1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
import unittest
import os
import tempfile
import numpy as np
from numpy import ma
from numpy.testing import assert_array_almost_equal
from netCDF4 import Dataset, default_fillvals
# Test automatic conversion of masked arrays (set_auto_mask())
class SetAutoMaskTestBase(unittest.TestCase):
"""Base object for tests checking the functionality of set_auto_mask()"""
def setUp(self):
self.testfile = tempfile.NamedTemporaryFile(suffix='.nc', delete=False).name
self.fillval = default_fillvals["i2"]
self.v = np.array([self.fillval, 5, 4, -9999], dtype = "i2")
self.v_ma = ma.array([self.fillval, 5, 4, -9999], dtype = "i2", mask = [True, False, False, True])
self.scale_factor = 10.
self.add_offset = 5.
self.v_scaled = self.v * self.scale_factor + self.add_offset
self.v_ma_scaled = self.v_ma * self.scale_factor + self.add_offset
f = Dataset(self.testfile, 'w')
_ = f.createDimension('x', None)
v = f.createVariable('v', "i2", 'x')
v.missing_value = np.array(-9999, v.dtype)
# v[0] not set, will be equal to _FillValue
v[1] = self.v[1]
v[2] = self.v[2]
v[3] = v.missing_value
f.close()
def tearDown(self):
os.remove(self.testfile)
class SetAutoMaskFalse(SetAutoMaskTestBase):
def test_unscaled(self):
"""Testing auto-conversion of masked arrays for set_auto_mask(False)"""
f = Dataset(self.testfile, "r")
f.variables["v"].set_auto_mask(False)
v = f.variables["v"][:]
self.assertEqual(v.dtype, "i2")
self.assertTrue(isinstance(v, np.ndarray))
self.assertTrue(not isinstance(v, ma.masked_array))
assert_array_almost_equal(v, self.v)
f.close()
def test_scaled(self):
"""Testing auto-conversion of masked arrays for set_auto_mask(False) with scaling"""
# Update test data file
f = Dataset(self.testfile, "a")
f.variables["v"].scale_factor = self.scale_factor
f.variables["v"].add_offset = self.add_offset
f.close()
# Note: Scaling variables is default if scale_factor and/or add_offset are present
f = Dataset(self.testfile, "r")
f.variables["v"].set_auto_mask(False)
v = f.variables["v"][:]
self.assertEqual(v.dtype, "f8")
self.assertTrue(isinstance(v, np.ndarray))
self.assertTrue(not isinstance(v, ma.masked_array))
assert_array_almost_equal(v, self.v_scaled)
f.close()
class SetAutoMaskTrue(SetAutoMaskTestBase):
def test_unscaled(self):
"""Testing auto-conversion of masked arrays for set_auto_mask(True)"""
f = Dataset(self.testfile)
f.variables["v"].set_auto_mask(True) # The default anyway...
v_ma = f.variables['v'][:]
self.assertEqual(v_ma.dtype, "i2")
self.assertTrue(isinstance(v_ma, np.ndarray))
self.assertTrue(isinstance(v_ma, ma.masked_array))
assert_array_almost_equal(v_ma, self.v_ma)
f.close()
def test_scaled(self):
"""Testing auto-conversion of masked arrays for set_auto_mask(True)"""
# Update test data file
f = Dataset(self.testfile, "a")
f.variables["v"].scale_factor = self.scale_factor
f.variables["v"].add_offset = self.add_offset
f.close()
# Note: Scaling variables is default if scale_factor and/or add_offset are present
f = Dataset(self.testfile)
f.variables["v"].set_auto_mask(True) # The default anyway...
v_ma = f.variables['v'][:]
self.assertEqual(v_ma.dtype, "f8")
self.assertTrue(isinstance(v_ma, np.ndarray))
self.assertTrue(isinstance(v_ma, ma.masked_array))
assert_array_almost_equal(v_ma, self.v_ma_scaled)
f.close()
class GlobalSetAutoMaskTest(unittest.TestCase):
def setUp(self):
self.testfile = tempfile.NamedTemporaryFile(suffix='.nc', delete=False).name
f = Dataset(self.testfile, 'w')
grp1 = f.createGroup('Group1')
grp2 = f.createGroup('Group2')
f.createGroup('Group3') # empty group
f.createVariable('var0', "i2", ())
grp1.createVariable('var1', 'f8', ())
grp2.createVariable('var2', 'f4', ())
f.close()
def tearDown(self):
os.remove(self.testfile)
def runTest(self):
# Note: The default behaviour is to to have both auto-masking and auto-scaling activated.
# This is already tested in tst_scaled.py, so no need to repeat here. Instead,
# disable auto-masking and auto-scaling altogether.
f = Dataset(self.testfile, "r")
# Neither scaling and masking enabled
f.set_auto_maskandscale(False)
v0 = f.variables['var0']
v1 = f.groups['Group1'].variables['var1']
v2 = f.groups['Group2'].variables['var2']
self.assertFalse(v0.scale)
self.assertFalse(v0.mask)
self.assertFalse(v1.scale)
self.assertFalse(v1.mask)
self.assertFalse(v2.scale)
self.assertFalse(v2.mask)
# No auto-masking, but auto-scaling
f.set_auto_maskandscale(True)
f.set_auto_mask(False)
self.assertTrue(v0.scale)
self.assertFalse(v0.mask)
self.assertTrue(v1.scale)
self.assertFalse(v1.mask)
self.assertTrue(v2.scale)
self.assertFalse(v2.mask)
f.close()
if __name__ == '__main__':
unittest.main()
|