in_stride0, // in bytes. <= 0 means "contiguous"
bool inverted // if true, I apply the
// transformation in the
// opposite direction.
// J_rt corresponds to
// the input rt
);
// Convert a rotation matrix in a (3,3) array to a rodrigues vector in a (3,)
// array
//
// The result is returned in a (3,) array r
//
// The gradient dr/dR is returned in a (3, 3,3) array J. Set to NULL if this is
// not wanted
#define mrcal_r_from_R(r,J,R) mrcal_r_from_R_full(r,0,J,0,0,0,R,0,0)
void mrcal_r_from_R_full( // output
double* r, // (3,) vector
int r_stride0, // in bytes. <= 0 means "contiguous"
double* J, // (3,3,3) array. Gradient. May be NULL
int J_stride0, // in bytes. <= 0 means "contiguous"
int J_stride1, // in bytes. <= 0 means "contiguous"
int J_stride2, // in bytes. <= 0 means "contiguous"
// input
const double* R, // (3,3) array
int R_stride0, // in bytes. <= 0 means "contiguous"
int R_stride1 // in bytes. <= 0 means "contiguous"
);
// Convert a rodrigues vector in a (3,) array to a rotation matrix in a (3,3)
// array
//
// The result is returned in a (3,3) array R
//
// The gradient dR/dr is returned in a (3,3 ,3) array J. Set to NULL if this is
// not wanted
#define mrcal_R_from_r(R,J,r) mrcal_R_from_r_full(R,0,0,J,0,0,0,r,0)
void mrcal_R_from_r_full( // outputs
double* R, // (3,3) array
int R_stride0, // in bytes. <= 0 means "contiguous"
int R_stride1, // in bytes. <= 0 means "contiguous"
double* J, // (3,3,3) array. Gradient. May be NULL
int J_stride0, // in bytes. <= 0 means "contiguous"
int J_stride1, // in bytes. <= 0 means "contiguous"
int J_stride2, // in bytes. <= 0 means "contiguous"
// input
const double* r, // (3,) vector
int r_stride0 // in bytes. <= 0 means "contiguous"
);
// Invert a rotation matrix. This is a transpose
//
// The input is given in R_in in a (3,3) array
//
// The result is returned in a (3,3) array R_out
//
// In-place operation is supported; the output array may be the same as the
// input arrays to overwrite the input.
#define mrcal_invert_R(R_out,R_in) mrcal_invert_R_full(R_out,0,0,R_in,0,0)
void mrcal_invert_R_full( // output
double* R_out, // (3,3) array
int R_out_stride0, // in bytes. <= 0 means "contiguous"
int R_out_stride1, // in bytes. <= 0 means "contiguous"
// input
const double* R_in, // (3,3) array
int R_in_stride0, // in bytes. <= 0 means "contiguous"
int R_in_stride1 // in bytes. <= 0 means "contiguous"
);
// Convert an Rt transformation in a (4,3) array to an rt transformation in a
// (6,) array
//
// The result is returned in a (6,) array rt
//
// The gradient dr/dR is returned in a (3, 3,3) array J_R. Set to NULL if this
// is not wanted
//
// The t terms are identical, so dt/dt = identity and I do not return it
//
// The r and R terms are independent of the t terms, so dr/dt and dt/dR are both
// 0, and I do not return them
#define mrcal_rt_from_Rt(rt,J_R,Rt) mrcal_rt_from_Rt_full(rt,0,J_R,0,0,0,Rt,0,0)
void mrcal_rt_from_Rt_full( // output
double* rt, // (6,) vector
int rt_stride0, // in bytes. <= 0 means "contiguous"
double* J_R, // (3,3,3) array. Gradient. May be NULL
// No J_t. It's always the identity
int J_R_stride0, // in bytes. <= 0 means "contiguous"
int J_R_stride1, // in bytes. <= 0 means "contiguous"
int J_R_stride2, // in bytes. <= 0 means "contiguous"
// input
const double* Rt, // (4,3) array
int Rt_stride0, // in bytes. <= 0 means "contiguous"
int Rt_stride1 // in bytes. <= 0 means "contiguous"
);
// Convert an rt transformation in a (6,) array to an Rt transformation in a
// (4,3) array
//
// The result is returned in a (4,3) array Rt
//
// The gradient dR/dr is returned in a (3,3 ,3) array J_r. Set to NULL if this
// is not wanted
//
// The t terms are identical, so dt/dt = identity and I do not return it
//
// The r and R terms are independent of the t terms, so dR/dt and dt/dr are both
// 0, and I do not return them
#define mrcal_Rt_from_rt(Rt,J_r,rt) mrcal_Rt_from_rt_full(Rt,0,0,J_r,0,0,0,rt,0)
void mrcal_Rt_from_rt_full( // output
double* Rt, // (4,3) array
int Rt_stride0, // in bytes. <= 0 means "contiguous"
int Rt_stride1, // in bytes. <= 0 means "contiguous"
double* J_r, // (3,3,3) array. Gradient. May be NULL
// No J_t. It's just the identity
int J_r_stride0, // in bytes. <= 0 means "contiguous"
int J_r_stride1, // in bytes. <= 0 means "contiguous"
int J_r_stride2, // in bytes. <= 0 means "contiguous"
// input
const double* rt, // (6,) vector
int rt_stride0 // in bytes. <= 0 means "contiguous"
);
// Invert an Rt transformation
//
// The input is given in Rt_in in a (4,3) array
//
// The result is returned in a (4,3) array Rt_out
//
// In-place operation is supported; the output array may be the same as the
// input arrays to overwrite the input.
#define mrcal_invert_Rt(Rt_out,Rt_in) mrcal_invert_Rt_full(Rt_out,0,0,Rt_in,0,0)
void mrcal_invert_Rt_full( // output
double* Rt_out, // (4,3) array
int Rt_out_stride0, // in bytes. <= 0 means "contiguous"
int Rt_out_stride1, // in bytes. <= 0 means "contiguous"
// input
const double* Rt_in, // (4,3) array
int Rt_in_stride0, // in bytes. <= 0 means "contiguous"
int Rt_in_stride1 // in bytes. <= 0 means "contiguous"
);
// Invert an rt transformation
//
// The input is given in rt_in in a (6,) array
//
// The result is returned in a (6,) array rt_out
//
// The gradient dtout/drin is returned in a (3,3) array dtout_drin. Set to NULL
// if this is not wanted
//
// The gradient dtout/dtin is returned in a (3,3) array dtout_dtin. Set to NULL
// if this is not wanted
//
// The gradient drout/drin is always -identity. So it is not returned
//
// The gradient drout/dtin is always 0. So it is not returned
//
// In-place operation is supported; the output array may be the same as the
// input arrays to overwrite the input.
#define mrcal_invert_rt(rt_out,dtout_drin,dtout_dtin,rt_in) mrcal_invert_rt_full(rt_out,0,dtout_drin,0,0,dtout_dtin,0,0,rt_in,0)
void mrcal_invert_rt_full( // output
double* rt_out, // (6,) array
int rt_out_stride0, // in bytes. <= 0 means "contiguous"
double* dtout_drin, // (3,3) array
int dtout_drin_stride0, // in bytes. <= 0 means "contiguous"
int dtout_drin_stride1, // in bytes. <= 0 means "contiguous"
double* dtout_dtin, // (3,3) array
int dtout_dtin_stride0, // in bytes. <= 0 means "contiguous"
int dtout_dtin_stride1, // in bytes. <= 0 means "contiguous"
// input
const double* rt_in, // (6,) array
int rt_in_stride0 // in bytes. <= 0 means "contiguous"
);
// Compose two Rt transformations
//
// Rt = Rt0 * Rt1 ---> Rt(x) = Rt0( Rt1(x) )
//
// The input transformations are given in (4,3) arrays Rt_0 and Rt_1
//
// The result is returned in a (4,3) array Rt_out
//
// In-place operation is supported; the output array may be the same as either
// of the input arrays to overwrite the input.
#define mrcal_compose_Rt( Rt_out,Rt_0,Rt_1) mrcal_compose_Rt_full(Rt_out,0,0,Rt_0,0,0,Rt_1,0,0,false,false)
#define mrcal_compose_Rt_inverted0( Rt_out,Rt_0,Rt_1) mrcal_compose_Rt_full(Rt_out,0,0,Rt_0,0,0,Rt_1,0,0,true, false)
#define mrcal_compose_Rt_inverted1( Rt_out,Rt_0,Rt_1) mrcal_compose_Rt_full(Rt_out,0,0,Rt_0,0,0,Rt_1,0,0,false,true )
#define mrcal_compose_Rt_inverted01(Rt_out,Rt_0,Rt_1) mrcal_compose_Rt_full(Rt_out,0,0,Rt_0,0,0,Rt_1,0,0,true, true )
void mrcal_compose_Rt_full( // output
double* Rt_out, // (4,3) array
int Rt_out_stride0, // in bytes. <= 0 means "contiguous"
int Rt_out_stride1, // in bytes. <= 0 means "contiguous"
// input
const double* Rt_0, // (4,3) array
int Rt_0_stride0, // in bytes. <= 0 means "contiguous"
int Rt_0_stride1, // in bytes. <= 0 means "contiguous"
const double* Rt_1, // (4,3) array
int Rt_1_stride0, // in bytes. <= 0 means "contiguous"
int Rt_1_stride1, // in bytes. <= 0 means "contiguous"
bool inverted0,
bool inverted1);
// Compose two rt transformations
//
// rt = rt0 * rt1 ---> rt(x) = rt0( rt1(x) )
//
// The input transformations are given in (6,) arrays rt_0 and rt_1
//
// The result is returned in a (6,) array rt_out
//
// The gradient dr/dr0 is returned in a (3,3) array dr_dr0. Set to NULL if this
// is not wanted
//
// The gradient dr/dr1 is returned in a (3,3) array dr_dr1. Set to NULL if this
// is not wanted
//
// The gradient dt/dr0 is returned in a (3,3) array dt_dr0. Set to NULL if this
// is not wanted
//
// The gradient dt/dt1 is returned in a (3,3) array dt_dt1. Set to NULL if this
// is not wanted
//
// The gradients dr/dt0, dr/dt1 are always 0, so they are never returned
//
// If neither of the inputs is inverted, the dt/dr1 = 0 always and dt/dt0 = I
// always, so the convenience macro mrcal_compose_rt() doesn't return those. The
// other macros and mrcal_compose_rt_full() do report those as well
//
// In-place operation is supported; the output array may be the same as either
// of the input arrays to overwrite the input.
#define mrcal_compose_rt( rt_out,dr_dr0,dr_dr1,dt_dr0, dt_dt1,rt_0,rt_1) mrcal_compose_rt_full(rt_out,0,dr_dr0,0,0,dr_dr1,0,0,dt_dr0,0,0,NULL, 0,0,NULL, 0,0,dt_dt1,0,0,rt_0,0,rt_1,0, false, false)
#define mrcal_compose_rt_inverted0( rt_out,dr_dr0,dr_dr1,dt_dr0,dt_dr1,dt_dt0,dt_dt1,rt_0,rt_1) mrcal_compose_rt_full(rt_out,0,dr_dr0,0,0,dr_dr1,0,0,dt_dr0,0,0,dt_dr1,0,0,dt_dt0,0,0,dt_dt1,0,0,rt_0,0,rt_1,0, true, false)
#define mrcal_compose_rt_inverted1( rt_out,dr_dr0,dr_dr1,dt_dr0,dt_dr1,dt_dt0,dt_dt1,rt_0,rt_1) mrcal_compose_rt_full(rt_out,0,dr_dr0,0,0,dr_dr1,0,0,dt_dr0,0,0,dt_dr1,0,0,dt_dt0,0,0,dt_dt1,0,0,rt_0,0,rt_1,0, false, true)
#define mrcal_compose_rt_inverted01(rt_out,dr_dr0,dr_dr1,dt_dr0,dt_dr1,dt_dt0,dt_dt1,rt_0,rt_1) mrcal_compose_rt_full(rt_out,0,dr_dr0,0,0,dr_dr1,0,0,dt_dr0,0,0,dt_dr1,0,0,dt_dt0,0,0,dt_dt1,0,0,rt_0,0,rt_1,0, true, true)
void mrcal_compose_rt_full( // output
double* rt_out, // (6,) array
int rt_out_stride0, // in bytes. <= 0 means "contiguous"
double* dr_dr0, // (3,3) array; may be NULL
int dr_dr0_stride0, // in bytes. <= 0 means "contiguous"
int dr_dr0_stride1, // in bytes. <= 0 means "contiguous"
double* dr_dr1, // (3,3) array; may be NULL
int dr_dr1_stride0, // in bytes. <= 0 means "contiguous"
int dr_dr1_stride1, // in bytes. <= 0 means "contiguous"
double* dt_dr0, // (3,3) array; may be NULL
int dt_dr0_stride0, // in bytes. <= 0 means "contiguous"
int dt_dr0_stride1, // in bytes. <= 0 means "contiguous"
double* dt_dr1, // (3,3) array; may be NULL
int dt_dr1_stride0, // in bytes. <= 0 means "contiguous"
int dt_dr1_stride1, // in bytes. <= 0 means "contiguous"
double* dt_dt0, // (3,3) array; may be NULL
int dt_dt0_stride0, // in bytes. <= 0 means "contiguous"
int dt_dt0_stride1, // in bytes. <= 0 means "contiguous"
double* dt_dt1, // (3,3) array; may be NULL
int dt_dt1_stride0, // in bytes. <= 0 means "contiguous"
int dt_dt1_stride1, // in bytes. <= 0 means "contiguous"
// input
const double* rt_0, // (6,) array
int rt_0_stride0, // in bytes. <= 0 means "contiguous"
const double* rt_1, // (6,) array
int rt_1_stride0, // in bytes. <= 0 means "contiguous"
bool inverted0,
bool inverted1);
// Compose two angle-axis rotations
//
// r = r0 * r1 ---> r(x) = r0( r1(x) )
//
// The input rotations are given in (3,) arrays r_0 and r_1
//
// The result is returned in a (3,) array r_out
//
// The gradient dr/dr0 is returned in a (3,3) array dr_dr0. Set to NULL if this
// is not wanted
//
// The gradient dr/dr1 is returned in a (3,3) array dr_dr1. Set to NULL if this
// is not wanted
//
// In-place operation is supported; the output array may be the same as either
// of the input arrays to overwrite the input.
#define mrcal_compose_r( r_out,dr_dr0,dr_dr1,r_0,r_1) mrcal_compose_r_full(r_out,0,dr_dr0,0,0,dr_dr1,0,0,r_0,0,r_1,0,false,false)
#define mrcal_compose_r_inverted0( r_out,dr_dr0,dr_dr1,r_0,r_1) mrcal_compose_r_full(r_out,0,dr_dr0,0,0,dr_dr1,0,0,r_0,0,r_1,0,true, false)
#define mrcal_compose_r_inverted1( r_out,dr_dr0,dr_dr1,r_0,r_1) mrcal_compose_r_full(r_out,0,dr_dr0,0,0,dr_dr1,0,0,r_0,0,r_1,0,false,true)
#define mrcal_compose_r_inverted01(r_out,dr_dr0,dr_dr1,r_0,r_1) mrcal_compose_r_full(r_out,0,dr_dr0,0,0,dr_dr1,0,0,r_0,0,r_1,0,true, true)
void mrcal_compose_r_full( // output
double* r_out, // (3,) array
int r_out_stride0, // in bytes. <= 0 means "contiguous"
double* dr_dr0, // (3,3) array; may be NULL
int dr_dr0_stride0, // in bytes. <= 0 means "contiguous"
int dr_dr0_stride1, // in bytes. <= 0 means "contiguous"
double* dr_dr1, // (3,3) array; may be NULL
int dr_dr1_stride0, // in bytes. <= 0 means "contiguous"
int dr_dr1_stride1, // in bytes. <= 0 means "contiguous"
// input
const double* r_0, // (3,) array
int r_0_stride0, // in bytes. <= 0 means "contiguous"
const double* r_1, // (3,) array
int r_1_stride0, // in bytes. <= 0 means "contiguous"
bool inverted0,
bool inverted1);
// Special-case rotation compositions for the uncertainty computation
//
// Same as mrcal_compose_r() except
//
// - r0 is assumed to be 0, so we don't ingest it, and we don't report the
// composition result
// - we ONLY report the dr01/dr0 gradient
//
// In python this function is equivalent to
//
// _,dr01_dr0,_ = compose_r(np.zeros((3,),),
// r1,
// get_gradients=True)
#define mrcal_compose_r_tinyr0_gradientr0(dr_dr0,r_1) \
mrcal_compose_r_tinyr0_gradientr0_full(dr_dr0,0,0,r_1,0)
void mrcal_compose_r_tinyr0_gradientr0_full( // output
double* dr_dr0, // (3,3) array; may be NULL
int dr_dr0_stride0, // in bytes. <= 0 means "contiguous"
int dr_dr0_stride1, // in bytes. <= 0 means "contiguous"
// input
const double* r_1, // (3,) array
int r_1_stride0 // in bytes. <= 0 means "contiguous"
);
// Same as mrcal_compose_r() except
//
// - r1 is assumed to be 0, so we don't ingest it, and we don't report the
// composition result
// - we ONLY report the dr01/dr1 gradient
//
// In python this function is equivalent to
//
// _,_,dr01_dr1 = compose_r(r0,
// np.zeros((3,),),
// get_gradients=True)
#define mrcal_compose_r_tinyr1_gradientr1(dr_dr1,r_0) \
mrcal_compose_r_tinyr1_gradientr1_full(dr_dr1,0,0,r_0,0)
void mrcal_compose_r_tinyr1_gradientr1_full( // output
double* dr_dr1, // (3,3) array; may be NULL
int dr_dr1_stride0, // in bytes. <= 0 means "contiguous"
int dr_dr1_stride1, // in bytes. <= 0 means "contiguous"
// input
const double* r_0, // (3,) array
int r_0_stride0 // in bytes. <= 0 means "contiguous"
);
// Procrustes fit functions. Align two corresponding sets of normalized
// direction vectors or points. Return true on success
bool mrcal_align_procrustes_vectors_R01(// out
double* R01,
// in
const int N,
// (N,3) arrays
// normalized direction vectors
const double* v0,
const double* v1,
// (N,) array; may be NULL to use an even
// weighting
const double* weights);
bool mrcal_align_procrustes_points_Rt01(// out
double* Rt01,
// in
const int N,
// (N,3) arrays
const double* p0,
const double* p1,
// (N,) array; may be NULL to use an even
// weighting
const double* weights);
// Compute a non-unique rotation to map a given vector to [0,0,1]
void mrcal_R_aligned_to_vector(// out
double* R,
// in
const double* v);
#ifdef __cplusplus
}
#endif
|